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Abstract
Computer-aided drug design plays a vital role in drug discovery and development and has become
an indispensable tool in the pharmaceutical industry. Computational medicinal chemists can take
advantage of all kinds of software and resources in the computer-aided drug design field for the
purposes of discovering and optimizing biologically active compounds. This article reviews
software and other resources related to computer-aided drug design approaches, putting particular
emphasis on structure-based drug design, ligand-based drug design, chemical databases and
chemoinformatics tools.

Drug discovery and development is a very costly and time-consuming process in which
every available discipline, including computer-aided drug design (CADD), is utilized in
order to achieve the desired results. CADD provides valuable insights into experimental
findings and mechanism of action, new suggestions for molecular structures to synthesize,
and can help make cost-effective decisions before expensive synthesis is started. Numerous
compounds that were discovered and/or optimized using CADD methods have reached the
level of clinical studies or have even gained US FDA approval [1,2]. Many CADD
techniques are used at various stages of a drug-discovery project, and one cannot designate a
single ‘best’ computational drug-design technique in general. Hence, computational
medicinal chemists should be aware of and willing to take advantage of all kinds of software
and resources related to CADD during their routine work, although individually they may
focus on, and subsequently become an expert in, the use of just one or a few specific
techniques.

Ligands (be they inhibitors, activators, agonists, antagonists or substrate analogs) can be
identified using conventional hit-identifying methods such as high-throughput screening
(HTS) assays or employing various CADD techniques. Because of their respective strengths
and weaknesses for drug discovery, HTS and CADD techniques are often seen as
complementary to each other [3]. HTS has been used in combination with, or substituted by,
CADD techniques, the latter being generally faster, more economical and easier to set up
than HTS. In addition, by using CADD techniques, one can attempt to optimize ligands to
imbue them with high-binding affinity and good selectivity, as well as acceptable
pharmacokinetic properties, the latter not usually being within the scope of HTS.
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Many of the techniques used in CADD are usually cheaper and faster than most of the
experimental assaying methods, therefore large databases of compounds are often tested in
silico before they – or, better, subsets of them – are submitted to in vitro testing. Nowadays,
drug-design projects often start with hundreds of thousands or even millions of compounds,
be they large corporate repositories, catalogs of commercially available screening samples
or large virtual libraries. In such a scenario, one of the most valuable tools is so-called
virtual screening (VS, also called in silico screening), which is the computational search for
molecules with desired biological activities in large computer databases of small molecules
that do not even have to physically exist [4].

Depending on the information obtainable at the beginning of the screening campaign about
the target and/or existing ligands, VS can be divided into structure-based VS (SBVS) and
ligand-based VS (LBVS). In the former, the 3D structure of a target is utilized; in the latter,
established ligands of a known target are taken into account. Advances in parallel hardware
and algorithms have enabled even large-scale VS runs to be completed in a reasonable time
period. As the number of protein structures of interest to drug discovery has significantly
increased, the distinction between ‘structure-based’ and ‘ligand-based’ drug-design methods
has become blurred. The judicious use of conventional ligand-based methods, such as 3D
pharmacophore searches, can greatly improve the efficiency and effectiveness of structure-
based drug design (SBDD) [5]. Ligand-based search can act as the first stage in an SBVS
workflow. In addition, to open more opportunities for hit identification/optimization for a
target of interest, it is very common to employ many different design methods, including
both SBVS and LBVS (see HIV-1 integrase as an example [6]).

Generally, molecular modeling techniques for drug design and discovery include not only
VS methods, but also various other kinds of techniques summarized in Table 1. A large
number of molecular modeling programs have been developed over the past three decades,
implementing these techniques in both commercial and free software tools. Some of them
are widely used in the pharmaceutical and biological industry as well as in academia and in
government research laboratories. The extensive applications of these software tools and
other resources, such as chemical databases, have made CADD a valuable asset in drug
discovery and development.

The intention of this review is to present the readers with a broad overview of the software
and resources commonly used in CADD. Given that it is an impossible task to provide all
technical details of the background and applications of these software tools and resources,
the reader is encouraged to go back to the referenced literature for additional information.
Because of their importance in CADD, this review particularly focuses on SBDD, ligand-
based drug design, chemical databases and chemoinformatics tools.

Comprehensive drug-design software packages
In 1979, a company named Tripos was established in St Louis, Missouri, USA. Tripos was
the first company to deliver software for scientific computational drug discovery to the
pharmaceutical industry. In the intervening three decades, numerous drug-design and
simulation-software companies have come (and some gone). Most often they integrate
different programs into comprehensive packages, although the individual programs of a
package may require separate license keys to be purchased individually. Table 2 lists the
most relevant, currently available drug-design packages and their included modules.
Generally, a comprehensive drug-design package has a single, easy-to-use client interface
(see Figure 1 for examples), from which the user can manipulate and build their models,
manage jobs, and visualize and analyze results.
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Among these drug-design packages, Discovery Studio, MOE, the Schrödinger package and
SYBYL are those with the most comprehensive tool set. Each of them supplies modules/
programs for almost all kinds of CADD techniques listed in Table 1. Besides this, they also
provide different assistant tools, workflows and scripting languages to help the users
efficiently employing these packages or automate the drug-design procedures. Other
packages are more specialized, that is, they focus on a few particular CADD techniques. The
commercialization of these drug-design packages and their wide adoption by pharmaceutical
industry as well as academia has, on the one hand, spurred the continued development of
computational medicinal chemistry, and, on the other hand, supported the growth of these
software packages themselves. Chemistry on the computer has become easier than before:
designing and optimizing new drug candidates can be accomplished faster and more
economically by efficiently employing one or more of these versatile drug-design packages.

It should be noted that some companies and organizations do not distribute their programs as
packages although they have several programs related to drug design and modeling. These
companies/organizations include Molecular Discovery [201], Cambridge Crystallographic
Data Centre (CCDC) [202], SimBioSys Inc. [203], and MEDIT SA [204].

Programs for docking & SBVS
When the target protein’s structure is known, molecular docking is the preferred method to
investigate how a ligand interacts with the protein. Molecular docking is an automated
computer algorithm that determines how a compound may bind in the active site of a target
and tries to predict how tightly it binds. This method attempts to mimic the process of
bringing together a protein and a ligand to form a noncovalent complex, and to reveal the
electrostatic and steric complementarity between the protein and ligand. Thus, an algorithm
of a docking program faces two main tasks – the prediction of the correct poses of ligands at
the active site of a protein and the correct ranking of these poses. Both tasks are of a
challenging nature, and so far none of the reported docking programs are able to solve both
of them perfectly. Prediction of possible binding modes in an active site is more
straightforward and can be performed successfully by most programs. Because of its success
at this task, docking is a well-established drug-design technology that is widely employed in
SBDD. Nowadays, most docking programs available account for flexibility of ligands;
however, handling of receptor flexibility remains a significant issue. Treatment of ligand
flexibility can be divided into three basic categories: systematic methods (incremental
construction and conformational search); random or stochastic methods (Monte Carlo,
Genetic Algorithms and Tabu search); and simulation methods (molecular dynamics [MD]
and energy minimization) [7]. Another crucial aspect is the scoring function applied during
docking or SBVS to rank docking poses. Fundamentally, three classes of scoring functions
are currently applied in docking programs: force field based, empirical and knowledge
based. To date, more than 60 small-molecule docking programs and 30 scoring functions
have been reported (see reviews [8–11]). Among the reported docking programs, AutoDock
[12], DOCK [13], FlexX [14], FRED [15], Glide [16], GOLD [17], ICM [18] and Surflex-
Dock [19] are perhaps the most popular docking tools (Table 3). Several benchmark studies
have been published evaluating the performance of docking programs [20–25]. However,
one cannot draw a simple conclusion from all these studies in that there would be a single
docking program that outperforms all other programs in all aspects, for example, docking
accuracy or hit enrichment. In addition, benchmarks evaluating different scoring functions
have been reported [26,27].

Figure 2 shows the schematic representation of a protocol commonly used in an SBVS
campaign. The 3D structure of a target, which preferably is in complex with a ligand, is a
prerequisite for docking or SBDD. The 3D structure may be a crystallographic x-ray
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structure or an NMR structure, often downloaded from the Protein Data Bank (PDB).
However, experience has shown that, even though the experiment would seem to provide the
ultimate answer to structural questions, some caution is warranted as possible ambiguities of
some experimental structures can mislead the unwary medicinal chemists [28]. Hence, it is
highly recommended to try to assess the validity and reliability of the chosen crystal
structures before using them in drug-design projects.

In order to reduce the sizes of the databases used in SBVS, they are prefiltered on the basis
of calculated physicochemical descriptors, a pharmacophore model or simply by Lipinski’s
Rule of Five. Although this step is not obligatory for SBVS, it is attractive for providing
enrichment to speed up the identification of molecules binding the target receptor more
quickly and to help ensure desired pharmacokinetic profiles of the identified binders. Once
an appropriate set of molecules has been put together by the prefiltering steps listed above,
they can be docked into the active site for further reduction of the number of candidates
based on the fast (although not very accurate) scoring functions. To choose candidates for
biological assays from the docking results, it is often helpful, if doable, to examine the
docking poses visually and/or conduct further sophisticated computational studies such as
MD simulations (see the section on MD simulations programs later for details).

In most cases, SBVS identifies hits with activity in the micromolar range, although
nanomolar activities have, occasionally, been reported [4]. A prospective SBVS project can
be regarded as successful if at least one new hit with a novel scaffold is yielded, especially if
the efficiency of identifying these hits is significantly higher than HTS or traditional
medicinal chemistry approaches would presumably have been. No guarantee, however, can
usually be given for the success of such SBVS projects, since their outcome depends in an as
yet unpredictable way on the combination of the investigated target, the chemical databases
used and the applied search methods.

To improve the results of an SBVS experiment, different docking programs can be applied
in combination. For example, in the identification of novel proteasome inhibitors, FRED,
Surflex-DOCK and LigandFit were combined to screen the ChemBridge database [29]. In
addition, several scoring functions can be employed simultaneously for predicting the
binding affinity of a pose produced by a docking program [30].

