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Abstract
HIV-1 integrase (IN) is indispensable for HIV-1 replication and has become a validated target for
developing anti-AIDS agents. In two decades of development of IN inhibition-based anti-HIV
therapeutics, a significant number of compounds were identified as IN inhibitors, but only some of
them showed antiviral activity. This article reviews a number of patented HIV-1 IN inhibitors,
especially those that possess high selectivity for the strand transfer reaction. These compounds
generally have a polar coplanar moiety, which is assumed to chelate two magnesium ions in the
binding site. Resistance to those compounds, when given to patients, can develop as a result of IN
mutations. We refer to those compounds as authentic IN inhibitors. Continued drug development
has so far delivered one authentic IN inhibitor to the market (raltegravir in 2007). Current and
future attention will be focused on the development of novel authentic IN inhibitors with the goal
of overcoming viral resistance.

HIV-1: life cycle & anti-HIV drug development
AIDS, a progressive, degenerative disease of the human immune system, which has proven
to be one of the world’s most serious health problems since 1981, is generally accepted to be
caused by HIV type 1 (HIV-1) [1–3]. AIDS progressively reduces the effectiveness of the
immune system and leaves individuals susceptible to opportunistic infections and tumors.
The replicative cycle of HIV-1 can be divided into two steps: entry and post entry [4,5], as
shown in Figure 1. Entry of HIV-1 into a host cell takes place in three critical steps:

• The trimeric HIV-1 envelope glycoprotein complex mediates viral entry into
susceptible target cells. The virus surface subunit (gp120) attaches to the CD4
receptor of the host cell;

• gp120–coreceptor (CXCR4 or CCR5 of the host cell) interaction, which results in
the exposure of a coreceptor-binding domain in gp120 on the cell surface;
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• Subsequent conformational changes within the Env complex, which lead to
membrane fusion mediated by the transmembrane subunit (gp41 of the virus).

Post-entry steps involve the viral reverse transcriptase (RT), integrase (IN) and protease
(PR) enzymes to complete the viral replication cycle. RT is responsible for the conversion of
the single-stranded viral RNA into the double-stranded proviral DNA [6]; IN is required for
the integration of proviral DNA into the host genome before replication [7]; and PR cleaves
newly synthesized polyproteins at the appropriate places to create the mature protein
components of infectious HIV virions [8]. Each of the stages in both the entry and postentry
steps can serve as a target for anti-AIDS drug development [9].

The inhibition of enzyme-mediated processes associated with the life cycle of the human
HIV-1 has led to great advancements in the treatment of patients suffering from AIDS.
Difficulties still persist regarding the best way to manage this disease [10]. To date, there are
25 approved antiretroviral drugs available, which attack four targets: viral entry, RT, PR and
IN. There is continued interest in developing new agents in three main areas:

• Effective vaccines or comparable preventative strategies;

• Better tolerated, more convenient and less expensive treatments;

• New agents that do not share cross-resistance and would, thus, not be limited by
existing resistance [9].

Currently, the recommended starting regimens for HIV-infected patients generally consist of
a non-nucleoside RT inhibitor (NNRTI) or a PR inhibitor (PI) combined with two
nucleoside or nucleotide RT inhibitors (NRTIs). Such regimens are commonly referred to as
highly active antiretroviral therapy (HAART). For treatment-experienced patients, regimens
are more complex and include consideration of all potential agents to which the patient’s
virus is sensitive [9]. Novel mechanisms, for example, inhibiting maturation of HIV-1, can
be exploited for further anti-AIDS drug development [11].

HARRT has been highly beneficial to many HIV-infected individuals since its introduction
in 1996 when the PI-based HAART initially became available [12]. Nevertheless, for many
patients, HAART achieves results that are far less than optimal, due to nonadherence to
therapy and development of resistance [13]. Targeting IN has become an additional highly
promising therapeutic approach since the approval in 2007 of the IN strand-transfer (ST)
inhibitor, Raltegravir (Isentress®, MK-0518, RAL) from Merck & Co [14,15]. RAL seems
to belong to the class of drugs that act as an interfacial inhibitor by trapping a
conformational intermediate of an enzyme [16,17].

Catalytic activities of IN
HIV-1 IN is a 32-kDa protein comprising three structural domains: the N-terminal domain
(residues 1–50), the catalytic core domain (residues 51–212), which is highly conserved
among retroviruses and the C-terminal domain (residues 213–288) [18]. The atomic
structure of each domain separately (or two-domain combinations) has been determined by
x-ray crystallography and solution NMR. However, no full-length x-ray or NMR structure
of HIV-1 IN has been published to date.

The integration of viral DNA into the host DNA, the step catalyzed by IN, is required for
viral replication and chronic infection. Additionally, the stable incorporation of the HIV-1
genome allows the infection to persist asymptomatically within latent viral reservoirs [19].
IN catalyzes two distinct reactions involving phosphate ester modifications [7,16]: 3′-end
processing (3′-P) and ST. Following reverse transcription of the HIV-1 genome in the
cytoplasm, IN first assembles on the newly synthesized viral DNA and removes two bases,
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GT, from both 3′-ends of the double-stranded viral DNA (the 3′-P reaction). Subsequently,
after transport of the viral DNA into the nucleus within the pre-integration complex (PIC),
IN catalyzes the covalent joining of these preprocessed 3′-ends to opposite strands of the
host DNA, offset by five base pairs (the ST reaction). The integration is then completed by
gap repair and additional steps effected by cellular enzymes. Both the assembly of IN with
its DNA substrate and the two catalytic functions of the enzyme require the presence of
divalent metals, such as Mn2+ or Mg2+, the latter being assumed to be the physiologically
relevant species [20,21]. IN can also catalyze the reverse reaction, disintegration. However,
this has only been observed in vitro and its physiological significance is unclear.

