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Abstract Peroxisome proliferator-activated receptor vy
(PPAR-y) is a key regulator of fatty acid metabolism, pro-
moting its storage in adipose tissue and reducing circulating
concentrations of free fatty acids. Activation of PPAR-y has
favorable effects on measures of adipocyte function, insulin
sensitivity, lipoprotein metabolism, and vascular structure
and function. Despite these effects, clinical trials of thiazo-
lidinedione PPAR-y activators have not provided conclusive
evidence that they reduce cardiovascular morbidity and
mortality. The apparent disparity between effects on labora-
tory measurements and clinical outcomes may be related to
limitations of clinical trials, adverse effects of PPAR-y acti-
vation, or off-target effects of thiazolidinedione agents.Hl
This review addresses these issues from a clinician’s per-
spective and highlights several ongoing clinical trials that
may help to clarify the therapeutic role of PPAR-y activators
in cardiovascular disease.—Huang, J. V., C. R. Greyson, and
G. G. Schwartz. PPAR-y as a therapeutic target in cardiovas-
cular disease: evidence and uncertainty. J. Lipid Res. 2012.
53:1738-1754.
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The nuclear transcription factor peroxisome proliferator-
activated receptor y (PPAR-y) is highly expressed in adi-
pose tissue and plays a central role in adipocyte function,
fat storage, and lipid metabolism (1-4). PPAR~y activators
are commonly used to treat patients with type 2 diabetes
who share metabolic abnormalities that include exces-
sive and inflamed adipose tissue (5), particularly in vis-
ceral depots (6); elevated circulating concentrations of
nonesterified fatty acids (NEFA), triglycerides, glucose,
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insulin, and inflammatory mediators; and reduced con-
centrations of adiponectin and high-density lipoprotein
cholesterol (HDL-C). Each of these abnormalities is as-
sociated with and may contribute to increased cardiovas-
cular risk (7-9).

PPAR-y promotes adipogenesis in subcutaneous fat,
stimulating the differentiation of preadipocytes into adi-
pocytes with capacity for incremental lipid filling (1, 2).
Consequently, treatment with a PPAR-y activator shifts fat
stores toward subcutaneous adipose tissue and away from
visceral adipose tissue (Fig. 1), liver, and skeletal muscle
cells (10-14). The resulting metabolic effects, discussed
below, include enhanced insulin sensitivity; improved gly-
cemic control; decreased plasma NEFA, triglycerides, and
inflammatory markers; and increased plasma adiponectin
and HDL-C (15-17). Moreover, both experimental and
clinical evidence indicate that PPAR-y mobilizes endothe-
lial progenitor cells, promotes vascular endothelial repair,
improves endothelium-mediated vasodilator function, de-
creases vascular smooth muscle proliferation, lowers blood
pressure, retards the progression of atherosclerosis, and
mitigates ischemia/reperfusion injury (18-21).

This portfolio of metabolic and vascular effects would
lead to a reasonable expectation that treatment with a
PPAR-y activator would have substantial, favorable effects
on cardiovascular morbidity and mortality. However, evi-
dence from clinical trials conducted to date has not substan-
tiated this prediction, possibly because other, undesirable
cardiovascular actions of PPAR-y mitigate its beneficial
effects. For example, renal salt and water retention may
cause intravascular and extracellular volume expansion,
edema, and risk of congestive heart failure (22); increased
adipose tissue mass contributes to weight gain (13); some
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Case: Male/59 years old
Baseline

Pioglitazone for 16 weeks

Subcutaneous Fat Area: 144.3 cm?
Visceral Fat Area:140.0 cm?

Body Weight: 67.4 kg

FPG: 184 mg/dl

HbA,.: 7.3 %

Fig. 1.

Subcutaneous Fat Area: 204.7 cm?
Visceral Fat Area:105.1 cm?

Body Weight: 69.2 kg

FPG: 117 mg/dI

HbA,.: 6.5 %

Changes in body fat distribution induced by short-term treatment with thiazolidinedione. MRI images demonstrating changes in

visceral and subcutaneous abdominal fat depots with 16 weeks of treatment with pioglitazone in a 59-year-old individual with type 2 diabe-
tes. Transverse (left upper), sagittal (right upper), and coronal (left lower) views show that pioglitazone increased subcutaneous fat and
decreased visceral fat, with increased total body weight. Reproduced from Ref. 13 with permission.

PPAR-y activators may increase concentrations of low den-
sity lipoprotein cholesterol (LDL-C) (23); and in vitro and
animal studies suggest that thiazolidinedione (TZD) PPAR-y
activators may interact with cardiac ion channels to pro-
mote arrhythmias (24-26). While some studies have shown
that PPAR~y activation retards atherosclerosis (18), others
have indicated a greater propensity for plaque necrosis
(27, 28). Thus, the net balance of favorable and unfavor-
able effects of PPAR-y activation on cardiovascular out-
comes remains uncertain (Table 1).

This article reviews metabolic and cardiovascular effects
of PPAR-y activation that might influence cardiovascular
outcomes, in juxtaposition to the results of major com-
pleted clinical trials and observational studies of TZD drugs.
Key questions are posed for ongoing and future clinical
investigation of PPAR-y as a therapeutic target in cardio-
vascular disease.

BLOOD GLUCOSE AND INSULIN SENSITIVITY

Experimental and clinical data from transgenic animal
models and studies in patients with dominant negative
PPAR-y polymorphisms indicate that the action of PPAR-y is
crucial to insulin sensitivity of adipose tissue, liver, and skel-
etal muscle (29-32). In clinical therapy of type 2 diabetes,

the use of a TZD PPAR-y agonist as monotherapy or add-on
therapy improves insulin sensitivity, manifest by reduced
fasting plasma glucose and insulin concentrations, lower-
ing of hemoglobin Alc (HbAlc) by 0.5-1.5%, and improve-
mentinindices ofinsulinsensitivity determined by euglycemic
hyperinsulinemic clamp, glucose tolerance testing, or home-
ostasis model (33-36).