Structure-based virtual screening methods can also be used in fragment-based drug
discovery projects [31,32]. In this situation, libraries are screened that typically contain
molecules with a molecular mass of less than 300 Da and with fewer than three hydrogen-
bond donors and six hydrogen-bond acceptors. This helps with the design of small ligands
that bind with high ligand efficiency and can be readily optimized to potent lead-like
compounds. Sometimes, computational methods can also be applied to predict fragment
binding: at first, a fragment library is docked into the binding site of interest; then the best
orientations of some fragments are chosen and used as starting points for the attachment of
substituents, with the aim of targeting new areas within the binding site where
supplementary interactions may be made [33].

Many proteins are flexible targets, which are stabilized by ligand binding in one
conformation out of an ensemble of conformers of similar energy in the unbound state.
Taking into account the flexibility of the protein by docking programs is still an area of
active development [34]. Currently, the algorithms accounting for receptor flexibility can be
classified into two categories. The first one allows for protein conformational changes upon
ligand binding. The best known of these is the induced-fit docking from Schrödinger (see
[35] as an example), which is a protocol using a combination of the programs Prime and
Glide. However, such methods cannot generally be used in SBVS mainly because of their
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unacceptably high computational demands (i.e., low speed) for screening large libraries. The
second type of algorithms make use of multiple conformations of the target, in as much as a
set of binding site conformations from different x-ray crystal structures [36], NMR
ensembles [37] or extracted from MD or Monte Carlo simulations, are used [38–40].

Programs for 3D pharmacophore modeling & LBVS
In the absence of a receptor structure, the identification or optimization of lead compounds
can depend on pharmacophore modeling, which is typically performed by extracting
common chemical features from 3D structures of a set of known ligands representative of
essential ligand–macromolecule interactions. According to IUPAC, a pharmacophore is “an
ensemble of steric and electronic features that is necessary to ensure the optimal
supramolecular interactions with a specific biological target and to trigger (or block) its
biological response” [41]. The common chemical features that are usually used as types of
the desired interactions are hydrogen-bond acceptors, hydrogen-bond donors, hydrophobic
regions and positively or negatively charged groups (see examples in Figure 3). Exclusion
volumes, inclusion regions or a combination of both can also be integrated into a
pharmacophore. A pharmacophore is based on the concept of similarity between ligands
(i.e., the pharmacophoric features have to be similar – not particularly the connectivity), and
is used in LBVS to explore the diversity and complexity of molecular structures for the
purpose of identifying novel structural hits. In medicinal chemistry, pharmacophores have
found widespread use not only for hit-and-lead identification but also for subsequent lead
optimization, and have been increasingly successful in drug discovery (see reviews [42–
46]).

Many programs, including Catalyst, DISCOtech, LigandScout [47,48], MOE (its
pharmacophore module) and PHASE are widely used for pharmacophore elucidation and
VS (Table 4). These programs differ mostly in the algorithms utilized for the handling of
ligand flexibility and molecule alignment. None of these programs are free to academia;
however, there is a ligand-based pharmacophore program called PharmaGist that can be
accessed freely on the web [49,205].

Generally, ligand-based pharmacophore generation from a set of ligands involves two main
steps: first, sampling of the conformational space for each ligand to take into account the
conformational flexibility of the ligand, and second, alignment of the multiple ligands (in
their various conformations) to determine the essential common chemical features needed to
build a pharmacophore model. These two steps also pose the main challenges in ligand-
based pharmacophore modeling. There are two types of pharmacophore models. The first
type are the 3D quantitative structure–activity relationship (QSAR)-like models, which can
be derived from a training set of ligands with biological activities typically spanning at least
three orders of magnitude (see [50–52] as examples). With such models, the potencies of
new compounds can be quantitatively predicted by evaluating how well each compound
maps onto the model. The second type can be developed from a training set that includes
only active ligands (see [53–55] as examples). The potencies of new compounds can be
estimated qualitatively by whether they match the model. Representatives of these two types
of methods are HypoGen and HipHop (both in Catalyst), respectively.

The performance and applicability of pharmacophore modeling primarily depends on two
factors: the definition and placement of pharmacophoric features, and the alignment
techniques used for overlaying the 3D pharmacophore model with a set of ligand molecules
in a screened data set [45]. Ideally, the set of ligands has been derived from a number of
different chemical series with limited conformational flexibility and not too many
heteroatoms [42]. Since the application of pharmacophore matching is typically faster per
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compound than docking, large chemical structure databases can be subjected to
pharmacophore searches for novel ligands. The hits obtained can exhibit novel and diverse
chemotypes, enabling the medicinal chemist to pursue series with novel scaffolds. Lately,
pharmacophore searching has also been used in industry to create small, focused sets for
low-throughput, higher-quality assays to enhance the lead-identification process in parallel
with HTS [56]. In such focused sets, the sources of compounds can be either in-house or
purchased from compound vendors.

Before a chemical structure database can be screened with a 3D pharmacophore, it needs to
be precomputed, that is, conformational sampling of every compound needs to be
performed. Such corporate databases should at least contain conformational sampling of
every compound in them. This allows rapid matching between the generated conformers as
rigid bodies and the query. Before running the actual search on the full database, in order to
assess the credibility of the used pharmacophore, it is recommended to use the derived
pharmacophore performing on a small test database seeded with known actives and decoys.
The list of compounds that matches the pharmacophore query should be evaluated for
promiscuous matches, such as highly flexible, feature-rich molecules. Also, visually
examining how much of the molecule falls within the pharmacophore and how much
remains outside, can be used to rank the virtual hits for inclusion in the final set for
screening [42].

A 3D pharmacophore can also be derived from a protein structure by observing the specific
interactions between protein and ligand. In this case, shape and excluded volume
information can be added to the pharmacophore. This has the advantage of finding hits that
not only have the key binding elements but are also more likely to fit into the active site,
which can reduce the false positive rate. Generally, database-searching methods based on
3D pharmacophores are much faster than structure-based methods, such as docking, which
makes pharmacophore searching a more effective way to screen very large databases.
Pharmacophore searching can, therefore, act as the first stage in an SBVS workflow.

Quantitative structure–activity relationship
Quantitative structure–activity relationship modeling has been used widely as a key
computational tool for predicting physicochemical properties and rationalizing experimental
binding data or inhibitory activity of chemical compounds. Typically, QSAR is performed in
two diverse modes, referred to as 2D and 3D QSAR, which are quite different techniques for
practical purposes. 2D QSAR is conceptually a way of finding a simple equation that can be
used to predict some property from the molecular structure of a compound. It is a
meaningful correlation (model) between a set of independent variables (chemical
descriptors) calculated from chemical graphs, and a dependent variable such as binding
affinity, log P, or the pKa value whose value one wishes to predict for the compound of
interest [57]. There are many different algorithms for selecting 2D QSAR descriptors and
building the model. Among them, the most used are regression-analysis algorithms, which
automate the process of using correlation coefficients and cross-correlation coefficients to
select chemical descriptors. Multivariate analysis algorithms, heuristic algorithms and
genetic algorithms also are used. 2D QSAR in the narrow sense has the inherent advantage
of being independent of the 3D conformation, while it has the weakness of being much less
robust in terms of model interpretation. It has to be emphasized, however, that 2D QSAR
models can be built from both 2D and 3D descriptors, the latter ones indeed requiring a
(typically calculated) 3D conformation for each molecule both in the training and the test
sets. An example of this type of QSAR program is BioEpisteme [206] of the Prous Institute
for Biomedical Research.
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Many comprehensive drug-design packages include their own 2D QSAR modules, with
which the users can calculate different molecular descriptors and then build their 2D QSAR
models. More standalone-type programs in the field include Codessa from Semichem [207]
for building 2D QSAR models, which offers many algorithms for automatically selecting
descriptors, and the structure–activity relationship (SAR) and QSAR programs PASS and
GUSAR [208] with a large number of built-in (Q)SAR models. Software specifically
generating molecular descriptors, but not necessarily QSAR models includes Dragon [209]
and Mold2 [58]. 2D QSAR remains a valuable tool for predicting chemical properties of
drug-like organic compounds, hence currently it is widely employed and an actively pursued
methodology in the field of absorption, distribution, metabolism, elimination and toxicity
(ADME/T) prediction.

Broadly speaking, 3D QSAR includes any QSAR approach based on 3D molecular
structures. In this sense, QSAR built from molecular descriptors containing conformational
coordinate-derived information could be classified as 3D QSAR (although, especially if
mixed with 2D descriptors, can also be seen as a 2D QSAR technique, as mentioned
previously). In a narrower sense, 3D QSAR is a technique that uses a 3D grid of points
around the molecule, each point having properties associated with it that can vary in a field-
like manner from point to point, such as steric interactions or electrostatic potential. The
following discussion confines itself to this type of 3D QSAR. 3D QSAR is mainly used for
predicting the binding affinity of a ligand to the active site of a specific target. It often
requires 3D structures of the analyzed molecules, plus typically a molecular superposition
step [59]. For building a 3D QSAR model, it is necessary to first select a training set, which
ideally contains approximately 15 to 20 active compounds with preferably a wide of range
of activity. The second step is to generate conformations and alignments of the training set
compounds, which can be done manually or by algorithms. Most often, the most rigid
molecules are aligned first, which provides a template with as little uncertainty as possible
for further alignment of less rigid molecules. A dimensionality reduction step is then
typically inserted to extract the features of the 3D interaction field that are most strongly
determining the activity before the actual predictive model is built, often with a partial least
squares (PLS) approach. Finally, a test set containing some active compounds (typically
split off the original training set) is used to examine the robustness of the built 3D QSAR
model.

There are several programs developed for 3D QSAR. The most well-known among them are
comparative molecular field analysis (CoMFA) [60] and comparative molecular similarity
indices analysis (CoMSIA) [61], both of which are integrated into SYBYL. References
[62,63] describe their applications in drug discovery. The models built with the CoMFA or
CoMSIA techniques are created to identify a correlation between the molecular fields and
biological activity, which can be automatically achieved with a PLS algorithm. Another 3D
QSAR program that has found application in drug design is molecular field analysis from
Accelrys, which is similar in its approach to CoMFA [64,65].