The catalytic core domain of IN contains a canonical three-amino acid DDE motif formed
by the catalytic triad Asp-64, Asp-116 and Glu-152, which is highly conserved in all INs
and retrotransposases and is supposed to form a coordination complex with two Mg2+ ions
and the viral DNA [18,22]. Mutation of any of these three acidic residues abolishes
enzymatic activities of IN and viral replication.

Assay methods for integrase inhibitors
Recombinant IN can be used in biochemical assays for the screening of inhibitors [21,23].
The in vitro integration reaction requires recombinant IN, divalent metal (Mg2+ or Mn2+)
and short LTR-derived DNA oligonucleotides (U5 or U3). Most of the inhibitors reported to
date have been discovered using either gel-or plate-based biochemical assays [16]. Most of
these biochemical assays are based on the property of IN to auto-integrate DNA. Assays to
measure full-site (concerted) integration, which mimics in vivo integration more closely
than auto-integration, have also been developed, using oligonucleotide in addition to longer
plasmidic DNA fragments [24,25].

Following the report of the first IN inhibitors in 1993 [26], many potential IN inhibitors
have been discovered and reported. Unfortunately, the vast majority of them were neither
confirmed as antiviral nor as specific inhibitors of IN. The reasons for this drawback reside
in technological challenges imposed by IN. First of all, IN can use either Mn2+ or Mg2+ as a
metal cofactor to catalyze integration. It has always been more challenging to obtain good
activity in the presence of Mg2+ and, therefore, most of the early inhibitors were reported
using Mn2+ as cofactor. It is now commonly admitted that Mg2+ is probably the biological
cofactor of HIV-1 IN [16,27]. Mg2+ is a more stringent cofactor compared with Mn2+ and
its coordination sphere is more rigid than that of Mn2+ [28]. This impacts directly on the
conformation of the IN catalytic site and on the function of its flexible loop (residues 140–
149) [28]. Therefore, the screening for IN inhibitors in Mn2+-based assays may have been
responsible for a large number of false positives. Second, only a few antiviral assays allow
the unambiguous determination of IN as a target of a drug. These assays based on the
evaluation of 2-LTR circle formation and the measurement of integrated LTR products via
Alu-PCR are technically challenging, allowing only very low-throughput in restricted
retrovirology laboratories. [29] Finally, the absence of any reliable information on the 3D
structure of the full length IN with its DNA substrates has been an important obstacle to the
rational design of specific IN inhibitor.

Overview of the development of integrase inhibitors
The successful development of IN inhibitors as anti-HIV therapeutics has taken more than
20 years [30]. Savarino summarized this ‘saga’ in 2006 in a historical sketch of the
discovery and development of IN inhibitors [17]. Briefly, before 1992, inhibition of HIV-1
IN had been considered as a treatment approach, but no specific IN inhibitor had yet been
identified. During the period of 1992–1996, researchers laid the basis for modern IN
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inhibitor discovery with the development of screening assays and description of the first
specific inhibitors active in vitro. Nucleic acid-based approaches, including gene therapy,
formed a field of intense research and an aptamer, a G-rich nucleotidic sequence that binds
specifically to IN, became the first IN inhibitor to be tested in human clinical trials [31].
Several other classes of compounds were identified as IN inhibitors, among which
polyphenols served as leads for some investigational drugs studied in subsequent years.
Some compounds from natural products, for example fungi, were also identified as IN
inhibitors. During the period of 1996–1999, IN inhibitor discovery led to some frustration
among researchers since it had become apparent that the identification of a clinical candidate
was noticeably more difficult than for other antiretroviral drug classes. During the period of
1999–2002, Merck and Shionogi independently discovered and patented keto-enols acid-
type compounds from screening (often referred to as diketo acids), as IN inhibitors. This
was a fundamental, innovative step in the history of IN inhibitor discovery. Some
compounds conceptually based on these inhibitors, for example with carboxylate groups
replaced with isosteres such as a tetrazole group, were soon identified as IN inhibitors
[32,33]. A compound from Shionogi/GlaxoSmithKline (GSK), S-1360, was the first IN
inhibitor acting specifically by ST inhibition to enter clinical trials [34]. After 2002, IN
inhibitors began to be regarded as a valid new class of drugs and a therapeutic strategy
worthy of being pursued. The importance of the keto-enol group of ST inhibitors was also in
part clarified [35]. A large number of new molecules, in which the carboxylate was
mimicked by a suitable heterocycle bearing a lone pair donor atom, were developed as IN
inhibitors. In 2007, RAL finally became the first IN inhibitor approved by the US FDA
[14,36]. Currently, several other compounds, including Elvitegravir (GS-9137, EVG), a
quinolone carboxylic acid that does not possess a keto-enol moiety, are in clinical trial
studies [30,37,38].

In the first 10 years of the discovery of IN inhibitors, many compounds belonging to
different classes, such as catechols, aurintricarboxylic acids, flavones, flavonoids,
curcumins, tyrphostins, lignanolides, cosalanes, triazine derivatives, depsides, depsinoids,
styrylquinoline derivatives, thiazolothiazepines, arylamides, salicylhydrazides, integrinic
acid derivatives, tetracyclines, diarylsulfones, cobalamin derivatives, nucleotides and
analogs, were reported as IN inhibitors [39–43]. However, none of them went on to be
developed into an effective anti-HIV agents. Among the many reasons for failures are the
facts that some compounds (e.g., catechol-containing compounds) have high toxicities and
that some compounds (e.g., sulfonamides) did not exhibit antiviral activity.