A large body of experimental evidence implicates insu-
lin resistance as a driver of atherosclerosis (37). Insulin-
resistant states, including type 2 diabetes, impaired glucose
tolerance, and/or metabolic syndrome substantially in-
crease the incident risk of cardiovascular disease and worsen
the prognosis of established cardiovascular disease (38—41).
The severity of hyperglycemia, marked by average HbAlc
levels, correlates with the risk of macrovascular atheroscle-
rotic events (42). However, a critical but unanswered ques-
tion is whether pharmacologic treatment that increases
insulin sensitivity thereby reduces cardiovascular risk. In
the Prospective Pioglitazone Clinical Trial in Macrovascu-
lar Events (PROACTIVE) trial, the effect of pioglitazone
on cardiovascular endpoints was not related to its effect on
HbAlc (43). Several large trials in patients with type 2 dia-
betes found no significant difference in cardiovascular
morbidity and mortality among patients treated with more
intensive or less intensive glycemic control regimens
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TABLE 1. Tissue-specific actions of PPAR-y with potential to influence cardiovascular outcomes
Tissue Favorable Effects (Refs.) Evidence Unfavorable Effects (Refs.) Evidence
Arterial wall Decrease arterial wall inflammation, E, C Plaque hemorrhage E
retard progression of atherosclerosis and necrosis (27,28)
(18,123-125,128-139)
Mobilize endothelial progenitor cells, E, C
promote endothelial repair,
improve endohelial function
(20,102-110,112,113)
Lower blood pressure C
(92-95)
Prevent vascular smooth muscle E, C
proliferation, prevent restenosis
after angioplasty (115-121)
Adipose Redistribute mass from visceral to E, C Weight gain E,C
subcutaneous depots (13,92,190,191,193)
(1-4,12,13)
Anti-inflammatory E, C
(80-83)
Increase adiponectin secretion E, C
(17,73-75)
Enhance insulin E, C
sensitivity (29,30,32)
Circulating lipids ~ Raise HDL-C, C Increase LDL-C C
and lipoproteins reduce triglycerides (rosiglitazone)
(23,43,84,92) (23,91,193)
Reduce NEFA C
(60,62-65,67)
Liver and muscle Reduce steatosis, enhance local E, C
and systemic insulin sensitivity
(10,11,14,29,31-36)
Kidney Sodium and fluid retention E,C
(163,166-171)
Heart Mitigate ischemia/reperfusion E Congestive heart failure C
injury (140-150) (22,92,94,191,193).
Block cardiac ion channels, E
promote ischemic
arrhythmias (24-26,180)
Brain Reduce infarct size E

(156-161)

G, clinical evidence; E, experimental evidence.

(44-46). The frequency of use and/or dosage of TZDs
(predominantly rosiglitazone) was higher in the intensive
control arms of these trials (45, 46). However, because
the trials did not employ a uniform treatment regimen in
each arm, but rather adjusted treatment for each patient
according to HbAlc levels, the data do not elucidate the
relations among TZD use, insulin sensitivity, and cardio-
vascular outcomes.

The BARI-2D trial took an additional step to address
the hypothesis that an insulin-sensitizing treatment
strategy would provide greater cardiovascular benefit than
an insulin-providing strategy. It included 2,368 patients
with type 2 diabetes and coronary heart disease (CHD)
(47). The insulin-providing strategy utilized insulin (61%
of patients) and/or sulfonylurea (52% of patients). The
insulin-sensitizing strategy involved metformin (75% of pa-
tients) and/or TZD (62% of patients). In both arms, a tar-
get of HbAlc less than 7% was set. In attempting to achieve
this target, there was substantial crossover use of insulin
and sulfonylurea in the insulin-sensitizing arm and met-
formin in the insulin-providing arm. The insulin-sensi-
tizing arm, compared with the insulin-providing arm,
achieved lower mean HbAlc (7 versus 7.5%) and median
fasting insulin levels (6 versus 10 wU/ml), suggesting greater
insulin sensitivity, and it resulted in fewer hypoglycemic
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episodes. Nonetheless, after mean follow-up of 5 years, the
occurrence of death, myocardial infarction (MI), or stroke
was nearly identical in both arms. The results of BARI-2D
do not support the conclusion that insulin sensitization
reduces cardiovascular risk in type 2 diabetes. However,
as with the trials discussed above, the use of multiple glyce-
mic control agents in a nonstandardized fashion in both
arms of the trial precludes inferences regarding the effi-
cacy of TZDs or any other specific drug class.

NEFA

High plasma NEFA concentrations may be deleterious
to vascular function, intermediary metabolism, and car-
diovascular outcomes. At high concentrations, NEFA are
toxic to endothelial cells. High circulating NEFA can cause
oxidant stress and inflammatory responses in endothelium
and are associated clinically with hypertension and endothe-
lial dysfunction (48, 49). Moreover, endothelial dysfunc-
tion can be induced in normal subjects by acute elevation
of circulating NEFA from infusion of triglyceride emul-
sion and heparin (50, 51). High NEFA levels can cause or
exacerbate 3 cell dysfunction (52) and are central in the
pathogenesis of skeletal muscle and liver insulin resistance
(53) and hepatic steatosis (54). A positive feedback loop



can develop whereby insulin resistance causes NEFA levels
to rise, and elevated NEFA in turn worsens insulin resis-
tance. High levels of NEFA, particularly saturated fatty acids,
may alter electrophysiologic properties of cardiac myocytes,
predisposing to ventricular arrhythmias (55). Prospective
studies have related high NEFA levels to risk of sudden
cardiac death (56).

Plasma NEFA concentrations are elevated in patients
with diabetes, insulin resistance, or metabolic syndrome.
In normal subjects, fasting NEFA concentration averages
300—400 pmol/l. In patients with type 2 diabetes, NEFA
concentrations are typically 50-100% higher, in the 500-
800 wmol/1range (57, 58). Similar elevations are observed
in nondiabetic, insulin-resistant patients (59). TZD PPAR-y
activators are among the most effective available pharma-
cologic agents to reduce plasma NEFA concentrations,
with effects similar in magnitude to therapeutic doses of
insulin (60). Decreases in NEFA are apparent as soon as
4 weeks after initiation of treatment (61). TZD drugs reduce
both fasting and postprandial NEFA levels by 20-40% in
both type 2 diabetic and nondiabetic, insulin-resistant sub-
jects (11, 62, 63). Reductions in postprandial NEFA pre-
sumably reflect an improvement in adipose tissue insulin
sensitivity, allowing greater insulin suppression of lipolysis.
Reductions produced by rosiglitazone and pioglitazone
are similar (64). Moreover, using [1-14C]palmitate asatracer,
rosiglitazone was shown to reduce NEFA turnover rate by
15% in type 2 diabetic patients (62). Pioglitazone and
rosiglitazone each produce 20-25% reductions in NEFA
when added to sulfonylurea and/or metformin therapy in
type 2 diabetes (60, 65). The effect of TZD treatment on
fasting NEFA is strongly correlated with the effect of treat-
ment on glycemic control, marked by reduction of hemo-
globin Alc (66). TZDs reduce NEFA to a greater extent than
metformin, sulfonylurea agents, statins, or fibrates (66—69).