In the early stage of drug design, if the active site of the target is unknown, 3D QSAR is
useful to explain activities of existing compounds and to accurately predict the activities of
analogs of those, whereas pharmacophore searches tend to be more valuable for quickly
searching very large chemical databases and thus tend to be better for scaffold hopping to
identify novel classes of active compounds. If the geometry of the active site is known,
docking tends to replace 3D QSAR and will be the preferred prediction technique in many
projects.

Recently, 3D QSAR modeling approaches have also been reported for use in VS [66]. For
example, the QSAR modeling approaches of variable selection k-nearest neighbor and
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support vector machines using both MolconnZ and MOE chemical descriptors generated
from 2D chemical graphs have been employed to identify histone deacetylase class 1
inhibitors by screening 9.5 million molecules compiled from the ZINC database, the World
Drug Index database, the ASINEX Synergy libraries, and other commercial databases [67].
The same group also successfully employed similar QSAR and VS methods to discover
geranylgeranyltransferase-I inhibitors [68].

Homology modeling
If the 3D model of a target protein is needed whose structure is not yet solved
experimentally by x-ray crystallography or NMR, however the sequence of its amino acids
is available and the experimental 3D structure(s) for one or more sufficiently similar
proteins is known, homology modeling (also known as comparative modeling) is a useful
approach to explain experimental facts, develop hypotheses, and/or carry out SBDD.
Homology modeling attempts the construction of an atomic-resolution model of the target
protein from its amino acid sequence using the experimental 3D structures of related
homologous proteins as templates [69–71]. The concept is based on the experience that
similar sequences lead to similar structures, that is, proteins descended from a common
ancestor (a protein family) typically have similar sequences and similar 3D structures. Since
experimental determination of protein structure through x-ray crystallography is still a
difficult and costly process, homology modeling methods provide quick and easy ways to
build models for further studies.

Typically, homology modeling of proteins includes the following four steps [69,72]:
identification of one or more known experimental structures of a related protein that can
serve as template, sequence alignment of target and template proteins, and model building
for the target and refining/validation/evaluation of the models. Human intervention is
typically needed to check for errors that may have been introduced during, for example,
sequence alignment and refinement of models. Database search techniques using tools such
as FASTA [210] and BLAST [211] are the simplest methods to identify templates for
homology modeling. More advanced tools include PSI-BLAST [212] and FFAS [213].

The quality of a homology model is generally correlated with the quality of the template
structure and the sequence alignment. Decreasing sequence identity between the target and
the template will typically affect the quality of the homology model. If there are gaps in the
alignment of structural regions between the target and template protein (these gaps are
referred to as indels), homology modeling can become a quite error-prone process.
Moreover, the quality of the model tends to decline if the resolution of the template protein
is poor. The construction of less rigid regions, for example, loops, is generally also less
accurate than the rest of the model. However, there is a general tendency that good
accordance is obtained for the functional region of the protein as the active sites are usually
highly conserved regions in the template structures [73]. How reasonable a homology model
is, can be quantified, for example, by a Ramachandran plot, in which the distribution of
backbone bond angles is shown. The quality of a homology model can also be examined by
checking the inside and outside distribution of hydrophilic and lipophilic residues.

The most frequently used homology modeling programs and their application in drug design
are listed in Table 5. Among them, SWISS-MODEL and Modeller are perhaps the most
widely used, maybe because of their free availability. Several large-scale benchmarking
experiments, most prominently Critical Assessment of Techniques for Protein Structure
Prediction (CASP) [74], have been organized to assess the relative quality of various
homology modeling methods. Biannually since 1994, CASP has invited research groups to
blindly test their structure-prediction algorithms on a set of experimental solved, but not yet
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published, protein structures [214]. The results of each CASP round are released in a special
annual issue of ‘Proteins: Structure, Function, and Bioinformatics,’ which the readers of this
article are encouraged to read to obtain more information about how the CASP experiment
was conducted, what kinds of homology modeling methods/programs were used, and which
outperformed others.

Models with more than 50% sequence identity are believed to be accurate enough for drug-
design application. In this range, the root-mean-square deviation between the experimental
structure and the model may be around 1 Å, which is equivalent to the typical resolution of
structures solved by NMR. In the 25–50% identity range, errors can be more severe and are
frequently located in the flexible loops. The homology model can be used for the assessment
of druggability and mutagenesis experiments but should be applied with caution for drug
design. Below 20–25% sequence identity, a model is usually not usable for drug design
because serious errors can occur [69]. However, exceptions from this rule can be found,
such as in G-protein coupled receptor modeling [75]. So far, homology modeling has been
effectively employed to identify hits using VS, to suggest accurate binding modes and
receptor–ligand interactions, to aid in mutagenesis experiments, to rationalize SAR data, and
to optimize hit compounds [69]. Developing accurate enough homology models still remains
a large challenge. However, a recent survey regarding VS surprisingly revealed that hits
derived from docking into homology models had on average higher potency than hits
identified by docking into experimental structures [4].

Chemical databases
The fact that the number of commercially and, even more so, publicly available databases of
small-molecule compounds has increased considerably in recent years attests to the high
relevance of such kinds of data collections for drug discovery and development. These
databases may be just structure collections, such as of commercially available screening
samples, or provide additional data such as measured bio-activity of the compounds and
their protein targets, as well as targeted diseases. Quite a few of these databases (e.g.,
ChEMBL) attempt to link small-molecule data with information about their biological
targets as well as available assay data.

Table 6 lists a selection of some of the better-known small-molecule databases relevant for
drug discovery. Its focus is on publicly available databases but also references some
commercial databases, which, for the most part, will be not discussed any further here.

All databases listed in Table 6 represent the outcome of substantial efforts of data-collection
work by the corresponding groups or organizations. A comprehensive assessment of the
quality of each database in a global sense, or for any particular entry, would require a similar
size effort and is therefore an impossible task in the context of this review. To a good extent,
we can only quote the providers of these databases as to what the specialty and value of the
entries in them are. That said, there are chemoinformatics approaches that can be applied to
check whether, for example, the correct structure is shown, whether stereochemistry is
presented correctly and whether a reasonable tautomeric form is used [76]. Likewise, the
values in any data fields should be spot-checked for plausibility and/or be reconfirmed
through other sources. Finally, it should be regarded as good practice to carefully review
search results obtained in any small-molecule database to the level needed.

Open National Cancer Institute Database
The Open National Cancer Institute (NCI) Database contains currently over 275,000 small-
molecule structures, which represents the publicly available part of the over half-million
structures collection assembled by the NCI in the course of a more than 50 years’ long effort
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of screening compounds against cancer and also AIDS [77]. This undertaking has been, and
is still, managed by NCI’s Developmental Therapeutics Program, which made most of the
open part of the database freely available on their website in the 1990s. Various companies
are offering this database, or parts thereof, in the original or processed format, often in
conjunction with their chemical database programs. A fully searchable version of the Open
NCI Database, enhanced with additional experimental or calculated data, is freely accessible
via a web-based interface that was implemented in its original form in 1998 and is still
maintained on the web server of the NCI/ CADD Group [215]. While the pace of acquiring
new compounds for testing by Developmental Therapeutics Program has slowed in the
recent past and also has been partially superseded by other programs of the NIH (see
PubChem [216]), the Open NCI Database can still be regarded as a very useful resource for
researchers. It was one of the first large-scale small-molecule resources made freely
available on the web.

PubChem
Arguably the highest profile of the more recently started database projects is PubChem,
which has been implemented by the National Center for Biotechnology Information at the
National Library of Medicine, NIH, as support for the NIH Roadmap (now called NIH
Common Fund) initiative and launched publicly 2004. PubChem is an open public
repository containing chemical structures and biological properties of molecules including
small molecules and siRNA reagents. It comprises three interconnected databases: PubChem
Substance, PubChem Compound and PubChem BioAssay [78]. PubChem Substance
contains information about the original structure records submitted by more than 140
different database providers, such as chemical vendors, publishers or other government
agencies. PubChem Compound is the index of unique chemical structures collected in
PubChem Substance. PubChem BioAssay stores bioactivity screens of chemical substances
described in PubChem Substance and acts as a repository of the small-molecule screening
data generated by (historically) the Molecular Library Screening Center Network and
(currently) the Molecular Library Probe Production Center Network under the NIH
Molecular Libraries Program. It also includes biological property data contributed from
other organizations. As of March 2011, PubChem has collected 85 million entries (also
comprising mixtures, extracts, complexes and uncharacterized substances) in its substance
database, which represents more than 32 million unique structure entries indexed in
PubChem Compound. The subset of assays in PubChem BioAssay associated with
Molecular Library Screening Center Network or Molecular Library Probe Production Center
Network currently numbers more than 3400.

BindingDB
BindingDB contains experimentally determined enzyme kinetic data, measured or derived
binding affinities of protein–ligand complexes and protein targets for small-molecule
ligands [79]. Most of the data in BindingDB have been manually extracted from journals by
curators, although some have been submitted by external authors and contributors directly.
The database focuses on proteins that are drug targets or candidate drug targets. As of March
2011, the database contained more than 284,000 small molecules, approximately 5600
protein targets, a collection of approximately 649,000 binding datasets and measured results
from 822 isothermal titration calorimetry experiments.

Relibase
Relibase was developed with the focus on providing a database and search system for the
handling of protein–ligand complex data and the systematic investigation of protein–ligand
interactions [80]. For the analysis of such interactions, 3D constraints can be specified
allowing the search of desirable combinations of functional groups and their preferred
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interaction geometries. Relibase is available in a web-based version, which is free to use for
academia. This version includes access to all experimental structures available in the PDB.
Some important features of Relibase are standard text searching, 2D substructure searching,
3D protein–ligand interaction searching, ligand similarity searching, 3D visualization (using
AstexViewer) and automatic superposition of related binding sites (allowing for, e.g., the
comparison of ligand-binding modes, water positions and ligand-induced conformational
changes). In addition, a commercial version of Relibase is offered as Relibase+, which
provides a number of additional features including the ability to make proprietary (in-house)
databases searchable in the same way as, and together with, the PDB version.