Over the past decade, diketo acids and their isosteres, which are assumed to chelate two
Mg2+ ions simultaneously (Figure 2) [22,44–47], have remained the prototypical IN
inihibitor class. These inhibitors are characterized by great selectivity for the ST reaction.
They were almost exclusively developed by pharmaceutical companies and government
agencies, notably Merck, Shionogi/GSK, Bristol-Myers Squibb (BMS), Gilead, Japan
Tobacco, Pfizer and the NIH. These compounds show not only in vitro activities, but also
potent antiviral activities, as a result of the inhibition of viral DNA integration. In this
review, we call them authentic IN inhibitors, or IN ST inhibitors (INSTI).

Structures of some authentic IN inhibitors
All authentic IN inhibitors possess at least two distinct regions: an aromatic hydrophobic
region and a chelating region. Except for GS-9137, the chelating region of all these
compounds is represented by a diketo acid motif or a bioisostere of diketo acid. In structural
terms, this means they have three functional groups in a coplanar conformation, which are
assumed to chelate two magnesium ions in the so-called two-metal ion mechanism
[22,35,44]. Some compounds, such as L-870,810 and MK-0518, contain a third moiety,
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which is thought to enhance activity in cell culture by improving cell permeability and
reducing binding to cell medium plasma proteins [48].

Diketo acids & their analogues
For the design and optimization of inhibitors against enzymes reliant on a two-metal
mechanism of action for endonucleolytic phosphodiester hydrolysis, such as HIV-1 IN, HIV
reverse transcriptase RNase H, hepatitis C virus (HCV) polymerase, Tn5 transposase and
influenza endo-nuclease and α,γ-diketo acids have often served as starting points [49]. In
the presence of Mg2+, the diketo acids are easily deprotonated to yield a dianion, which
permits the straightforward chelation of the two Mg2+.

In 1999, Shionogi and Merck almost simultaneously patented α,γ-diketo acids as IN
inhibitors. The typical compounds are 1 (from Shionogi) and 2–4 (from Merck) with IC50
values against ST of approximately 100 nM and EC50 values in the micromolar range
(Figure 3 & Table 1) [50], which subsequently became the most studied class of IN
inhibitors. Compound 5 was developed from 1 [51]; however, its in vitro activity turned out
not to be better. Based on the assumption that the hydrogen-bond donating groups may be
adversely affecting the transport of the compound into the cell, the corresponding dioxolane
prodrug derivative 7 was synthesized. This showed a slight improvement in in vivo activity,
probably due to premature hydrolysis of the acetonide ester prior to entering the cell [51].
Methylation of the amide of 5 yielded a tenfold increase in cell culture activity while having
only an insignificant effect on in vitro activity. Compound 6, an analog of 5 having a
methoxy group on the amide N, also showed good enzyme and cell culture activity. In 2003,
the NCI/NIH patented several azido-containing aryl β-diketo acids as IN inhibitors with low
cytotoxicity and antiviral activity, of which 8 is a representative structure. In 2005, the NCI/
NIH patented a series of bifunctional quinolonyl diketo acids, which contain two diketo acid
groups (e.g., 9), as IN inhibitors possessing antiviral activity [52].

Diketo acid analogues, including esters and amides, have also been patented as IN
inhibitors. Generally, the esterification of diketo acids decreases their inhibitory activities
against the ST reaction. For example, the ST inhibitory IC50 value of the corresponding
ethyl ester of 1 drops 13-fold compared with the former [53]. Nevertheless, some diketo acid
esters patented by Japan Tobacco showed very good ST inhibitory activities. The best one is
10 with a remarkable IC50 value of 4.1 nM.

Compounds derived directly from diketo acids
The poor drug-like properties of diketo acids resulted in modest antiviral activity and
unfavorable pharmacokinetic properties [54]. This prompted drug developers to replace the
acid moiety and/or the carbonyl with an azaheteroaromatic ring, which can provide a lone
pair of electrons for the chelation of a metal ion. The replacement of a carboxylic acid by an
azaheteroaromatic ring enhances antiviral activity, whereas the replacement of the carbonyl
by an azaheteroaromatic ring does not [46,55]. Figure 4 shows some examples of such
inhibitors. Among them is 5-CITEP (11) from Shionogi, which was the first and, to this day,
remains the only, IN inhibitor co-crystallized in the catalytic site of HIV-1 IN [32,35].
S-1360 (12), also patented by Shionogi but co-developed with GSK, was the first IN ST
inhibitor to enter clinical trial. It reached Phase II, however its development was halted in
2003 [34].

Pyrrolopyridine hydroxamic acids
A series of pyrrolopyridine hydroxamic acids (e.g., 20–22), was patented by Pfizer as IN
inhibitors (Figure 5). According to the patents, these compounds show excellent inhibition
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of ST and HIV-1 replication. Nevertheless, for undisclosed reasons, compounds from this
structural class do not appear to have been pursued further as HIV-1 IN inhibitors.