ADIPONECTIN

Adipose tissue serves important autocrine, paracrine,
and endocrine functions. Among its secretory products,
adiponectin plays a key role in maintaining insulin sensi-
tivity and may exert anti-inflammatory and cardioprotec-
tive effects (70). Low adiponectin levels are associated
with traditional cardiovascular risk factors, including dia-
betes, hypertension, and dyslipidemia. Experimental ad-
ministration of adiponectin improves insulin sensitivity,
glycemic control and lipoprotein profile (71, 72). TZD
PPAR-y activators are the most effective class of approved
drugs to raise circulating adiponectin concentrations. In
patients with type 2 diabetes or other insulin-resistant
conditions, TZD treatment typically produces a doubling
of plasma adiponectin concentration (17, 73-75). In
contrast, other antidiabetic or lipid-modifying drugs pro-
duce much smaller or no changes in adiponectin (76-79).
In parallel with increased adiponectin production by adipose
tissue, activation of PPAR-y in adipocytes or in mononu-
clear inflammatory cells resident in adipose tissue reduces
local inflammation and inhibits release of inflammatory
mediators from adipose tissue (80-83).

CIRCULATING LIPOPROTEINS

TZD PPAR-y activators may exert favorable effects on
plasma lipoproteins, with increased HDL-C and decreased
triglyceride concentration. Lipoprotein changes are more
favorable with pioglitazone than with rosiglitazone (23,
84), possibly due to the additional action of the former as
a weak PPAR-a activator (85-87). Although a relationship
between circulating triglyceride concentration and cardio-
vascular risk remains uncertain, a large body of observa-
tional data relates higher HDL-C to lower cardiovascular
risk. Among patients treated with statins, the risk of ad-
verse cardiovascular events diminishes by 1-1.5% with
each 1 mg/dl increment in HDL-C (88). If that relation
applies when HDL-C is raised pharmacologically, assum-
ing a baseline HDL-C concentration of 40 mg/dl and a
10% increase with TZD treatment, one might expect TZDs
to reduce cardiovascular risk by approximately 5% on the
basis of increased HDL-C alone. Indeed, in the PROAC-
TIVE study, a beneficial effect of pioglitazone on the risk
of death, MI, or stroke was related to increases in HDL-C,
but not decreases in HbAlc (43), and favorable effects of
pioglitazone on progression of carotid intima-media thick-
ness (cIMT) and coronary atherosclerosis have also been
related to the drug’s effects on HDL-C or HDL-C/triglyc-
eride ratio (89, 90). Pioglitazone and rosiglitazone have
similar effects on HDL-C, and both agents increase LDL
particle size (23); however, the compounds differ in their
effects on LDL-C and apolipoprotein B concentration: Pi-
oglitazone generally has minimal effect (23), whereas
rosiglitazone can produce increases of 10-20% (23, 91). It
remains uncertain whether differential effects of pioglita-
zone and rosiglitazone on lipoproteins account for differ-
ences in clinical efficacy of these agents.

BLOOD PRESSURE

Large clinical trials of TZDs demonstrate small but
consistent reductions in blood pressure. For example, in
the PROACTIVE study, in which 75% of subjects had a
history of hypertension, pioglitazone reduced systolic
blood pressure by a mean of 3 mm Hg, compared with
placebo (92). In a Diabetes Outcome Progression Trial
(ADOPT), in which 78% of patients had a history of hy-
pertension, monotherapy with rosiglitazone, compared
with metformin or glyburide, was associated with 1-2 mm
Hg lower systolic and diastolic blood pressure after 4 years
of treatment (93). In the open-label Rosiglitazone Evalu-
ated for Cardiovascular Outcomes in Oral Agent Combi-
nation Therapy (RECORD) trial, there was no difference
in office blood pressure when rosiglitazone was added to
sulfonylurea or metformin, compared with the combina-
tion of sulfonylurea and metformin (94). However, in a
subset of 759 patients (85% with a history of hyperten-
sion) who underwent ambulatory blood pressure moni-
toring, 24 h mean systolic and diastolic blood pressure
were 2-3 mm Hg lower in the rosiglitazone arm after 1 year
of treatment (95). A reduction of blood pressure by 2-3 mm
Hg, if sustained over the long term, might be expected to
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significantly reduce the risk of adverse renal and cardio-
vascular events, particularly congestive heart failure (96).
However, in clinical trials with a relatively brief duration of
observation, early effects of PPAR-y activators to increase
plasma volume and promote heart failure might dominate
before any long-term beneficial effect to reduce heart
failure through blood pressure reduction became evident.

ENDOTHELIAL FUNCTION, VASCULAR SMOOTH
MUSCLE CELL PROLIFERATION, AND RESTENOSIS

PPAR-y is expressed in human vascular endothelial
cells (97). Vascular endothelial dysfunction usually ac-
companies type 2 diabetes and metabolic syndrome. Both
animal models and clinical studies of these conditions
are characterized by reduced number and functionality
of endothelial progenitor cells (EPC) (98-100). In turn,
reduced EPC number has been related to the degree of
impairment of flow-mediated vasodilation in type 2 dia-
betes (101). In experimental animal models and clinical
studies, TZD drugs have been shown to stimulate produc-
tion of EPCs and promote endothelial repair after vascu-
lar injury (102-106).

Activation of PPAR-y with TZDs increases endothelial ni-
tric oxide bioavailability by direct actions on endothelium,
including suppression of inflammatory gene expression or
activation of endothelial AMP-activated protein kinase, or
indirect mechanisms related to increased adiponectin and
decreased circulating NEFA concentrations (20, 107-109).
In patients with type 2 diabetes or other insulin-resistant
states, TZD treatment improves brachial artery endothelial
function, as marked by greater flow or acetylcholine-medi-
ated vasodilation (75, 110-112). Improvements in coronary
endothelium-dependent vasodilation have been demon-
strated with pioglitazone (113, 114).

PPAR-y is expressed in vascular smooth muscle, where
its activation may inhibit proliferation and migration
(115-118). These effects, along with those to promote
endothelial repair, have raised interest in PPAR-y acti-
vators as a potential strategy to prevent restenosis after
percutaneous coronary revascularization. Several small,
randomized trials have been performed in diabetic and
nondiabetic patients after bare metal stent implanta-
tion, with clinical and angiographic endpoints. Meta-
analyses of these trials suggest that TZDs may reduce
late lumen loss and need for further target vessel revas-
cularization, with more convincing effects in diabetics
and with pioglitazone than in nondiabetics or with
rosiglitazone (119-121). It has also been hypothesized
that salutary endothelial effects of PPAR-y activation
might reduce the risk of stent thrombosis after drug-
eluting stent implantation (122), but to date there are
no data to either corroborate or refute this.