ChEMBL
ChEMBL is a database of bioactive drug-like small molecules [81]. The data in the current
release (ChEMBL_09, as of March 2011) have been extracted from nearly 35,000 papers
taken from 12 prominent medicinal chemistry journals that cover a significant fraction of
global drug R&D published output. The current version contains more than 3 million
activities of approximately 758,000 compounds, measured for approximately 8000
biological targets. Of those, more than half are protein targets and the others are cell lines or
organisms. The mappings between targets and assay results include extensive compound
sets against kinases and G-protein coupled receptors as well as approved drugs and clinical
candidates. An important part of the curation work carried out for ChEMBL is the
normalization of the bio-activities into a uniform set of end-points and units, and adding a
set of varying confidence levels to the links between a molecular target and a published
assay.

ChemSpider
ChemSpider, first released in 2007 and officially launched in 2008, is a freely accessible
chemical compound database that was initially implemented by a group of volunteers. Since
2009, ChemSpider has been owned by the Royal Society of Chemistry (UK). It remains a
resource offered free of charge. ChemSpider links together compound information across
the web and provides free text and structure search access to currently approximately 25
million chemical structure entries (as of March 2011). Each structure entry in ChemSpider is
associated with a list of predicted molecular properties as well as possibly available
experimental data, spectra, links back to the almost 400 original data sources/databases, and
reference resources such as other Royal Society of Chemistry databases, patent databases,
PubMed, MeSH literature, pharmacological web-links (e.g., DailyMed and PillBox) or
Google Scholar/Books.

Human Metabolome Database
The Human Metabolome Database (HMDB) [82] provides a detailed collection of
information about small-molecule metabolites found in the human body. The data in HMDB
was derived from literature or from experimental metabolite concentration data. It currently
(March 2011, version 2.5) contains more than 7900 small-molecule metabolite entries that
are associated with approximately 7200 protein (and DNA) sequences compiled from
hundreds of mass spectra and NMR metabolomic analyses performed on urine, blood and
cerebrospinal fluid samples. On the basis of this, HMDB is probably one of the most
complete and comprehensively curated collections of human metabolite and metabolism
data currently available. Each HMDB entry is organized into chemical, clinical and
molecular biochemical data. In addition, links to other public databases are provided where
available (e.g., to PubChem, KEGG [83], MetaCyc [217], ChEBI [84], PDB, Swiss-Prot
[218] and GenBank [219]).
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DrugBank
The DrugBank database (maintained by the same group as the HMDB) collates detailed
drug data with target and mechanism of action information [85]. Approximately half of the
information in the DrugBank data is dedicated to drug information; the other half is devoted
to target sequences, pharmacological properties, pharmacogenomic data, food–drug
interactions, drug–drug interactions and experimental ADME data. In its current version 3.0
(released January 2011), the database contains over 6800 drug entries including more than
1400 FDA-approved small-molecule drugs, 133 FDA-approved biotechnology (protein/
peptide) drugs, 83 nutraceuticals and over 5200 experimental drugs. In addition, more than
4400 nonredundant protein (i.e., drug target) sequences have been linked to the group of
FDA-approved drug entries.

Therapeutic Target Database
The Therapeutic Target Database (TTD) provides information about drugs, targeted diseases
and known and explored therapeutic protein and nucleic acid targets, as well as information
about biochemical pathways [86]. TTD is conceptually similar to DrugBank but the
mapping between compounds and targets is more focused on primary targets. Another
difference is the classification of targets and compounds into marketed, clinical trial and
research-phase compounds. The current version of the database contains more than 5100
drugs, including approximately 1500 approved drugs, approximately 1100 drugs in clinical
trials and approximately 2300 experimental drugs. All drugs are linked to more than 1900
biological targets, of which 350 are marked as successful, 250 as in clinical trials, 43 as
discontinued and approximately 1250 as research targets. The data in TTD have been
collected by a comprehensive search of the literature, approved drug reports from the FDA,
and latest reports from several pharmaceutical companies that describe clinical trial and
other pipeline drugs.

ZINC database
The ZINC database, which has been especially prepared for VS, is a highly curated
collection of commercially available chemical compounds gathered from more than 120
original vendor catalogs or compound collections [87]. The original compound databases
have been filtered from duplicates, salt counter ions, compounds with atom types other than
H, C, N, O, F, S, P, Cl, Br or I, molecules with a formula weight greater than 700, calculated
log P greater than 6 or less than −4, number of hydrogen-bond donors greater than 6,
number of hydrogen-bond acceptors greater than 11 and number of rotatable bonds greater
than 15. In addition, ZINC aims to represent the biologically relevant form for each of its
molecule entries, which it defines as the most relevant, correctly protonated forms or
tautomers of the molecule between pH 5 and 9.5, the form with deprotonated carboxylic
acids and tetrazoles and with generally protonated aliphatic amines (as the major normalized
structural features). Also, for all molecules that are biologically relevant, 3D representation
of the molecule is available (in case stereochemistry has not been fully specified for the
original database structure, the enantiomer or a maximum of four diastereomers is
generated). The current version of the database is ‘ZINC Eleven’ and contains
approximately 20 million compounds. Besides the full database, several specific subsets
(classified as e.g., ‘lead-like’, ‘drug-like’, ‘purchasable’, ‘fragment-like’) of the database can
be downloaded from the ZINC website.

ChemNavigator iResearch Library
One of the largest small-molecule databases in existence is the iResearch Library (iRL) from
ChemNavigator, a formerly small company in San Diego, CA (USA) that was acquired in
2009 by Sigma-Aldrich. The iRL is ChemNavigator’s continually updated compilation of
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commercially available screening compounds from more than 300 international chemistry
suppliers. As of January 2011, the iRL had registered over 95 million chemical samples
representing approximately 60 million unique chemical structures. The iRL is not per se
freely publicly available. It is, however, included for searches (although not for bulk
download) in several web-based services offered by the NCI/CADD Group, such as the
Chemical Structure Lookup Service (CSLS; see below) and the Chemical Identifier Resolver
(CIR) [220]. It can therefore be regarded as having an intermediate nature between public
and commercial as a resource for computational medicinal chemistry and drug discovery.
The database can be directly licensed from the company on DVD/ROM or accessed through
an online iResearch System subscription. A license includes access to regular updates,
sourcing information, and ChemNavigator’s optional chemistry procurement service.

Chemoinformatics tools
Chemoinformatics tools assist medicinal chemists in the acquisition, analysis and
management of data and information relating to chemical compounds and their properties. In
many research projects in drug development, a broad spectrum of programs is applied,
which puts special emphasis on the management of data, as the interchange of information
between different programs usually requires some effort and, quite often, also programming
and/or scripting experience. In the past, such requirements were frequently regarded as
barriers by medicinal chemists for using these programs themselves. However, with the
advent of visual workflow/ data pipelining environments as implemented by Pipeline Pilot
or Konstanz Information Miner (KNIME) (Figure 4), this problem has been mitigated to
some extent. Since data-pipelining software packages enjoy high popularity not only with
the ‘CADD professionals’ among the scientists engaged in drug development, but also with
bench chemists, they will be described first.

Pipeline Pilot
Pipeline Pilot is a commercial scientific informatics platform providing a powerful data-
pipelining engine based on configurable protocols. It provides a rapid application
development environment to automate scientific data management, analysis and reporting
processes. The student version of Pipeline Pilot (a light version that does not include all
functionalities of the full version) is free to academia. Pipeline Pilot was developed by
SciTegic, which became a subsidiary of Accelrys in 2004.

Pipeline Pilot was the first product that brought to the market the concept of ‘data
pipelining,’ particularly in the fields of drug discovery and chemoinformatics. It provides
the ability to graphically layout or build protocols and workflows, which can be reused,
extended or rerun later also by other users. Hence, a Pipeline Pilot protocol represents a
documentation of the process applied to a scientific problem by itself. Any functionality in
Pipeline Pilot is organized into individual components that can be linked together to a
protocol by a few mouse clicks. As part of a Pipeline Pilot license, different sets of
component collections focused on topics such as chemistry, biology, life science modeling,
materials modeling, reporting and visualization, analysis and statistics, imagining or
database integration can be acquired from Accelrys. The Pipeline Pilot platform also
exposes a web-services layer that allows a protocol to be integrated as part of a service-
oriented architecture environment or other workflow frameworks. Pipeline Pilot provides the
possibility to incorporate in-house solutions by writing one’s own, or modifying existing,
components and protocols. The same mechanism allows an extensive list of third-party
software providers to make their tools accessible as Pipeline Pilot components (e.g., Tripos,
BioSolveIT and Molecular Networks).
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Konstanz Information Miner
Konstanz Information Miner has been developed by the Institute for Bioinformatics and
Information Mining at the University of Konstanz (Germany) [221]. Unlike Pipeline Pilot,
KNIME is released under an open-source license; enterprise extensions and services for the
deployment in a corporate environment are provided commercially by KNIME.com GmbH.
KNIME was adopted early on by several pharmaceutical companies and a series of life-
science software vendors that started offering their tools integrated into KNIME. However,
the primary focus of KNIME lies on statistical data analysis and data mining, thus its
application is not only restricted to the fields of life science and pharmaceutical research.

KNIME possesses various components for data integration (file I/O and database nodes
supporting all common database management systems), data transformation (filter,
converter, combiner), machine learning, data mining and data visualization. These
components are organized as nodes that can be linked together by the modular data-
pipelining concept utilized by KNIME to produce ‘data flows’ in KNIME terminology. The
graphical user interface allows the user to visually create these data flows, to selectively
execute some or all analysis steps and later to inspect the results, models and interactive
views. Because of KNIME’s flexible application programming interface, custom nodes and
types can be implemented quickly, extending KNIME to be able to read and process highly
domain-specific data. In addition to the over 100 processing nodes incorporated into the
basic package of the software, a series of third-party nodes are also available that provide
access to methods available in packages such as the data-mining software Weka [222], the
statistics package R [223], the open-source Chemistry Development Kit [88], BioSolveIT’s
scientific software packages or Schrödinger’s suite of drug-design software.

CACTVS System
CACTVS, developed by Xemistry GmbH [224], is a universal multiplatform
chemoinformatics toolkit for processing chemical information [89]. CACTVS is primarily a
high-level chemistry-aware scripting environment that supports the rapid development of
solutions for a broad range of information processing, exchange and reporting needs, such as
those encountered in the pharmaceutical industry. CACTVS can be freely downloaded for
evaluation, and is free for academic use.