Aza-naphthalenyl carboxamides & related compounds
8-hydroxyquinoline and 8-hydroxy-1,6-naph-thyridine are recognized to bind divalent
cations. Their carboxamides and related compounds were soon identified and patented as
HIV-1 IN inhibitors by Merck, Shionogi, GSK, Gilead, and so forth. The 8-hydroxy-1,6-
naph-thyridine 23 (Figure 6) showed excellent potency toward ST and HIV replication [56].
L-870,812 (24) from Merck showed excellent inhibition of ST and HIV replication and only
moderate affinity for serum protein [57]. This compound also showed efficacy against
Simian immunodeficiency virus, with an IC95 of 350 nM [58]. L-870,810 (25) exhibited
improved enzyme inhibitory activity over L-870,812, showed very good pharmacokinetic
properties and reached Phase II clinical trials [59]. The 8-hydroxy-quinoline-7-carboxylic
acid 26 (FZ-41) is not a selective ST inhibitor (IC50 for 3′-P and ST are 0.7 and 1.7 μM,
respectively) [60,61]. Whereas this compound was identified as an in vitro IN inhibitor, the
exact in vivo target is still unclear. An alternative template to 1,6-naph-thyridine is 4-
hydroxy-2-oxo-1,2-dihydro-1,5-naphthyridine. The typical compound of this group is 27,
which was also patented by Merck. GSK-364735 (28), co-patented by GSK and Shionogi,
also contains this moiety [62]. It displayed potent antiretroviral activity at nanomolar
concentrations and reached Phase II clinical trials. Interestingly, the binding mode of this
compound seems to be reversed, in the sense that, for these compounds, the benzyl group is
at the C3-position of the quinoline or naphthyridine ring system instead of being connected
to the carboxamide group. The orientation of the fluorobenzene of 29 is similar. Tibotec
patented a tricycle-based scaffold, containing a 5,8-dihydroxyl-1,4-naphthyridine moiety, as
IN inhibitors. A typical compound is 30. GSK used a heterocyclic azole isostere to replace
the carboxamide group present in L-870,810 and related analogs, and patented oxadiazole
and triazole-substituted naphthyridines as IN inhibitors (e.g., 31), which had impressive
biological and toxicological activities [63,64]. Gilead also reported a tricycle-based scaffold
containing the 8-hydroxyquinoline moiety as IN inhibitors [65]. Among those, GS-9160 [66]
(32) entered Phase I clinical trials but was not pursued further due to unfavorable bio-
availability. Compound 33, also patented by Gilead, contains the same tricyclic scaffold but
presents reversed benzene ring orientation, as explained above.

Hydroxypyrimidinone carboxamides & related compounds
The Istituto Di Ricerche Di Biologia Molecolare (IRBM-MRL Rome) designed N-alkyl-5-
hydroxypyrimidinone carboxamides (34; Figure 7; typical compound) and 4,5-
dihydroxypyrimidine carboxamides (35; typical compound) as HIV-1 IN inhibitors based on
their reported HCV polymerase inhibitors, dihydroxypyrimidine carboxylic acids [67,68].
These are two potent and selective classes of ST inhibitors. Their further evolution included
optimization of potency, physicochemical properties and pharmacokinetic profiles led to the
discovery and marketing of RAL (MK-0518, 36) [14,36]. BMS also registered a series of
patents for inhibitors based on the N-alkyl-5-hydroxypyrimidinone carboxamide scaffold
(37 is a representative structure). IRBM-MRL Rome and BMS further modified this scaffold
by fusing the alkyl group into a pyrimidinone to form an additional ring (38–40). Shionogi
used different azoles to replace the carboxamide group. The resulting compounds retained
good inhibition towards ST and viral replication, with IC50 and EC50 values in the
nanomolar range (e.g., 41). Merck further incorporated a hydroxypyrimidinone carboxamide
moiety into different bicyclic and tricyclic scaffolds (e.g., 42–45), among which 43
(MK-0536) was chosen by Merck as a promising second-generation IN inhibitor owing to its
excellent pharmacokinetic profile and improved cross resistance [201]. Shionogi patented a
series of bicyclic carbamoylpyridone derivatives as IN inhibitors, in which the hydrophobic
fluorobenzene rings of some (e.g., 46) have different orientations, while others (e.g., 47)
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have two fluorobenzene rings. Interestingly, the latter compounds show better inhibition for
ST. In a recently published patent, GSK has disclosed the structure of GSK1349572 (48),
which has entered Phase IIB trials. As of the time of writing, this compound is the only
once-daily, unboosted IN inhibitor in clinical development [69].

Pyrrolecarboxamide & related compounds
Further scaffolds based on the diketo acid pharmacophore have been designed, leading, for
example, to 4-hydroxy-5-pyrrolinone IN inhibitors such as compounds 49–52 (Figure 8)
[70,71] IC50 values in the low nanomolar range were found for some 4-hydroxy-5-
pyrrolinone-3-carboxamide compounds, some of which, however, lacked cellular activity,
possibly due to suboptimal physicochemical properties that could affect cell permeability
and/or binding to intracellular proteins and also plasma proteins present in the cell medium
[70]. However, when the carboxamide moiety was replaced by an azaheteroaromatic ring,
the cellular activities improved dramatically, although the IC50 values dropped. For
example, the EC50 values of compounds 50 and 51 from Shionogi are less than 0.25 μM
(their IC50 values are 30–40 nM). Shionogi further modified such compounds using a
moiety from their inhibitor S-1360 (12), which yielded compounds such as 52. However,
their cellular activities were not markedly improved.