DEVELOPMENT AND PROGRESSION OF
ATHEROSCLEROSIS

Because PPAR-y is expressed in vascular tissues, including
endothelium and smooth muscle, as well as in macrophages
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that reside in atherosclerotic lesions, a role of PPAR-y in
modulating the development and progression of athero-
sclerosis has been postulated. Most, but not all, experi-
mental evidence indicates an antiatherogenic effect. Most
animal studies have shown that PPAR-y ligands retard pro-
gression of atherosclerosis (18), whereas genetic deletion
of PPAR-y from macrophages accelerates atherosclerosis
(123, 124). In rabbits with atherosclerosis induced by high-
cholesterol diet and balloon arterial injury, 3 months of
treatment with pioglitazone reduced lesion inflammation,
as gauged noninvasively by 18F—deoxyglucose positron emis-
sion tomography and dynamic contrast-enhanced magnetic
resonance imaging and pathologically by lesion macrophage
density and neovascularization (125). However, a study of
advanced atherosclerotic lesions in LDL-receptor knockout
mice showed that TZD drugs promoted plaque necrosis
(27), and a recent study determined that atheromatous
human aortas are enriched in soluble lipid mediators that
may induce neovascularization of the arterial wall through
a PPAR-y dependent mechanism (28). Clinically, such effects
might predispose to plaque hemorrhage and rupture.

A potential synthesis of these seemingly contradictory
data is that PPAR-y may oppose atherosclerosis in its early
stages but exert different and deleterious effects in ad-
vanced atherosclerotic lesions. Studies examining whether
vascular PPAR-y expression is altered in human athero-
sclerosis also provide conflicting evidence. In one study,
PPAR-y mRNA expression was lower in atheromatous ca-
rotid endarterectomy and abdominal aortic aneurysm
specimens than in normal inferior mesenteric arteries ex-
cised during colectomy (126). In contrast, another study
of human aortas sampled at autopsy found increased ex-
pression of PPAR-y mRNA and protein in areas of athero-
sclerosis (127). These studies leave open the question of
whether vascular PPAR-y favorably modulates the progres-
sion of atherosclerosis, unfavorably modulates this pro-
cess, or plays no direct pathophysiologic role. The first
possibility is suggested by a study that demonstrated the
potential of PPAR-y agonists to promote differentiation of
human monocytes into anti-inflammatory M2 macrophages
and that showed a positive correlation between expression
of PPAR-y mRNA and M2 markers in human carotid ath-
erosclerotic lesions (128).

Clinical studies have utilized vascular imaging tech-
niques to evaluate the effects of TZD agents on atheroscle-
rosis progression, as marked by cIMT, coronary atheroma
volume by intravascular ultrasound (IVUS), coronary ar-
tery calcification by computed tomography, or arterial
pulse wave velocity. Major trials are summarized in Table 2.
In aggregate, these studies suggest that TZDs retard ath-
erosclerosis progression, with more convincing evidence
for pioglitazone than rosiglitazone.

The Study of Atherosclerosis with Ramipril and Rosigl-
itazone (STARR) (129) compared effects of rosiglitazone
with placebo on cIMT progression in 1,256 subjects with
impaired glucose tolerance or impaired fasting glucose,
but without diabetes or overt cardiovascular disease. The
primary outcome was an aggregate measure of cIMT in
12 carotid arterial segments. After 3 years of follow-up,



TABLE 2. Major randomized trials of TZD drugs with clinical or imaging outcomes

Trial, Patient Sample Size; Primary
Year (Ref.) Population Drug Comparator Design Follow-up Outcome Measure Key Results
Clinical
outcomes
PROACTIVE, Type 2 diabetes Pioglitazone Placebo Double-blind N =5,248; Death, Primary outcome:

2005 (92) with 34.5 mo nonfatal acute MI, Pioglitazone 19.7%;
evidence of (mean) CVA, ACS, coronary  placebo 21.7%; HR
macrovascular or peripheral artery ~ 0.90, P=0.095. Principal
disease revascularization, secondary outcome

or lower extremity (death, acute MI, or
amputation CVA): Pioglitazone
11.6%; placebo 13.6%:;
HR 0.84, P=0.027.
DREAM, Impaired fasting Rosiglitazone Placebo Double-blind; N =5,269; Incident Primary outcome:

2006 (191)  glucose or factorial 3yr diabetes Rosiglitazone 11.6%;
impaired design with (median)  or death placebo 26% ; HR
glucose ramipril/ 0.40, P< 0.0001. Death:
tolerance placebo Rosiglitazone 1.1%;
without placebo 1.3%; NS. CV
diabetes or death, acute MI, or
prior CV CVA: Rosiglitazone
disease 1.2%; placebo 0.9%;

HR 1.39, NS.
ADOPT, Recently Rosiglitazone Metformin or Double-blind N =4,360; Failure of Primary outcome:
2006 (193)  diagnosed glyburide 4yr monotherapy Rosiglitazone 15%,
type 2 diabetes (median)  to control metformin 21%,
diabetes glyburide 34%. Serious
CV events (fatal or
nonfatal acute MI, CVA,
or CHF): Rosiglitazone
3.4%, metformin 3.2%,
glyburide 1.8% (P < 0.05
vs. rosiglitazone).
RECORD, Type 2 diabetes  Rosiglitazone Combination Open-label, N =4,447; CV Primary outcome:
2009 (94) added to of noninferiority 5.5 yr hospitalization 14.5% both groups, HR
metformin metformin (mean) or CV death 0.99.CV death, acute MI,
or SU and SU or CVA: Rosiglitazone +
metformin or SU 6.9%;
metformin + SU 7.4%;
HR 0.93, NS.
Imaging
outcomes
CHICAGO,  Recently Pioglitazone Glimepiride Double-blind N =361; cIMT: Primary outcome:

2006 (130)  diagnosed up to Change from Pioglitazone mean
type 2 diabetes 72 wk baseline, posterior —0.001 mm; glimepiride
without wall of common mean +0.012 mm,
symptomatic carotid arteries P=0.02.
atherosclerosis

STARR, Substudy of Rosiglitazone Placebo See DREAM N =1,256; cIMT: Primary outcome:
2009 (129)  DREAM up to Aggregate change Rosiglitazone mean
3yr from baseline in 0.0064 mm; placebo
12 I-cm long mean 0.0088 mm;
carotid arterial P=0.10. Secondary
segments outcome: Change of
cIMT in posterior wall
of common carotid
arteries. Rosiglitazone
mean 0.0017 mm;
placebo mean 0.0054
mm, P=0.03.
PERISCOPE, Type 2 diabetes  Pioglitazone Glimepiride Double-blind N = 360; Coronary IVUS: Primary outcome:
2008 (133)  with CHD up to Change from Pioglitazone mean
18 mo baseline in —0.16%; glimepiride
percentage +0.73%, P=0.002.
atheroma volume
APPROACH, Type 2 diabetes  Rosiglitazone Glipizide Double-blind N =462; Coronary IVUS: Primary outcome:
2010 (139)  with CHD up to Change from Rosiglitazone mean
18 mo baseline in —0.21%; glipizide
percentage +0.43%, P=0.12.