CACTVS can be used to implement any type of structure, reaction or other chemistry object
manipulation application either as web application, stand-alone software or as a batch tool.
The CACTVS package also includes several standard applications for chemical data
handling, for example, a visual molecular structure browser and a molecular structure editor.
However, the strength of CACTVS lies in the possibility of implementating one’s own
applications. For this, CACTVS provides a series of powerful algorithms or methods, for
example, molecular properties calculation (including typical QSAR properties), structure
and reaction depiction in many graphic formats (e.g., GIF, PNG, WMF, SVG and EPS),
matching by SMARTS, recursive SMARTS, and macro SMARTS, full support for daylight-
compatible SMIRKS transforms, Kekulé and tautomer set generators, manipulation of
chemical structures and reactions (on the level of molecules, atoms, bonds, groups, rings,
ring and pi systems), an extensive set of structure-identity hashcodes, I/O for dozens of
chemistry exchange formats (e.g., SDF 2000/3000, ChemAxon, Tripos and Schrödinger)
and table file formats such as Excel, tight integration of all PubChem databases for data
lookups and direct access to other public online resources such as the NCI/ CADD CIR
[220], Wikipedia or databases such as ChemSpider, ChemIDplus [225] and ChEBI [226]. As
of the most recent version 3.386 (March 2011), CACTVS reads and writes native KNIME
tables which allows dynamic linking between CACTVS and KNIME nodes via networked
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bi-directional table data exchange. A visual workflow/data pipelining environment for
CACTVS is in development.

Open Babel
The Open Babel [227] project arose as a further development of the Babel chemistry file
translation program and Babel’s successor OELib (released under the GNU General Public
License by OpenEye Software). Open Babel is now a collaborative open-source effort of
several academic groups and researchers in the fields of chemoinformatics and
computational chemistry. Open Babel is designed as a toolset for the conversion of different
chemical structure file formats and provides a data structure suitable for the representation
of chemical structures and associated data. It is supplied as a C++ library including a
command-line utility. The C++ library includes all of the file-translation code as well as a
wide variety of utilities to help the development of other open-source scientific software in
the fields of molecular modeling, chemistry, solid-state materials, biochemistry or related
areas. Open Babel is used in a variety of open-source software packages (e.g., the 3D
molecular editor Avogadro [228], the MySQL database extension MyChem for the handling
of chemical structures [229] and the optical structure recognition package OSRA [90]) and
provides bindings for a series of programming and scripting languages (e.g., Java, Perl and
Python).

Auxiliary programs for drug design & discovery
Molecular dynamics simulations programs

Molecular dynamics simulations, in which atoms and molecules are allowed to interact for a
period of time by approximations of known physics based on Newton’s equations of motion
describing molecular mechanics (MM), are widely used computational techniques for the
study of biological macromolecules [91,92]. MD is very useful for understanding the
dynamic behavior of proteins or other biological macromolecules, from fast internal motions
to slow conformational changes or even protein-folding processes. Owing to the enormous
increase of computer power and improved algorithms, MD simulations of systems
comprising 106 or more atoms and time periods on the order of microseconds or even
milliseconds in explicit solvent environments, have become possible [93]. Commonly used
MD simulations programs are Amber [94], CHARMM [95], Desmond [96], GROMACS
[97], NAMD [98] (Table 7). A more comprehensive list of MD simulation programs can be
found elsewhere [230].

Although SBVS against crystal or relaxed receptor structures is an established method for
identifying potential inhibitors, the more-dynamic changes within a binding site cannot be
readily taken into account by standard SBVS approaches. To accommodate full receptor
flexibility, representative receptor ensembles derived from MD simulations can be used in
docking studies [99]. The results from MD simulations can also be employed to refine
docked complexes. Such simulations integrate flexibility of both the receptor and the ligand,
thereby improving interactions and enhancing complementarity between the binding
partners, and thus coming closer to the ideal of induced fit. Wrongly docked structures have
a higher likelihood of generating unstable MD trajectories leading to the disruption of the
complex, providing an additional filtering mechanism (albeit at a high computational cost)
for false positives. MD simulations typically incorporate explicit solvent molecules, which is
very important for understanding the role of the particular solvent and its effect on the
stability of the ligand–protein complexes. While it is usually hard to reproduce correct
compound binding affinities by docking studies, MD simulations can provide more reliable
results for free-energy calculations using free-energy perturbation, thermodynamic
integration, linear interaction energy methods or MM-Poisson–Boltzmann surface area
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methods. For more information about MD simulations, their use, and their accounting for
the flexibility of docked complexes, see references [34,99].

However, notwithstanding the wide use of MD simulations in drug development, the setup
of an MD simulation can be difficult. Another problem is that there are often no adequate
parameters in the MD force fields parameter sets for nonstandard molecules, such as
metalorganic compounds. In addition, MD simulations are still computationally expensive.
All of these aspects have limited the use of MD simulations for high-throughput
applications, that is, right now it is still impossible to apply MD simulations to the screening
of entire chemical compound databases for the purpose of drug discovery, in contrast to
what can be done with SBVS. Nevertheless, the combination of fast and inexpensive
docking protocols with subsequent more costly MD techniques to subsets of the original
screening database has become a feasible approach in rational drug design.

Quantum mechanics programs
In drug design, using classical MM approaches can have many pitfalls due to their possible
inaccuracies based on all the approximations entering into MM. The most fundamental of
them is that atoms and molecules are essentially described as balls and springs ruled by the
laws of classical mechanics and not as nuclei held together by electron orbitals governed by
the laws of quantum mechanics (QM), as they really are. Currently, with the increase of
central processing unit performance and the improvement of algorithms and software, large-
scale biological problems can be addressed using QM methods [100–102]. QM methods can
be used to model unstable molecules such as radicals and, furthermore, estimate activation
energies for chemical reactions, including those that are carried out by enzymes. The typical
applications of QM in drug design include:

• QM can be used to calculate energies and optimize structures of ligands and even
protein–ligand complexes [103];

• QM-derived atomic point charges have recently been shown to be important for the
study of protein–ligand complexes, especially for docking studies attempting to
obtain the correct binding mode of a ligand [104];

• QM/MM methods are beginning to be employed for the calculation of free binding
energies owing to their in-principle more accurate predictions. QM/MM
approaches have shown promise for this; however, this technique still requires
extensive sampling of ligand–receptor conformations through MD simulations and
remains very time consuming [105];

• The descriptors calculated from QM can also be used to build QSAR models. In
this situation, 3D structures with all hydrogen atoms placed have to be utilized
because of the need to have a complete description of all nuclei and electrons in the
molecular species.

The most used QM programs in drug design are listed in Table 8. The more complete list of
QM programs can be found elsewhere [231]. In spite of its age, Gaussian is generally
perceived as the standard for density functional theory and ab initio calculations, certainly in
terms of breadth of implemented capabilities and algorithms.

ADME/T prediction programs
Favorable ADME/T parameters are very important early requirements for drug candidates in
order to reduce late-stage failure and minimize costs [106]. Numerous ADME/T properties
are interdependent and therefore there is the need for optimizing them simultaneously during
a drug-development project. The multiparameter ADME/T optimization is probably the least
attractive stage but it may make the costly difference between success and failure. If fast and
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easy to use, in silico ADME/T prediction programs, capable of predicting potential ADME/
T risks, can be of great benefit for medicinal chemists, and together with in vitro screens,
guide syntheses and optimization strategies towards promising molecules only [107].

Many programs use built-in statistical models to calculate ADME/T endpoints. The idea
behind these models, which are the core of the predicting programs, is QSAR, that is, to
quantitatively define a structure–property relationship, which could be used to predict, in
this case, ADME/T parameters. The quality of the models greatly depends on the right
combination of statistical techniques, molecular descriptors, validation method, and most
importantly on the quality and breadth of the experimental data used to derive them [108].

Many ADME/T prediction programs are available (Table 9). Some programs, such as
ADMET Predictor, Sarchitect and ADME Suite can predict a broad spectrum of ADME/T
parameters and can usually be used in batch mode, which makes them suitable for
incorporation into pipelining data flow protocols, such as the ones built through KNIME and
Pipeline Pilot. Some of them, for example, PASS, StarDrop and Leadscope, have auto-
modeling capabilities in which the user can use their own experimental data to build and
validate new predictive models in addition the models already available within the software.

Molecular visualization programs
Each of the drug-design packages mentioned in this review has a graphical user interface,
through which the users can visualize and analyze their models and results, and can generate
graphics for publications or reports. Even though the whole suite might only be available by
purchasing a commercial license, some of the software vendors, for example, Accelrys,
Molsoft and Schrödinger, have released the molecular visualization component of their
suites for free download on the internet. For generating high-quality images or even
animations for presentations and publications, five widely used programs, Chimera, Jmol,
PyMOL, Swiss-PdbViewer (also known as DeepView), and VMD can be mentioned here
(Table 10). Among them, Jmol is an open-source Java viewer for chemical structures in 3D.
It is particularly useful for integrating figures into HTML pages.

The use of VMD and Chimera is not restricted to molecular visualization. Chimera is a
highly extensible program for analysis of molecular structures and related data, including
density maps, supramolecular assemblies, sequence alignments, docking results, trajectories
and conformational ensembles. VMD can be used to animate and analyze the trajectory of
an MD simulation. In particular, VMD can act as a graphical front-end for an external MD
program by displaying and animating a molecule undergoing simulation on a remote
computer.