Merck incorporated the pyrrolecarboxamide moiety into different bicyclic or tricyclic
systems, which yielded clear improvement in antiretroviral activities (53 [72], 54 [73], 55
[72], 56 [74] and 57). Among those, MK-2048 (56) displayed potent antiretroviral activity
with an EC95 value of 40 nM in cell culture and a favorable pharmaco-kinetic profile in dog
and rat. Additionally, this compound exhibited effectiveness against first-generation IN
drug-resistant viral strains and accordingly was chosen by Merck as a valuable second-
generation IN inhibitor. Currently, this compound is still in preclinical study.

Quinolone carboxylic acids
The 4-quinolone-3-glyoxlic acid scaffold was designed by Japan Tobacco, based on the idea
that IN inhibitors with this scaffold may maintain the co-planarity of diketo acid functional
groups. This scaffold did not show activity; interestingly, however, its precursor 4-quino-
lone-3-carboxylic acid had shown IN inhibitory activity [75]. This finally led to the
discovery of a very potent IN inhibitor, GS-9137, or EVG (58; Figure 9), which now is in
Phase III clinical studies and is co-developed and commercialized by Gilead and Japan
Tobacco. Experimental findings and advanced quantum-chemical calculations showed that
4-quinolone-3-carboxylic acid can form three chelating bond by using the carbonyl group
and one oxygen atom in the acid group, which is different from the putative chelating mode
of diketo acid and its bioisosteres [22]. Japan Tobacco further modified the scaffold
structure from 4-quinolone-3-carboxylic acid to 4-oxo-4H-quinolizine-3-carboxylic acid,
which also yielded good inhibition towards ST. The representative compound here is 59.

Others
Shionogi has patented (1H-benzimidazol-2-yl)-oxo-acetic acid ester (60; Figure 10) and
(1H-benzoimidazol-2-yl)-pyridin-2-yl-methanone (61) as IN inhibitors. Neither of these
possess the acidic hydroxyl group. Their reported IC50 values are in the micromolar range.

Virochem Pharma patented compounds based on a pyridine carboxamide scaffold as IN
inhibitors. A typical compound in this series is 62.

Merck incorporated the dihydroxycarbonyl pharmacophore into a pyridinone scaffold,
which led to the dihydroxypyridopyrazine-1,6-diones as novel IN inhibitors [76]. A
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representative from this series, compound 63, has an IC50 value of 0.04 μM for ST and an
EC95 value of 0.25 μM.

IRM LLC patented the scaffold 4-(benzyl-carbamoyl)-2,3-dihydroxy-benzoate for IN
inhibitors, whose IC50 and EC50 values are generally nanomolar (e.g., 64 & 65).

Success stories of authentic HIV-1 integrase inhibitors
After more than 25 years of AIDS research, there are currently approximately 25 drugs on
the market that are approved for the treatment of HIV infection. In 2007, RAL (36) became
the latest anti-HIV drug to be approved by the FDA for the treatment of HIV/AIDS in
treatment-experienced patients. With the approval of RAL, the antiretroviral drug arsenal
now contains weapons that target all three viral enzymes: RT, PR and IN.

As of early 2010, RAL is the only IN inhibitor approved for the treatment of patients
suffering from HIV/AIDS. RAL is the successful result of a long-term research effort by
Merck and Co. in the development of IN inhibitors [77]. The approval of RAL represents a
major breakthrough in the treatment of HIV/AIDS. This orally administered drug (400 mg
twice daily) is highly potent, well tolerated and exhibits excellent pharmacokinetics [37,77–
79]. Recently, RAL has been co-administered with NNRTIs (etravirine) and PIs (darunavir
or ritonavir) as a salvage therapy for heavily pretreated patients in virological failure with
extensive multidrug resistances. In this context, RAL has been shown to achieve virological
suppression similar to that observed in treatment-naive patients [80–83]. The robust clinical
efficacy and tolerability of RAL instills tremendous hope for many patients who, until
recently, were left with almost no treatment alternative. RAL has also been recently reported
to be an alternative potential treatment for enfuvirtide-treated patients with stable suppressed
viral load [84–87]. Enfuvirtide is an effective antiviral fusion inhibitor administered daily
subcutaneously, which may be associated with injection-related side effects.

In July 2009, the FDA approval of RAL was broadened to the treatment of HIV/AIDS in
treatment-naive patients. The replacement of the NNRTI efavirenz by RAL has been shown
to lead to higher efficiency in the optimized background regimen composed of the NRTIs
emtricitabine and tenofovir disoproxil fumarate (Truvada®) [87]. It is very likely that RAL,
which has only been studied as a once-daily therapy for treatment-naive patients, will
become a keystone of future multidrug cocktails to achieve an oral once-daily highly active
antiretroviral therapy [88].

Elvitegravir (58) is, to our knowledge, the compound that is currently the next most
advanced in the clinical development pipeline. It has not yet been approved [89]. This
quinolone derivative, originally developed by Japan Tobacco Inc. [75], was subsequently
licensed to Gilead Sciences under the name GS-9137 for further development. EVG, like
RAL, is a potent antiviral agent [75,90–92] but exhibits a potentially higher cytotoxicity in
noninfected cells [75]. EVG is also metabolized leading to partial inactivation [77,93],
which could be overcome by a co-administration with ritonavir [93]. EVG is also being
studied in combination with tenofovir, emtricitabine and cobicistat as a one-pill, once-a-day
combination pill for the treatment of treatment-naive patients [202].