atheroma volume

CVA, cerebrovascular accident; HR, hazard ratio; NS, not significant; SU, sulfonylurea.
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there was a trend (P=0.10) to less cIMT progression in the
rosiglitazone group. A secondary outcome, cIMT progres-
sion in the posterior wall of the common carotid arteries,
showed significantly less progression in the rosiglitazone
group compared with placebo (P = 0.03). The Carotid
Intima-Media Thickness in Atherosclerosis Using Pioglitazone
(CHICAGO) trial (130) compared effects of pioglitazone
with glimepiride on posterior wall common carotid cIMT
in 361 patients with type 2 diabetes. After observation up to
18 months, cIMT did not progress under pioglitazone treat-
ment, but it increased with glimepiride (P = 0.02). How-
ever, in a subset of the CHICAGO cohort, pioglitazone
had no effect on progression of coronary artery calcifica-
tion (131). A meta-analysis of nine placebo or active com-
parator-controlled trials of pioglitazone or rosiglitazone
(not including STARR and CHICAGO) in 1,400 patients
with type 2 diabetes showed a significant favorable ef-
fect of TZD treatment on cIMT progression, without
significant difference in the effects of the two drugs (132).
A reduction of arterial pulse wave velocity was also demon-
strated with TZD treatment, suggesting a favorable effect
on arterial stiffness.

The Pioglitazone Effect on Regression of Intravascular
Sonographic Coronary Obstruction Prospective Evalua-
tion (PERISCOPE) trial compared 18 months of treatment
with pioglitazone or glimepiride on coronary atheroma
volume in 360 diabetic patients. Percentage atheroma vol-
ume decreased slightly with pioglitazone but progressed
with glimepiride (difference P = 0.002) (133). Several
small trials, each with 54 or fewer participants, have exam-
ined the effects of 6-8 months of treatment with pioglita-
zone or placebo on coronary atheroma progression and
ultrasonic tissue characteristics in patients with type 2 dia-
betes. These studies have shown that pioglitazone reduces
coronary atheroma progression and/or volume of ne-
crotic core (134-137). In contrast, a trial comparing 12
months of treatment with rosiglitazone versus placebo in
193 patients (138) showed no significant effect of rosiglita-
zone on saphenous vein bypass graft atherosclerosis as-
sessed by IVUS, and the Assessment on the Prevention of
Progression by Rosiglitazone on Atherosclerosis in Diabe-
tes Patients with Cardiovascular History (APPROACH)
trial found no difference in progression of coronary ather-
oma volume after up to 18 months of treatment with
rosiglitazone or glipizide in 462 patients (139).

ISCHEMIA /REPERFUSION INJURY

Some experimental evidence suggests that PPAR-y acti-
vation mitigates ischemia/reperfusion injury. In normal
or insulin-resistant rodents, treatment with PPAR-y activa-
tors improved contractile recovery and/or reduced infarct
size after ischemia and reperfusion (140-149). Intrave-
nous troglitazone reduced myocardial infarct size in dogs
(150). Chronic, oral troglitazone suppressed inflamma-
tory responses and improved postischemic contractile
function in pigs (151), but the protective effects of trogli-
tazone may have been due to its a-tocopherol moiety
rather than PPAR~y activation, as treatment with equimolar
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a-tocopherol recapitulated the beneficial effects of trogli-
tazone, whereas treatment with rosiglitazone (which does
not have a tocopherol moiety) did not. Other studies have
investigated whether TZDs affect postinfarction left ven-
tricular remodeling. The evidence is mixed, with some
studies demonstrating reduced postinfarction fibrosis and
improved systolic function (152, 153), while others show
neutral or adverse effects on left ventricular remodeling
and survival (154, 155).

Rodent studies suggest that cerebral ischemia/reperfu-
sion injury may also be favorably modified by PPAR-y acti-
vation, manifest by improved recovery of neurologic
function and/or decreased infarct size (156-161). In these
studies, postulated mechanisms of cerebral protection by
PPAR-y include attenuation of inflammatory responses in
injured tissue, promotion of signaling through protective
stress kinases, diminished apoptosis, and enhanced tissue
availability of nitric oxide. Cerebral-protective effects of
PPAR-y activators have been demonstrated with either sys-
temic or local treatment (161) and with either TZD or
non-TZD agents (156).

ADVERSE AND/OR OFF-TARGET
CARDIOVASCULAR ACTIONS OF PPAR-y
ACTIVATORS

As described in preceding sections, the portfolio of po-
tentially beneficial cardiovascular effects of PPAR-y activa-
tion might lead to the expectation that TZDs would
provide clinical benefit to patients with or at risk for car-
diovascular disease. However, as discussed in succeeding
sections, clinical trials have not clearly demonstrated such
benefit. The apparent divergence between metabolic and
vascular actions of PPAR-y activation and clinical outcomes
with TZD treatment raises a pivotal question: Do adverse
cardiovascular effects of PPAR-y activation and/or off-target
effects of TZDs attenuate or nullify the potential clinical
benefit of this therapeutic approach?

Plasma volume expansion and heart failure

Effects of PPAR-y activation on sodium retention and
plasma volume have the potential to cause edema and sig-
nificant heart failure (22). Treatment of patients without
preexisting heart failure with TZD agents leads to an in-
crease in circulating natriuretic peptides (162-164),
plasma volume (164-166), and extracellular fluid volume
(167, 168). PPAR-y is expressed in the nephron, particu-
larly in the collecting duct (169). Mice with collecting
ductspecific deletion of PPAR-y are resistant to rosiglita-
zone-induced plasma volume expansion (166). Mecha-
nisms of sodium and volume retention via PPAR-y may be
enhanced transcription of the kinase SGK1 (170), which
in turn activates the renal epithelial sodium channel, as
well as nontranscriptional effects of PPAR-y in the proxi-
mal tubule (171), with both actions promoting sodium
retention (169). Patients with underlying systolic and/or
diastolic cardiac dysfunction or a history of congestive
heart failure may be particularly prone to develop heart
failure in response to treatment with a PPAR-y activator,



due to increased plasma volume. However, neither animal
(151, 172) nor clinical studies (163, 173, 174) indicate that
heart failure resulting from TZD treatment is due to di-
rect, adverse effects of TZDs on left ventricular systolic
function. Moreover, some studies indicate salutory effects
of TZDs on diastolic function (175-177). Preclinical stud-
ies with novel, non-TZD PPAR-y activators suggest that
these agents may enhance insulin sensitivity to a similar
degree as TZD agents, but with less expansion of plasma or
extracellular volume (178, 179). Whether these novel
PPAR-y activators will pose a lower risk for congestive heart
failure remains to be established.