Some useful web links
• Click2Drug [232]: a directory of in silico drug-design tools. Helps find drug-design

tools and links to their original web pages;

• Protein Data Bank [233]: this archive contains information about experimentally
determined structures of proteins, nucleic acids and complex assemblies. Users can
perform simple and advanced searches based on annotations relating to sequence,
structure and function. The PDB files can be downloaded for drug design, in
particular SBVS. It should be noted that not every file deposited in PDB is good for
drug design [28];

• Ligand Expo [234] (formerly Ligand Depot): a sister site of the PDB and
maintained by the same team at the Research Collaboratory for Structural
Bioinformatics, provides chemical and structural information about small
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molecules within the structure entries of the PDB. Tools are provided to search the
PDB chemical components dictionary of currently approximately 10,000 unique
ligand structures, to identify structure entries containing particular small molecules,
and to download the 3D structures of all the ligand instances in PDB entries
(currently more than 360,000);

• NCI CADD Group Chemoinformatics Tools and User Services [215]: this website
provides access to several online databases and chemoinformatics resources, for
example, the Enhanced NCI Database Browser, the CSLS and the CIR. The NCI
Database Browser is a web service presenting and searching in the majority of
Open NCI Database compounds (>250,000 structures). Different kinds of output
features and links to other services for continued processing are offered. CSLS is a
chemical database indexing service, currently providing access to almost 80 million
structure records from more than 100 databases including databases such as the
ChemNavigator iRL, PubChem, ChemSpider, ZINC and eMolecules. CIR allows
the conversion of a given structure identifier (e.g., SMILES, chemical name,
Standard InChI/InChIKey, NCI/CADD Identifier) into another representation or
structure identifier. For the lookup of chemical names or hashed identifiers such as
Standard InChIKeys, CIR currently connects to a database of approximately 120
million indexed chemical structures;

• National Center for Biotechnology Information [235]: houses genome sequencing
data in GenBank and an index of biomedical research articles in PubMed Central
and PubMed, as well as other information relevant to biotechnology and drug
design, such as the PubChem database. All these databases are available online
through the Entrez search engine;

• Virtual Computational Chemistry Laboratory [236]: numerous scientific programs,
including molecular indices/property calculation and data analysis programs are
provided on this website. This project’s overall objective is to develop
multiplatform software allowing the computational chemist to perform a
comprehensive series of molecular properties calculations and data analysis on the
internet;

• EPA’s SPARC Online Calculator [237]: the initial purpose of this website was to
help environmental chemists predict data such as pKa values, hydrolysis, hydration,
tautomer, kinetic and heat of formation of environmental chemicals. It is, however,
also valuable to medicinal chemists to predict some physicochemical properties of
small organic compounds;

• Cambridge Crystallographic Data Centre [202]: originating in the Department of
Chemistry at the University of Cambridge, UK, the CCDC is now a fully
independent institution constituted as a nonprofit company. CCDC supports drug
discovery through its industry-standard Cambridge Structural Database, containing
more than half a million small-molecule crystal structures, and through knowledge-
based tools to support receptor modeling, ligand design, docking, lead optimization
and formulation studies;

• ChemAxon [238]: provides chemical software-development platforms and desktop
applications for the biotechnology and pharmaceutical industries. ChemAxon’s
portfolio of software includes a set of chemoinformatics tools (e.g., MarvinSketch,
MarvinView, MarvinSpace, MolConverter, JChem for Excel, JChem Base and
JChem Cartridge) and a platform for the implementation of chemical
communication web services (JChem Web Services). On the basis of these tools,
ChemA xon has implemented Chemicalize [239] as a public web resource;

Liao et al. Page 18

Future Med Chem. Author manuscript; available in PMC 2012 August 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



• Molecular Networks GmbH [240]: provides a series of software tools for the
chemical, biotechnology and pharmaceutical industry. Molecular Networks is well
known for the development of the 3D-structure generator CORINA; however, the
company’s suite of chemoinformatics applications covers many different areas in
the areas of handling of chemical information, design of new chemical entities and
prediction of physicochemical and biological properties of chemical compounds.
Molecular Networks also has a strong academic background in the development of
software for the prediction of chemical reactivity, computer-aided synthesis design
and planning of organic reactions, synthesis-driven combinatorial library design,
prediction of synthetic accessibility of compounds and prediction of enzyme-
mediated chemical transformations.

Future perspective
After three decades of development, CADD has become a valuable component of drug
discovery and development. To describe its typical use, at the beginning of a drug-discovery
project, chemoinformatics tools are employed to choose compounds from available sources
to be assayed. Some marginally active or better compounds may be found, and then
chemical similarity searching techniques are used to find more compounds that should be
assayed. If some compounds that are more active are discovered, computationally more
expensive techniques are applied, such as docking and pharmacophore modeling, to identify
more potent compounds or optimize more ADME/T favorable compounds. Techniques of
CADD also provide other options for understanding chemical systems, which yield
information that is not easy to obtain in laboratory analysis, and, furthermore, is typically
(much) less costly than by experiment. After ups and downs of the perception of CADD in
the field of drug development, and perhaps some over-hyping of its promises, especially in
the initial phases of new trends in development, one can probably say that the discipline of
computational medicinal chemistry has begun to mature and become a realistically assessed
and routinely used component of modern drug discovery. The breadth of techniques and
tools described in this article imply that, to become a successful computational medicinal
chemist, it will be highly beneficial to master different kinds of CADD programs and utilize
all computational resources that are valuable for drug design. In addition, having skills in
one or more programming languages, such as Python, will help smooth routine drug-design
work in a contemporary CADD setup.

While it would be desirable, one cannot bank on the fact that a quantum leap in precision of
docking or pharmacophore search will occur in the next few years. Nevertheless, SBVS and
LBVS are very likely to become routine in drug-discovery projects if they have not already
done so. The use of more accurate methods, such as MD and QM, will continue to grow.
Currently, sophisticated CADD tools are typically applied by modeling experts, but are
increasingly spreading to the desktops of medicinal chemists as well.

Key Term

High-
throughput
screening

Technology that allows for rapid testing of large molecular libraries
against a particular target of interest in the search for biologically active
compounds. If one or more compounds show promising activity, then,
typically through several cycles of medicinal chemistry optimization,
they are developed into a drug

Fragment-
based drug
discovery

Method used for finding small chemical fragments that bind, though
often weakly, to a biological target. The obtained fragments, which
normally have better binding efficiency per atom than larger hit
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molecules but overall lower affinity, can be linked or combined to lead
compounds with higher affinities

Scaffold
hopping

Identification of compounds with a different scaffold than existing active
compounds but with similar or improved activity and other properties,
typically based on presenting equivalent functionalities in a similar
geometric manner but attached to a different core. Scaffold hopping can
be achieved with the help of computational techniques or by traditional
medicinal chemistry approaches

Molecular
mechanics

Method to calculate the properties of systems containing from a few
atoms to a considerable number of atoms. The basis of molecular
mechanics is the paradigm of classical physics, specifically Newton’s
laws of motion, applied only to the nucleus without considering the
electrons as individual components. The energy is a function of structural
features such as angle bending, bond stretching, bond rotation (torsion),
and non-bonding interactions. The set of these potential energy functions
is the ‘force field’. Specific chemistries (atom types) are typically
parameterized by large ‘parameter sets’, which are what truly defines the
quantitative results obtained in molecular mechanics calculations

QM/MM
method

Combined QM and MM computational approach as a strategy to
overcome the shortcomings of MM in MD simulations. The goals of
using QM/MM are to improve the accuracy in specific parts of the
system, such as when calculating the binding affinities between ligands
and their targets, as well as to allow one to treat processes that are not
usually within the scope of MM methods, such as bond breaking and
formation. It combines the strength of both QM (accuracy) and MM
(speed). Normally, a small portion of the macromolecular system (for
example, the ligand or the ligand plus its interface with the protein) is
treated by QM, while the remainder of the system is treated by MM
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Figure 1. The graphical interfaces of three drug-design packages
(A) MOE by Chemical Computing Group, (B) Maestro by Schrödinger, (C) SYBYL by
Tripos.
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Figure 2. Typical structure-based virtual screening-based drug-development protocol
The italicized steps are not part of the SBVS in the narrow sense although they are often
performed in a SBVS-based drug-discovery campaign.
SBVS: Structure-based virtual screening.
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Figure 3. Examples of pharmacophores used in ligand-based virtual screening
(A) A pharmacophore produced by Catalyst. Blue sphere: hydrophobic feature; green
sphere: hydrogen-bond acceptor; purple sphere: hydrogen-bond donor; black sphere:
excluded volume. (B) A pharmacophore produced by Phase. Light red sphere: hydrogen-
bond acceptor; light blue sphere: hydrogen-bond donor; green sphere: hydrophobic feature;
red sphere: negative feature; orange torus: aromatic ring.
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Figure 4.
The interfaces of (A) Pipeline Pilot and (B) Information Miner.
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Table 1

Computer-aided techniques used in drug design and discovery.

Technique Roles in drug design and discovery

Docking Predict binding mode and approximate binding energy of a compound to a target

Structure-based virtual screening Identify active compounds for a specific target from a chemical library based on docking
techniques

Pharmacophore modeling Perceive and provide description of molecular features necessary for molecular recognition of a
ligand by a biological macromolecule

Ligand-based virtual screening Identify active compounds for a specific target from a chemical library based on pharmacophore
modeling techniques

Homology modeling Build a 3D structure for structure-based drug design for a target for which no crystal structure is
available, based on related protein 3D structures

Molecular dynamics Molecular mechanics-based simulation to understand the dynamic behavior of proteins or other
biological macromolecules, to analyze the flexibility of the drug target for structure-based drug
design and/or to calculate the binding affinity of a compound to a target

2D quantitative structure–activity
relationship

Finding a model that can be used to predict some property from the molecular structure of a
compound

3D quantitative structure–activity
relationship

Technique used to quantitatively predict the interaction between a molecule and the active site of a
target; 3D conformation-derived information is utilized in this technique

Quantum mechanics An electron-orbital-based approach based on first principles to optimize structures of ligands and
even protein–ligand complexes, improve the accuracy of docking and calculate, for example, free-
binding energy

Absorption, distribution, metabolism,
elimination, and toxicity prediction

Prediction of absorption, distribution, metabolism, elimination and toxicity of chemical substances
in the human body to avoid costly later-stage failures in drug development
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Table 2

Commercial software packages for drug design.

Name Owned and distributed by Modules Ref.