Unfortunately, the emergence of resistance leading to treatment failure has already been
reported for RAL [77,89–92,94,95]. Three main resistance pathways involving the primary
mutations Q148R/H/K, N155H and Y143R/C [90–92], are responsible for virological failure
[96–100]. These pathways seem associated with secondary mutations that appear to rescue
the viral fitness of those primary mutants: for instance G140S is observed together with
Q148H, or G140A with Q148R [96,100]. Recently, EVG’s in vitro resistance profile was
found to be similar to that of RAL, suggesting that EVG is unlikely to overcome resistance
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that has developed to RAL [89,92]. Therefore, continued development work towards novel
IN inhibitors capable of overcoming RAL resistance is still very much warranted.

Future perspective
Integrase, which has no counterpart in humans, is now a validated target for the
development of anti-HIV agents. However, our knowledge about its structure and function is
still incomplete. After diketo acids were identified as ST-specific IN inhibitors and assay
methods had matured, more and more compounds have been patented as IN inhibitors by
different companies and agencies: to date, more than two hundred patents of, or related to,
IN inhibitors have been registered. This effort has yielded one marketed IN inhibitor and
several under clinical trial studies, which validates IN as an effective target for the treatment
of HIV/AIDS. Both the success and the limitations of RAL (and HAART) clearly indicate
the necessity of further development of IN inhibitors. Based on all the known authentic IN
inhibitors, some of which have been presented in this review, an analog-based IN inhibitor
design would seem to be an effective strategy. The hope and anticipation is that such efforts
will lead to additional authentic IN inhibitors being patented in the near future and
ultimately made available to patients. Ideally, these new IN inhibitors should successfully
address the issues of dosing regimens, and more importantly, viral resistance, which will
continue to arise as IN inhibition-based drugs are used.

Most of the ‘authentic’ IN inhibitors presented in this review can be thought of as structural
variations on the original ‘diketo acid’ motif, whose mechanisms of action are presumed to
involve chelation of catalytic divalent metal ions. These include RAL and other IN
inhibitors in clinical trials. The major challenge facing further development of IN inhibitors
lies in overcoming resistance to current clinical agents. Accordingly, evaluation of
analogues against panels of IN constructs that cover the major patterns of clinical resistance
should be an integral component of ongoing medicinal chemistry in this area.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Key Terms

HAART Therapies based on a combination of antiretroviral drugs – typically three or
four – to create multiple obstacles to HIV replication and to increase the
number of mutations required for drug resistance

PIC Large structure including the HIV viral genome associated with viral and host
proteins. The PIC enters the host cell’s nucleus, which is the prerequisite for
integration of the viral DNA into the host DNA. It includes the newly
synthesized DNA, integrase, nucleocapsid protein, structural protein p6, the
accessory protein Vpr, and several copies of matrix protein

INSTI Class of HIV-1 IN inhibitors that show higher potency in enzymatic assays
against the strand-transfer step of the viral genome integration catalyzed by
IN than against the 3′-processing step. Authentic IN inhibitors have
exclusively been found among INSTIs so far

Chelation Formation or presence of two or more separate bonding interactions between
a multiply bonded ligand and a single central metal atom. In the medicinal
chemistry context, such ligands (‘chelators’) are organic compounds that
inactivate an ion necessary for the normal functioning of an enzyme, for
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example the Mg2+ ions required for the catalytic activity of IN. Chelation is
the mechanism of action of some approved drugs, for example the antibiotic
drugs of the tetracycline family are chelators of Ca2+ and Mg2+ ions
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Figure 1.
HIV-1 life cycle and anti-HIV drug development.
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Figure 2.
Putative chelating mode of authentic integrase inhibitors comprising a planar two-metal
chelating region, held in place by the catalytic triad Asp-64, Asp-116 and Glu-152.

Liao et al. Page 17

Future Med Chem. Author manuscript; available in PMC 2012 August 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Representative diketo acids and diketo acid analogues patented as HIV-1 integrase
inhibitors.
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Figure 4.
Representative patented integrase inhibitors derived directly from diketo acids.
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Figure 5.
Representative pyrrolopyridine hydroxamic acids patented as HIV-1 integrase inhibitors.
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Figure 6.
Representative aza-naphthalenyl carboxamides and related compounds patented as HIV-1
integrase inhibitors.
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Figure 7.
Representative hydroxypyrimidinone carboxamides and related compounds patented as
HIV-1 integrase inhibitors.
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Figure 8.
Representative pyrrolecarboxamide and related compounds patented as HIV-1 integrase
inhibitors.
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Figure 9.
Representative quinolone carboxylic acids patented as HIV-1 integrase inhibitors.
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Figure 10.
Miscellaneous structures patented as HIV-1 integrase inhibitors.

Liao et al. Page 25

Future Med Chem. Author manuscript; available in PMC 2012 August 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liao et al. Page 26

Ta
bl

e 
1

So
m

e 
pa

te
nt

ed
 a

ut
he

nt
ic

 H
IV

-1
 in

te
gr

as
e 

in
hi

bi
to

rs
 a

nd
 th

ei
r 

bi
ol

og
ic

al
 a

ct
iv

iti
es

.†

C
om

po
un

d
A

ss
ig

ne
e

P
at

en
t 

nu
m

be
r

IC
50

 (
ST

, μ
M

)
E

C
50

 (
μ

M
)

E
C

95
 (
μ

M
)

C
C

50
 (
μ

M
)

1
Sh

io
no

gi
 &

 C
o.

, L
td

W
O

 9
95

02
45

 A
1

0.
07

2
M

er
ck

 &
 C

o.
, I

nc
.