Ion channels and electrophysiology

Increasing evidence suggests that TZD compounds may
affect cardiac ion channels and arrhythmias through off-
target mechanisms. In vitro studies indicate that TZDs block
voltage-gated potassium channels and L-type calcium chan-
nels in isolated ventricular cardiomyocytes (25, 180) and
block ATP-sensitive potassium current in channels from
cardiac and noncardiac cells (181-185). Because these ef-
fects are immediate, they suggest nontranscriptional effects
of the drugs rather than classical effects via nuclear PPAR-y.
In vivo studies indicate a potential for TZD drugs to influ-
ence cardiac arrhythmias. In dogs, troglitazone promotes
dephosphorylation of connexin 43, a gap junction protein,
in response to ischemia and reperfusion (150), an effect
with possible pro-arrhythmic consequences. In pigs, acute
treatment with troglitazone, rosiglitazone, or pioglitazone,
resulting in clinically relevant plasma concentrations, blocks
cardiac ATP-sensitive potassium (K,p) channels, promotes
ischemic ventricular fibrillation, and impairs the success of
defibrillation (24, 26). These pro-arrhythmic effects are re-
capitulated by the prototypical K,p blocker glyburide. The
mechanism by which TZDs close the K rp channel may be
via phosphorylation of its inward rectifying subunit (186).
To date, no human cardiac electrophysiology studies have
been performed before and after TZD treatment, and
therefore, it remains unknown whether TZD treatment in-
creases the propensity for cardiac arrhythmias in patients.

KEY CLINICAL TRIALS AND OBSERVATIONAL
ANALYSES OF PIOGLITAZONE OR ROSIGLITAZONE
IN PATIENTS WITH, OR AT RISK FOR
CARDIOVASCULAR DISEASE

Although the balance of data from experimental stud-
ies and clinical studies with surrogate endpoints supports
the plausibility of cardiovascular benefit from PPAR-y ac-
tivation, proof of efficacy depends on the results of large,
randomized clinical trials that assess clinically relevant car-
diovascular outcomes. To date, that proof remains elusive.
This section draws inferences from key trials performed
with pioglitazone and rosiglitazone (Table 2) and discusses
limitations of the data.

PROACTIVE

PROACTIVE is the only completed trial to test a hypoth-
esis of superiority of a TZD over placebo with regard to
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cardiovascular outcomes (92, 187). The trial compared
pioglitazone 45 mg daily (or maximum tolerated dose)
with placebo in 5,238 patients with type 2 diabetes, HbAlc
greater than 6.5% despite treatment with other hypoglyce-
mic agents, and evidence of macrovascular coronary, periph-
eral arterial, or cerebrovascular atherosclerotic disease.
The primary outcome measure was the composite of all-
cause mortality; nonfatal MI or acute coronary syndrome
(ACS); stroke; coronary- or lower extremity arterial revas-
cularization procedure; or amputation of a lower extrem-
ity above the ankle. At baseline, the median duration of
diabetes was 8 years. Notably, only 43% of patients were
treated with a statin at baseline and only 55% after ran-
domization. In addition, imbalances in the use of insulin
and metformin developed after randomization, with these
agents used more often in the placebo group (46% and
64%) than in the pioglitazone group (36% and 58%).
Insulin doses were also higher in the placebo group
(188). After an average observation time of 34.5 months,
the primary efficacy measure was not significantly af-
fected by treatment with pioglitazone, with a hazard ratio
of 0.90 (95% confidence interval 0.80-1.02, P = 0.095).
Although no individual component of the primary com-
posite endpoint was significantly affected by treatment as-
signment, there were trends toward reductions in nonfatal
coronary events and stroke with pioglitazone. A prespeci-
fied secondary efficacy measure, time to first occurrence
of death, MI (excluding silent), or stroke, was significantly
reduced by pioglitazone with hazard ratio 0.84 (P=0.03).
Moreover, in a prespecified subgroup analysis, pioglita-
zone reduced the risk of recurrent MI by 28% among
2,445 patients with prior MI (189). However, investigator-
reported heart failure and hospitalization for heart failure
were significantly more frequent in the pioglitazone group.

Although PROACTIVE results support cardiovascular
efficacy of pioglitazone, the evidence provided is inconclu-
sive. First, although pioglitazone had a favorable effect on
coronary events, an effect on the primary composite end-
point was diluted by null or negative-trending effects on
lower extremity amputation or revascularization. Second,
the Kaplan-Meier curves for the primary and key second-
ary cardiovascular efficacy measures showed no divergence
for the first year but continuing divergence thereafter.
This suggests that a longer observation period might have
allowed a conclusive demonstration of efficacy of pioglita-
zone. Third, imbalances between the two treatment arms
in the frequency and intensity of use of other diabetic
therapies may have confounded the results if these agents
also affected cardiovascular outcomes. Fourth, contempo-
rary guidelines endorse statin use in the vast majority of
patients who were included in PROACTIVE; however, only
about half the patients in the trial were actually treated
with a statin. In a posthoc analysis, the risk of death, MI, or
stroke was reduced by 25% with pioglitazone among pa-
tients not treated with statin, but it was reduced by only 5%
with pioglitazone among patients who were treated with a
statin (43). Further studies will be required to address the
question of whether pioglitazone or other PPAR-y activa-
tors provide clinical benefit incremental to statins.
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RECORD, DREAM, ADOPT, and ACT NOW

The RECORD trial (94) tested a noninferiority hypothe-
sis for rosiglitazone as second-line therapy in type 2 diabe-
tes. In 4,447 subjects with type 2 diabetes not optimally
controlled on monotherapy with metformin or sulfonylu-
rea, the trial compared the addition of rosiglitazone to ei-
ther metformin or sulfonylurea with the combination of
metformin and sulfonylurea. The primary endpoint was
time to cardiovascular hospitalization (including hospital-
ization for heart failure) or cardiovascular death. During
open-label, randomized treatment there were significant
imbalances in the use of diuretics and statins (both used
more frequently in the rosiglitazone group). The rosiglita-
zone group exhibited lower levels of HbAlc and higher
levels of LDL-C, HDL-C, and weight. After mean follow up
of 5.5 years, primary endpoint events occurred in 321 pa-
tients in the rosiglitazone group and 323 patients in the
metformin/sulfonylurea group, thus meeting the crite-
rion for noninferiority of rosiglitazone. Fatal or nonfatal
heart failure occurred more frequently in the rosiglitazone
group than in the active control group (61 versus 29 pa-
tients). Limitations of RECORD include an event rate that
was substantially lower than that projected in trial design
with consequent reduction of statistical power, potential
confounding by differential use of statins and diuretics,
and open-label design.