Discovery Studio Accelrys Inc. • Biopolymer: building and editing macromolecular structures

• Catalyst: pharmacophore generation

• CHARMM: molecular dynamics

• LigandFit: shape-based docking

• LibDock: feature-based docking

• LUDI: de novo design

• Modeller: homology modeling

• Quantitative structure–activity relationship (QSAR): QSAR
modeling

• TOPKAT: ADME/T prediction

• VAMP: semiempirical QM program

• ZDOCK and RDOCK: protein–protein docking

[241]

ICM Molsoft LLC • ICM Browser Pro: molecular graphics and visualization

• ICM Homology: homology modeling

• ICM Pro: small-molecule docking, protein–protein docking, protein
structure prediction

• ICM Chemist: display and manipulation of chemical datasets,
chemical searching, pharmacophore searching, display chemical
data, QSAR prediction

• ICM VLS: virtual screening

[242]

LeadIT BioSolveIT GmbH • FlexX: ligand docking

• FlexX-Pharm: pharmacophore type constraint docking

• FlexX-Ensemble: flexible receptor docking

• FlexS: 3D alignment of small molecules

• FTrees: similarity search

• CoLibri: creation, management and manipulation of ligand
fragments

• ReCore: novel scaffold hopping in the binding site

• FlexNovo: fragment-based design of compounds

[243]

MOE Chemical Computing Group • Structure-based design: scaffold replacement; ligand-receptor
docking; multifragment search; LigX: ligand optimization in pocket

• Pharmacophore discovery

• Chemoinformatics and (high-throughput screening) QSAR

• Protein and antibody modeling: homology modeling and
macromolecular simulation

• Molecular modeling and simulations: conformation generation,
analysis, and clustering

[244]

OpenEye† OpenEye Scientific Software
Inc.

• BROOD: bioisosteric replacements search

• EON: electrostatics comparison

• FILTER: molecular filtering and selection application

[245]
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Name Owned and distributed by Modules Ref.

• FRED: ligand docking and scoring

• OMEGA: generation of 3D conformer ensembles

• QUACPAC: tautomer/protomer enumeration

• ROCS: shape (and chemistry) similar search

• SZYBKI: structure optimization in situ with MMFF94

• VIDA: graphical interface for visualization

Schrödinger Schrödinger Inc. • Canvas: chemoinformatics

• CombiGlide: combinatorial technology

• ConfGen: bioactive conformation generation

• Core Hopping: novel scaffolds discovery

• Desmond: molecular dynamics

• Epik: fast pKa and tautomer prediction

• Glide: docking and scoring

• Impact: molecular mechanics and dynamics

• Jaguar: quantum mechanics

• Konstanz Information Miner extensions: workflow/pipelining

• Liaison: relative binding affinity prediction

• LigPrep: 3D structure generation

• MacroModel: a general purpose, force field-based molecular
modeling program

• MOPAC: semiempirical quantum chemistry

• MCPRO+: Monte Carlo simulations

• Phase: pharmacophore modeling

• Prime: homology modeling

• PrimeX: protein crystal structure refinement

• QikProp: ADME/T prediction

• QSite: quantum mechanics/molecular mechanics

• SiteMap: protein binding site identification and analysis

• Strike: QSAR, statistical modeling

[246]

SYBYL Tripos Inc. • Biopolymer: predict and build macromolecular 3D structure

• CombiLibMaker: generate virtual combinatorial libraries

• Concord: 3D structure generation

• Confort: conformers generation

• DISCOtech: pharmacophore model building

• Distill: determine and visualize structure–activity relationships

• DiverseSolutions: design, compare, or select compound libraries

• GALAHAD: pharmacophoric perception and molecular alignments

• GASP: pharmacophore hypotheses building

• Legion: construct virtual combinatorial libraries

• RACHEL: optimization of lead compounds

• Selector: characterize and sample compound libraries

[247]
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Name Owned and distributed by Modules Ref.

• Surflex-Dock: docking and virtual screening

• Tuplets: pharmacophore-based virtual screening without a 3D model

• UNITY: 3D database searching

†
OpenEye software is free for academic users.

Future Med Chem. Author manuscript; available in PMC 2012 August 07.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liao et al. Page 39

Ta
bl

e 
3

T
he

 m
os

t u
se

d 
do

ck
in

g 
pr

og
ra

m
s 

in
 s

tr
uc

tu
re

-b
as

ed
 d

ru
g 

de
si

gn
.

N
am

e
D

ev
el

op
ed

 b
y

In
co

rp
or

at
ed

 in
to

 s
of

tw
ar

e 
pa

ck
ag

e
F

re
e 

fo
r 

ac
ad

em
ia

D
ru

g-
de

si
gn

 a
pp

lic
at

io
ns

R
ef

.

A
ut

oD
oc

k
Sc

ri
pp

s 
R

es
ea

rc
h 

In
st

itu
te

†
-

Y
es

A
ld

os
e 

re
du

ct
as

e 
in

hi
bi

to
rs

R
ac

1 
In

hi
bi

to
rs

T
ry

pa
no

th
io

ne
 r

ed
uc

ta
se

 in
hi

bi
to

rs

[1
09

]
[1

10
]

[1
11

]

D
O

C
K

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 S

an
 F

ra
nc

is
co

‡
-

Y
es

ST
A

T
3 

di
m

er
iz

at
io

n 
in

hi
bi

to
rs

D
ea

th
-a

ss
oc

ia
te

d 
pr

ot
ei

n 
ki

na
se

 in
hi

bi
to

rs
In

hi
bi

to
rs

 o
f 

os
te

oc
la

st
 f

or
m

at
io

n 
an

d 
bo

ne
 r

es
or

pt
io

n

[1
12

]
[1

13
]

[1
14

]

Fl
ex

X
B

io
So

lv
eI

T
 G

m
bH

L
ea

dI
T

N
o

In
hi

bi
to

rs
 o

f 
pe

ni
ci

lli
n 

bi
nd

in
g 

pr
ot

ei
n

In
hi

bi
to

rs
 o

f 
A

T
P-

ph
os

ph
or

ib
os

yl
 tr

an
sf

er
as

e
H

um
an

 h
is

ta
m

in
e 

H
4 

re
ce

pt
or

 li
ga

nd
s

[1
15

]
[1

16
]

[1
17

]

FR
E

D
O

pe
nE

ye
 S

ci
en

tif
ic

 S
of

tw
ar

e
O

pe
nE

ye
Y

es
Pr

ot
ea

so
m

e 
in

hi
bi

to
rs

H
ea

t-
sh

oc
k 

pr
ot

ei
n 

90
 in

hi
bi

to
rs

[2
9]

[1
18

]

G
lid

e
Sc

hr
öd

in
ge

r,
 I

nc
.

Sc
hr

öd
in

ge
r

N
o

In
hi

bi
to

rs
 o

f 
de

ng
ue

 v
ir

us
 m

et
hy

ltr
an

sf
er

as
e

FG
FR

1 
ki

na
se

 in
hi

bi
to

rs
H

IV
-1

 in
te

gr
as

e 
in

hi
bi

to
rs

[1
19

]
[1

20
]

[1
21

]

G
O

L
D

C
am

br
id

ge
 C

ry
st

al
lo

gr
ap

hi
c 

D
at

a 
C

en
tr

e
-

N
o

T
op

oi
so

m
er

as
e 

I 
in

hi
bi

to
rs

M
N

K
1 

in
hi

bi
to

rs
M

et
 ty

ro
si

ne
 k

in
as

e 
in

hi
bi

to
rs

[1
22

]
[1

23
]

[1
24

]

IC
M

M
ol

so
ft

 L
L

C
.

M
ol

so
ft

N
o

T
N

F-
α

 in
hi

bi
to

rs
A

ry
l h

yd
ro

ca
rb

on
 r

ec
ep

to
r 

lig
an

ds
G

T
P 

co
m

pe
tit

iv
e 

in
hi

bi
to

rs

[1
25

]
[1

26
]

[1
27

]

Su
rf

le
x-

D
oc

k
T

ri
po

s 
In

c.
SY

B
Y

L
N

o
G

ly
co

ge
n 

sy
nt

ha
se

 k
in

as
e 

in
hi

bi
to

rs
Pr

ot
ea

so
m

e 
in

hi
bi

to
rs

H
IV

-1
 r

ev
er

se
 tr

an
sc

ri
pt

as
e 

in
hi

bi
to

rs

[1
28

]
[2

9]
[1

29
]

† Se
e 

[2
48

].

‡ Se
e 

[2
49

].

Future Med Chem. Author manuscript; available in PMC 2012 August 07.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liao et al. Page 40

Ta
bl

e 
4

C
om

m
on

ly
 u

se
d 

ph
ar

m
ac

op
ho

re
 m

od
el

in
g 

pr
og

ra
m

s.

N
am

e
D

ev
el

op
ed

 b
y

In
co

rp
or

at
ed

 in
to

so
ft

w
ar

e 
pa

ck
ag

e
M

et
ho

ds
D

ru
g 

de
si

gn
 a

pp
lic

at
io

ns
R

ef
.

C
at

al
ys

t
A

cc
el

ry
s 

In
c.

D
is

co
ve

ry
 S

tu
di

o
L

ig
an

d 
ba

se
d,

 in
cl

ud
es

 th
e 

tw
o 

m
et

ho
ds

 H
ip

H
op

 a
nd

 H
yp

oG
en

 f
or

ph
ar

m
ac

op
ho

re
 p

er
ce

pt
io

n
Pr

od
uc

es
 c

on
fo

rm
er

s 
us

in
g 

pr
e-

en
um

er
at

in
g 

m
et

ho
d 

by
 th

e 
Po

lin
g

al
go

ri
th

m
U

se
s 

fe
at

ur
e-

ba
se

d 
m

et
ho

d 
to

 a
lig

n 
m

ol
ec

ul
es

A
ce

ty
lc

ho
lin

es
te

ra
se

 in
hi

bi
to

rs
σ1

 r
ec

ep
to

r 
lig

an
ds

T
ub

ul
in

 in
hi

bi
to

rs

[5
0]

[5
1]

[1
30

]

D
IS

C
O

te
ch

T
ri

po
s 

In
c.