W
O

 9
96

25
13

 A
1

0.
13

3
1.

5
9.

6
52

0

3
M

er
ck

 &
 C

o.
, I

nc
.

W
O

 9
96

25
20

 A
1

0.
30

1–
2

17
.7

88
.3

4
M

er
ck

 &
 C

o.
, I

nc
.

W
O

 9
96

25
20

 A
1

<
0.

10
1.

05
3

5
B

ri
st

ol
-M

ye
rs

 S
qu

ib
b

W
O

 2
00

19
62

83
 A

2
0.

20
5.

9

6
B

ri
st

ol
-M

ye
rs

 S
qu

ib
b

W
O

 2
00

30
49

69
0 

A
2

99
.9

%
 in

hi
bi

tio
n 

at
 5

0 
μ

M
96

%
 in

hi
bi

tio
n 

at
 1

.6
 μ

M

7
B

ri
st

ol
-M

ye
rs

 S
qu

ib
b

W
O

 2
00

19
62

83
 A

2
1.

2

8
N

IH
W

O
 2

00
30

49
69

5 
A

2
1.

53
0.

5

9
N

IH
W

O
 2

00
50

87
75

9 
A

1
0.

01
7

4.
29

>
20

0

10
Ja

pa
n 

T
ob

ac
co

 I
nc

.
W

O
 2

00
30

16
26

6 
A

1
0.

00
41

11
Sh

io
no

gi
 &

 C
o.

, L
td

W
O

 9
95

02
45

 A
1

0.
65

>
5

12
Sh

io
no

gi
 &

 C
o.

, L
td

W
O

 2
00

03
90

86
 A

1
W

O
 2

00
19

63
29

 A
1

0.
02

0.
2

12

13
M

er
ck

 &
 C

o.
, I

nc
.

W
O

 2
00

10
05

78
 A

1
0.

01
–5

0.
01

–5
0

14
Ja

pa
n 

T
ob

ac
co

 I
nc

.
W

O
 2

00
30

16
26

6 
A

1
0.

00
43

15
Sh

io
no

gi
 &

 C
o.

, L
td

W
O

 2
00

19
59

05
 A

1
0.

24
7

16
Sh

io
no

gi
 &

 C
o.

, L
td

W
O

 2
00

19
59

05
 A

1
0.

05
9

4.
8

17
Sh

io
no

gi
 &

 C
o.

, L
td

W
O

 2
00

19
59

05
 A

1
0.

55
>

68

18
Sh

io
no

gi
 &

 C
o.

, L
td

W
O

 2
00

30
47

56
4 

A
1

2.
43

19
Sh

io
no

gi
 &

 C
o.

, L
td

W
O

 2
00

30
47

56
4 

A
1

1.
57

20
Pf

iz
er

 I
nc

.
W

O
 2

00
51

03
00

3 
A

2
0.

08
4

0.
00

79
5

21
Pf

iz
er

 I
nc

.
W

O
 2

00
40

67
53

1 
A

1
0.

23
4

22
Pf

iz
er

 I
nc

.
W

O
 2

00
51

03
05

1 
A

1
0.

00
7

0.
00

03
2

23
M

er
ck

 &
 C

o.
, I

nc
.

W
O

 2
00

23
67

34
 A

2
0.

01
0.

39
>

12
.5

0

24
M

er
ck

 &
 C

o.
, I

nc
.

W
O

 2
00

23
09

31
 A

2
0.

04
0

0.
00

2
0.

25
0

>
25

25
M

er
ck

 &
 C

o.
, I

nc
.

W
O

 2
00

23
09

31
 A

2
0.

01
0

0.
00

3
0.

10
2

2.
1

26
B

io
A

lli
an

ce
 P

ha
rm

a
W

O
 2

00
30

31
41

3 
A

1
1.

7
1–

4

Future Med Chem. Author manuscript; available in PMC 2012 August 7.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liao et al. Page 27

C
om

po
un

d
A

ss
ig

ne
e

P
at

en
t 

nu
m

be
r

IC
50

 (
ST

, μ
M

)
E

C
50

 (
μ

M
)

E
C

95
 (
μ

M
)

C
C

50
 (
μ

M
)

27
M

er
ck

 &
 C

o.
, I

nc
.

W
O

 2
00

30
62

20
4 

A
1

0.
01

0
0.

93
7

28
G

la
xo

Sm
ith

K
lin

e/
Sh

io
no

gi
 &

 C
o.

, L
td

W
O

 2
00

50
77

05
0 

A
2

0.
00

8
0.

00
12

>
2.

5

29
Sh

io
no

gi
 &

 C
o.

, L
td

W
O

 2
00

40
24

69
3 

A
1

0.
20

8

30
T

ib
ot

ec
 P

ha
rm

ac
eu

tic
al

s 
L

td
W

O
 2

00
40

96
80

7 
A

2
0.

42
0.

27
2.

63

31
G

la
xo

Sm
ith

K
lin

e
W

O
 2

00
41

01
51

2 
A

2
0.

00
6

0.
01

0
12

.2

32
G

ile
ad

 S
ci

en
ce

s,
 I

nc
.

W
O

 2
00

61
25

04
8 

A
2

0.
02

8
0.

00
2

4

33
G

ile
ad

 S
ci

en
ce

s,
 I

nc
.

W
O

 2
00

90
67

54
1 

A
2

34
IR

B
M

-M
R

L
 R

om
e‡

W
O

 2
00

30
35

07
6 

A
1

0.
01

35
IR

B
M

-M
R

L
 R

om
e

W
O

 2
00

30
35

07
7 

A
1

0.
01

0
0.