The Diabetes Reduction Assessment with Ramipril and
Rosiglitazone Medication (DREAM) trial (190, 191) was
2-factor, placebo-controlled study designed to determine
whether rampril and/or rosiglitazone treatment prevents
onset of diabetes among 5,269 nondiabetic patients with
impaired fasting glucose or abnormal glucose tolerance.
Rosiglitazone significantly reduced the progression to new
onset diabetes during active treatment with the drug. De-
spite that benefit, a prespecified cardiorenal outcome
measure, including cardiovascular events (MI, stroke, car-
diovascular death, revascularization, heart failure, angina)
and renal events (progression to microalbuminuria or
macroalbuminuria), showed no difference between rosigl-
itazone and placebo over a mean 3 years of observation
(rosiglitazone 15.7%, control 16%). Rosiglitazone was as-
sociated with more frequent development of heart failure.
There was no interaction between rosiglitazone and ramipril
on cardiovascular outcomes. The Actos Now for the Pre-
vention of Diabetes (ACT NOW) trial (192) addressed a
similar question to DREAM in 602 patients with im-
paired glucose tolerance who were randomized to re-
ceive either pioglitazone 45 mg or placebo. After a mean
follow-up of 2.2 years, progression to diabetes occurred
in 5% of the pioglitazone group compared with 16.7%
of the placebo group, but too few cardiovascular events
occurred (pioglitazone 26, placebo 23) to draw any in-
ferences regarding effect of treatment on cardiovascu-
lar outcomes.

A Diabetes Outcome Progression Trial (ADOPT) (193)
compared glycemic durability of rosiglitazone, metformin,
and glyburide as first-line treatment in 4,360 patients with
newly diagnosed type 2 diabetes. The primary outcome
was monotherapy treatment failure, defined by a fasting
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blood glucose greater than 10 mmol/I after 6 weeks at
maximum dose of assigned agent. At 5 years of follow-up,
significantly fewer patients had failed rosiglitazone mono-
therapy (15%) compared with either metformin (21%) or
glyburide (34%). HbAlc levels remained lower and insu-
lin sensitivity higher in the rosiglitazone group, but with
higher levels of LDL-C. In this relatively low-risk popula-
tion, few cardiovascular events occurred. Notwithstanding
this limitation, event frequencies, including heart failure,
were similar in the rosiglitazone and metformin groups
but lower in the glyburide group.

In composite, RECORD, DREAM, and ADOPT suggest
that improved glycemic control with rosiglitazone is not
accompanied by a corresponding reduction of cardiovas-
cular risk. The findings again call into question whether
insulin resistance and/or hyperglycemia are primary de-
terminants of cardiovascular risk and/or whether glycemic
benefits of rosiglitazone were negated by other actions of
the drug, including a greater propensity for heart failure
and increased LDL-C.

Meta-analyses

Meta-analyses of clinical trials with pioglitazone or
rosiglitazone provide further insight into their cardio-
vascular effects. An analysis of 19 randomized controlled
trials with pioglitazone, including PROACTIVE and com-
prising 16,390 patients, showed that the drug was associ-
ated with a significantly lower risk of death, MI, or stroke
compared with corresponding control groups (4.4% ver-
sus 5.7%), hazard ratio 0.82, P = 0.005) (194). Similarly, a
meta-analysis of 94 trials with pioglitazone, excluding
PROACTIVE and comprising over 20,000 patients, showed
that pioglitazone was associated with significantly lower all-
cause mortality (195), with the caveat that the trials com-
prised only 57 deaths. In contrast, a meta-analysis of 56
randomized controlled trials with rosiglitazone compris-
ing 35,531 patients showed that the drug was associated
with an excess risk of MI (odds ratio 1.28, P=0.04), albeit
without excess cardiovascular mortality (196). These find-
ings contributed to decisions by regulatory agencies to
withdraw rosiglitazone in Europe and limit its use in the
United States (197).

Observational analyses

Juxtaposition of generally favorable cardiovascular out-
comes associated with pioglitazone with neutral to unfa-
vorable outcomes associated with rosiglitazone suggests
divergent effects on cardiovascular risk. Unfortunately, no
randomized comparison of the two drugs has been per-
formed to test this hypothesis. Instead, inferences must be
drawn from analyses of observational databases. Six large,
retrospective cohort studies compared treatment with
rosiglitazone to treatment pioglitazone (as monotherapy
or in combination with other hypoglycemic agents). After
correction for potential confounders, each of these analy-
ses found a greater incidence of major adverse cardiovas-
cular events among patients treated with rosiglitazone
than pioglitazone (198-203). A meta-analysis of 16 obser-
vational studies comparing rosiglitazone with pioglitazone



comprising 810,000 patients found significant adverse
odds ratios associated with rosiglitazone (1.14 for death,
1.16 for MI, and 1.22 for congestive heart failure) (204).
The implications of these findings are 2-fold: first, there is
no reasonable basis for the ongoing use of rosiglitazone
when pioglitazone provides a safer alternative, and sec-
ond, the data reinforce the concept that safety and efficacy
of new PPAR modulators must be evaluated on a com-
pound-by-compound basis, rather than as a drug class.
Compounds that nominally may be considered to be in
the same class of PPAR activators may in fact exert very dif-
ferent effects on gene transcription, in part related to
PPAR ligand-specific effects on coactivator or corepressor
recruitment. Notwithstanding the limitations of an in vitro
cell culture model, a recent study demonstrated that
rosiglitazone, pioglitazone, and troglitazone regulated
more genes discordantly than concordantly in adipocytes
(Fig. 2) (205).

NEW PPAR-y ACTIVATORS IN DEVELOPMENT

Pioglitazone and rosiglitazone act as full PPAR-y
agonists. Selective partial PPAR-y agonists are being devel-
oped in the hope that they will produce similar insulin-
sensitizing effects as TZDs but with fewer of the unwanted
effects of a full agonist, including adipogenic weight gain,
fluid retention, heart failure, and possibly pathologic bone
remodeling and fractures. One such compound is INT-
131, which has been evaluated in an 8-week, phase II, pla-
cebo-controlled monotherapy study in 70 patients with
type 2 diabetes but without evident cardiovascular or renal
disease (206). Doses of 1 mg or 10 mg daily were evalu-
ated. At 1 mg, average fasting blood glucose was reduced
from 163 to 142 mg/dl without an increase in body weight
but also without significant changes in fasting insulin, adi-
ponectin, or NEFA. At 10 mg, average fasting blood glucose

N

Troglitazone -122

Rosiglitazone -65 Pioglitazone -70

A
ava
N

Troglitazone -126

Rosiglitazone -140

Total Activated -147 Total Repressed -179

Fig. 2. Venn diagram of genes regulated by pioglitazone, rosiglita-
zone, and troglitazone. In cultured 3T3-L1 adipocytes, expression of
mRNA was assessed using microarrays (GeneChip, Affymetrix) after
24 h of exposure to vehicle (DMSO), pioglitazone (20 uM), rosigli-
tazone (1 wM), or troglitazone (20 wM), concentrations known to
elicit maximal biological effects. Despite significant overlap in
genes activated or repressed by the three TZD agents, a substantial
number of genes were regulated discordantly. The findings empha-
size that each PPAR ligand induces a unique transcriptional effect,
and they may provide an explanation for differences in clinical out-
comes with pioglitazone and rosiglitazone. Reproduced from Ref.
205 with permission.
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was reduced from 183 to 137 mg/dl, an effect similar to
monotherapy with maximum doses of pioglitazone or
rosiglitazone, accompanied by significant reductions in in-
sulin, adiponectin, and NEFA, but with a mean 1 kg in-
crease in body weight. At present, it remains uncertain
whether there will be any meaningful advantage of partial
PPAR-y activators at doses that provide glycemic control
equivalent to approved doses of pioglitazone or rosiglita-
zone. In addition, at least two new TZD PPAR-y agonists,
rivoglitazone, a potent agonist (207), and balaglitazone, a
partial agonist (208), are being evaluated in type 2 diabe-
tes, but any advantages of these compounds over pioglita-
zone also remain uncertain.

A future therapeutic approach to modulate PPAR-y
action may be to interfere with its phosphorylation by
cyclin-dependent kinase (CDK)b. Obesity and high-fat
feeding increase CDKb5 activity and PPAR~y phosphoryla-
tion, which attenuates its insulin-sensitizing effects (209).
One of the actions of TZDs is to prevent phosphoryla-
tion of PPAR~y by CDKb5. SR1664, a compound in preclini-
cal development, appears to block phosphorylation of
PPAR-y by CDK5 without the full PPAR-y agonist effects
of TZDs. Consequently, animal and in vitro studies sug-
gest that SR1664 exerts antidiabetic effects without in-
creasing adioposity, causing fluid retention, or affecting
bone metabolism (210).

Considerable effort has been devoted to development
of dual PPAR-a/y activators that combine effects of PPAR-a
to lower circulating triglycerides and raise HDL-C with ef-
fects of PPAR-y to enhance insulin sensitivity. Glitazars are
a class of drugs that activate both PPAR-oe and PPAR-y. Sev-
eral glitazars progressed through phase II development
but were then abandoned for various reasons, including
development of bladder cancer in rodents (ragaglitazar),
liver function abnormalities (imiglitazar), reduction in
glomerular filtration rate (tesaglitazar), or an excess of ad-
verse cardiovascular events in meta-analysis of small trials
(muraglitazar) (211-213). Nonetheless, other dual PPAR-
o/ activators are in development. Among them, alegli-
tazar (214) has proceeded to phase III development.

PIVOTAL ONGOING CLINICAL TRIALS OF
PPAR-y ACTIVATORS IN PATIENTS WITH
CARDIOVASCULAR DISEASE

Two large, ongoing multicenter international trials may
provide important new information about the efficacy and
safety of PPAR~y activation in patients with cardiovascular
disease. The Insulin Resistance Intervention after Stroke
(IRIS) trial (www.clinicaltrials.gov NCT00091949) is a ran-
domized comparison of pioglitazone (up to 45 mg daily)
with placebo in nondiabetic, insulin-resistant patients with
a recent ischemic stroke or transient ischemic attack. The
criterion for insulin resistance is a HOMA-IR index greater
than 3, measured 2 weeks to 6 months after the index
event. Approximately 3,800 patients will be followed for a
minimum of 3 years. The primary efficacy measure is time
to first fatal or nonfatal stroke or MI. Recruitment will be
completed in 2012, with results expected in 2015. IRIS
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may provide important information in several respects.
First, because approximately half of nondiabetic patients
with acute coronary or cerebrovascular syndromes are in-
sulin resistant (215, 216), potential efficacy of pioglitazone
in such populations would have broad applicability. Sec-
ond, because patients in IRIS are not diabetic at enroll-
ment, the trial is less likely to be confounded by differential
use of other diabetic medications in the two treatment
arms than prior trials of TZDs in diabetic subjects. Third,
IRIS should determine whether pioglitazone adds clinical
benefit in patients treated with statins, a question left open
by PROACTIVE (43).

Aleglitazar is the first dual PPAR-a./y activator to pro-
ceed to phase III development. Because aleglitazar is be-
lieved to be a balanced PPAR- /7y activator (i.e., relatively
less PPAR-a activation than evaluated doses of tesagli-
tazar and relatively less PPAR-y activation than evaluated
doses of muraglitazar), it is hoped that renal and cardio-
vascular safety concerns with those previous agents will
be avoided (217). The Alecardio trial (www.clinicaltrials.
gov NCT01042769) compares aleglitazar with placebo in
approximately 7,000 patients with type 2 diabetes and re-
cent ACS. The primary efficacy measure is time to first
occurrence of death or nonfatal MI or stroke. The trial
will continue until 950 primary endpoint events have
accrued.

SUMMARY AND FUTURE DIRECTIONS

Each PPAR ligand interacts differently with PPAR-retin-
oic acid dimers and attracts coactivators and corepressors
in a ligand-specific manner. Therefore, transcriptional
and clinical effects of each PPAR activator may differ from
others. Inability to assume class effects adds complexity to
preclinical and clinical development of new PPAR activa-
tor drugs. Although there is strong biological rationale for
PPAR-y activation to reduce cardiovascular risk, current
clinical evidence leaves this hypothesis unproven. At pres-
ent, supporting evidence is greatest for a clinical benefit of
pioglitazone. However, to establish a secure role in cardio-
vascular therapeutics for pioglitazone, other selective
PPAR-y agonists, or dual PPAR agonists, ongoing and fu-
ture clinical trials must go beyond the limitations of prior
studies. Specifically, trials must evaluate agents on the ba-
sis of important clinical outcomes, including cardiovascu-
lar mortality, nonfatal MI, stroke, and heart failure; allow
long enough exposure to observe modification of athero-
sclerotic risk; assess benefit in addition to statins; and avoid
confounding by differential use of other diabetic medica-
tions.Hl
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