12
5

36
M

er
ck

 &
 C

o.
, I

nc
.

W
O

 2
00

60
60

71
1 

A
2

0.
01

5
0.

01
9

37
B

ri
st

ol
-M

ye
rs

 S
qu

ib
b

W
O

 2
00

40
96

12
8 

A
2

0.
00

2–
2

38
IR

B
M

-M
R

L
 R

om
e

W
O

 2
00

61
03

39
9 

A
2

39
B

ri
st

ol
-M

ye
rs

 S
qu

ib
b

W
O

 2
00

70
61

71
4 

A
1

0.
00

1–
0.

01
0

40
IR

B
M

-M
R

L
 R

om
e

W
O

 2
00

70
39

21
8 

A
1

0.
01

9
0.

06
2

41
Sh

io
no

gi
 &

 C
o.

, L
td

W
O

 2
00

50
61

49
0 

A
1

0.
00

96
0.

00
96

42
M

er
ck

 &
 C

o.
, I

nc
.

W
O

 2
00

50
86

70
0 

A
1

<
1

<
10

43
M

er
ck

 &
 C

o.
, I

nc
.

W
O

 2
00

50
87

76
8 

A
1

<
10

44
M

er
ck

 &
 C

o.
, I

nc
W

O
 2

00
50

92
09

9 
A

1
<

10

45
M

er
ck

 &
 C

o.
, I

nc
.

W
O

 2
00

80
48

53
8 

A
1

0.
01

4
0.

01
5

46
Sh

io
no

gi
 &

 C
o.

, L
td

W
O

 2
00

60
88

17
3 

A
1

0.
00

79

47
Sh

io
no

gi
 &

 C
o.

, L
td

W
O

 2
00

60
88

17
3 

A
1

0.
00

22

48
G

la
xo

Sm
ith

K
lin

e/
Sh

io
no

gi
 &

 C
o.

, L
td

W
O

 2
01

00
11

81
2 

A
1

0.
00

27
0.

00
52

49
B

ri
st

ol
-M

ye
rs

 S
qu

ib
b

W
O

 2
00

40
04

65
7 

A
2

99
.9

%
 in

hi
bi

tio
n 

at
 2

0 
μ

M

50
Sh

io
no

gi
 &

 C
o.

, L
td

W
O

 2
00

30
16

27
5 

A
1

0.
03

0
0.

18

51
Sh

io
no

gi
 &

 C
o.

, L
td

W
O

 2
00

30
16

27
5 

A
1

0.
04

0
0.

24

52
Sh

io
no

gi
 &

 C
o.

, L
td

W
O

 2
00

30
16

27
5 

A
1

0.
07

9
0.

55

53
M

er
ck

 &
 C

o.
, I

nc
.

W
O

 2
00

40
47

72
5 

A
2

0.
01

0.
31

54
M

er
ck

 &
 C

o.
, I

nc
.

W
O

 2
00

51
20

51
6 

A
2

0.
05

0.
31

0

55
M

er
ck

 &
 C

o.
, I

nc
.

W
O

 2
00

50
41

66
4 

A
1

<
0.

01
0.

16

Future Med Chem. Author manuscript; available in PMC 2012 August 7.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liao et al. Page 28

C
om

po
un

d
A

ss
ig

ne
e

P
at

en
t 

nu
m

be
r

IC
50

 (
ST

, μ
M

)
E

C
50

 (
μ

M
)

E
C

95
 (
μ

M
)

C
C

50
 (
μ

M
)

56
M

er
ck

 &
 C

o.
, I

nc
.

W
O

 2
00

51
10

41
4 

A
2

0.
04

57
M

er
ck

 &
 C

o.
, I

nc
.

W
O

 2
00

70
50

51
0 

A
2

58
Ja

pa
n 

T
ob

ac
co

 I
nc

.
W

O
 2

00
40

24
07

8 
A

2
0.

00
72

0.
00

09
4.

0

59
Ja

pa
n 

T
ob

ac
co

 I
nc

.
W

O
 2

00
60

33
42

2 
A

1
<

0.
01

60
Sh

io
no

gi
 &

 C
o.

, L
td

W
O

 2
00

20
70

49
1 

A
1

0.
78

61
Sh

io
no

gi
 &

 C
o.

, L
td

W
O

 2
00

20
70

49
1 

A
1

2.
15

62
V

ir
oc

he
m

 P
ha

rm
a,

 I
nc

.
W

O
 2

00
50

42
52

4 
A

1
<

10

63
M

er
ck

 &
 C

o.
, I

nc
W

O
 2

00
40

24
07

8 
A

2
0.

04
0.

25

64
IR

M
 L

L
C

W
O

 2
00

80
73

13
8 

A
2

<
0.

05
<

0.
05

>
0.

5,
 <

2

65
IR

M
 L

L
C

W
O

 2
00

80
73

13
8 

A
2

>
0.

05
, <

0.
5

>
0.

05
, <

0.
5

>
2

† St
ru

ct
ur

es
 a

re
 p

ro
vi

de
d 

in
 F

ig
ur

es
 3

–1
0.

‡ IR
B

M
-M

R
L

 R
om

e:
 I

st
itu

to
 D

i R
ic

er
ch

e 
D

i B
io

lo
gi

a 
M

ol
ec

ol
ar

e 
P.

 A
ng

el
et

ti 
Sp

a.

Future Med Chem. Author manuscript; available in PMC 2012 August 7.