SY
B

Y
L

L
ig

an
d 

ba
se

d 
Pr

od
uc

es
 c

on
fo

rm
er

s 
us

in
g 

pr
e-

en
um

er
at

in
g 

m
et

ho
d

by
 C

on
co

rd
 a

nd
 C

on
fo

rt
U

se
s 

B
ro

n–
K

er
bo

sh
 c

liq
ue

- 
de

te
ct

io
n 

al
go

ri
th

m
 to

 a
lig

n 
m

ol
ec

ul
es

G
ly

co
ge

n 
sy

nt
ha

se
 k

in
as

e 
in

hi
bi

to
rs

SG
L

T
2 

in
hi

bi
to

rs
L

ig
an

ds
 o

f 
A

T
2

[1
28

]
[1

31
]

[1
32

]

L
ig

an
dS

co
ut

In
te

:L
ig

an
d†

St
ru

ct
ur

e 
ba

se
d 

Ph
ar

m
ac

op
ho

ri
c 

fe
at

ur
e 

po
in

ts
-b

as
ed

 p
at

te
rn

-
m

at
ch

in
g 

al
ig

nm
en

t a
lg

or
ith

m
11

 β
-H

SD
1 

in
hi

bi
to

rs
Pi

m
1 

in
hi

bi
to

rs
H

IV
-1

 tr
an

sc
ri

pt
as

e 
in

hi
bi

to
rs

[1
33

]
[1

34
]

[1
35

]

M
O

E
C

he
m

ic
al

 C
om

pu
tin

g 
G

ro
up

M
O

E
L

ig
an

d 
ba

se
d 

Pr
od

uc
es

 c
on

fo
rm

er
s 

us
in

g 
pr

e-
en

um
er

at
in

g 
m

et
ho

d
by

 v
ar

io
us

 m
et

ho
ds

 r
an

gi
ng

 f
ro

m
 m

ol
ec

ul
ar

 d
yn

am
ic

s 
to

 s
to

ch
as

tic
m

et
ho

ds
 a

nd
 s

ys
te

m
at

ic
 s

ea
rc

h
U

se
s 

pr
op

er
ty

-b
as

ed
 a

lg
or

ith
m

 to
 a

lig
n 

m
ol

ec
ul

es

A
nt

itu
be

rc
ul

ar
 a

ge
nt

s
R

ev
er

sa
l a

ge
nt

s
A

nt
im

al
ar

ia
l a

ge
nt

s

[1
36

]
[1

37
]

[1
38

]

PH
A

SE
Sc

hr
öd

in
ge

r,
 I

nc
.

Sc
hr

öd
in

ge
r

L
ig

an
d 

ba
se

d 
Pr

od
uc

es
 c

on
fo

rm
er

s 
us

in
g 

pr
e-

en
um

er
at

in
g 

m
et

ho
d

by
 C

on
fG

en
U

se
s 

fe
at

ur
e-

ba
se

d 
al

go
ri

th
m

 to
 a

lig
n 

m
ol

ec
ul

es

In
hi

bi
to

rs
 o

f 
de

ng
ue

 v
ir

us
 m

et
hy

ltr
an

sf
er

as
e

Se
le

ct
iv

e 
M

D
R

1 
ag

en
ts

 γ
-a

m
in

ob
ut

yr
ic

 a
ci

d 
G

1
re

ce
pt

or
ρ1

 a
nt

ag
on

is
ts

[1
19

]
[1

39
]

[1
40

]

† Se
e 

[2
50

].

Future Med Chem. Author manuscript; available in PMC 2012 August 07.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liao et al. Page 41

Ta
bl

e 
5

H
om

ol
og

y 
m

od
el

in
g 

pr
og

ra
m

s 
us

ed
 in

 d
ru

g 
de

si
gn

.

N
am

e
D

ev
el

op
ed

 b
y

In
co

rp
or

at
ed

 in
to

 s
of

tw
ar

e
pa

ck
ag

e
F

re
e 

fo
r 

ac
ad

em
ia

D
ru

g 
de

si
gn

 a
pp

lic
at

io
ns

R
ef

.

IC
M

M
ol

so
ft

 L
L

C
M

ol
so

ft
N

o
A

ry
l h

yd
ro

ca
rb

on
 r

ec
ep

to
r 

lig
an

ds
G

-p
ro

te
in

 c
ou

pl
ed

 r
ec

ep
to

r 
an

ta
go

ni
st

s
[1

26
]

[1
41

]

M
od

el
le

r
U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a,

 S
an

 F
ra

nc
is

co
†

D
is

co
ve

ry
 S

tu
di

o
Y

es
In

hi
bi

to
rs

 o
f 

pe
ni

ci
lli

n-
bi

nd
in

g 
pr

ot
ei

n
C

dc
25

 p
ho

sp
ha

ta
se

 in
hi

bi
to

rs
G

-p
ro

te
in

 c
ou

pl
ed

 r
ec

ep
to

r 
an

ta
go

ni
st

s

[1
15

]
[1

42
]

[1
43

]

M
O

E
C

he
m

ic
al

 C
om

pu
tin

g 
G

ro
up

M
O

E
N

o
In

hi
bi

to
rs

 o
f 

Ju
m

on
ji 

do
m

ai
n-

co
nt

ai
ni

ng
 p

ro
te

in
 h

is
to

ne
 d

em
et

hy
la

se
s

In
hi

bi
to

rs
 o

f 
hu

m
an

 g
lu

ta
m

in
yl

 c
yc

la
se

[1
44

]
[1

45
]

Pr
im

e
Sc

hr
öd

in
ge

r,
 I

nc
.

Sc
hr

öd
in

ge
r

N
o

Ja
nu

s 
ki

na
se

 3
 in

hi
bi

to
rs

In
hi

bi
to

rs
 o

f 
th

e 
m

am
m

al
ia

n 
ta

rg
et

 o
f 

ra
pa

m
yc

in
 k

in
as

e
[1

46
]

[1
47

]

SW
IS

S-
M

O
D

E
L

Sw
is

s 
In

st
itu

te
 o

f 
B

io
in

fo
rm

at
ic

s‡
Y

es
In

hi
bi

to
rs

 o
f 

os
te

oc
la

st
 f

or
m

at
io

n 
an

d 
bo

ne
 r

es
or

pt
io

n
[1

14
]

† Se
e 

[2
51

].

‡ Se
e 

[2
52

].

Future Med Chem. Author manuscript; available in PMC 2012 August 07.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liao et al. Page 42

Table 6

Databases of interest for drug discovery.

Database Publisher License type Ref.

Open National Cancer Institute Database National Cancer Institute Publicly available [253,254]

PubChem National Center for Biotechnology Information Publicly available [216]

BindingDB University of Maryland, USA Publicly available [255]

Relibase Cambridge Crystallographic Data Centre Freely accessible for academia,
commercial version available

[256]

ChEMBLdb European Bioinformatics Institute, Hinxton, UK Publicly available [257]

ChemSpider Royal Society of Chemistry, UK Publicly available [258]

Human Metabolome Database University of Alberta, Canada Publicly available [259]

DrugBank University of Alberta, Canada Publicly available [260]

Therapeutic Target Database National University of Singapore, Singapore Publicly available [261]

ZINC University of California, San Francisco, USA Publicly available [262]

iResearch Library ChemNavigator Commercial [263]

GVKBIO databases GVK Biosciences Private Limited, India Commercial [264]

MDDR Accelrys Inc. Commercial [265]

Wombat Sunset Molecular Discovery Commercial [266]

World Drug Index Thomson Reuters Commercial [267]
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Table 7

Major molecular dynamics programs used in drug design.

Name Developed by Free for academia Drug design applications Ref.

Amber University of California, San Francisco, USA† No Human acetylcholinesterase inhibitors
HIV-1 reverse transcriptase inhibitors

[148]
[149]

CHARMM Harvard University, USA‡ No Glucose binding to insulin
Flaviviral protease inhibitors

[150]
[39]

Desmond D. E. Shaw Research§ Yes

GROMACS University of Groningen, The Netherlands¶ Yes Antiviral compounds for avian influenza
neuraminidase

[151]

NAMD University of Illinois, USA# Yes

†
See [268].

‡
See [269].

§
See [270].

¶
See [271].

#
See [272].
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Table 8

Quantum mechanics programs with frequent use in drug design.

Name Developed by Free for academia Ref.

Gamess Iowa State University, USA Yes [273]

Gaussian Gaussian Inc. No [274]

Ghemical University of Kuopio, Finland Yes [275]

Jaguar Schrödinger Inc. No

MOPAC Stewart Computational Chemistry Yes [276]

NWChem Environmental Molecular Sciences Laboratory Yes [277]

SPARTAN Wavefunction, Inc. No [278]
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Table 9

Available ADME/T prediction programs.

Program Developed by Free for academia Prediction Spectrum Ref.

ADMET
Predictor

Simulations Plus, Inc. No† ADME/T [279]

StarDrop Optibrium, Ltd No ADME/T [280]

ADME Suite
Tox Suite

Advanced Chemistry Development, Inc. No ADME Toxicity [281]

ADMEWORKS
Predictor

Fujitsu FQS No ADME/T [282]

Sarchitect Strand Life Sciences No ADME/T [283]

QikProp Schrödinger, Inc. No ADME/T

TOPKAT Accelrys, Inc. No Toxicity

Leadscope Leadscope, Inc. No Toxicity [284]

Meteor
Derek Nexus

Lhasa, Ltd No Metabolism
Toxicity

[285]

PASS Russian Academy of Medical Sciences No Toxicity [286]

HazardExpert
Pro
MetabolExpert
ToxAlert
MEXAlert
RetroMex

CompuDrug, Ltd No Toxicity
Metabolism
Toxicity
Metabolism
Metabolism

[287]

METAPC
CASETOX

Multicase, Inc. No Metabolism
Toxicity

[288]

VolSurf+
MetaSite

Molecular Discovery, Ltd. No ADME
Metabolism

[289]

Bioclipse Uppsala University, Sweden and European Bioinformatics Institute Yes Metabolism [290]

MetaDrug GeneGo, Inc. No Metabolism/Toxicity [291]

TIMES OASIS Lmc No Metabolism/Toxicity [292]

†
MedChem Designer of Simulations Plus is free to access. MedChem Designer can predict a few ADME/T properties.
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Table 10

Programs for molecular visualization.

Name Developed by Free for academia Ref.

Chimera University of California, San Francisco, USA Yes [293]

Jmol University of Notre Dame, USA Yes [294]

PyMOL Schrödinger Inc. No longer free for academia unless older versions
are requested or a special request (teaching) is made

[295]

Swiss-PdbViewer (DeepView) Swiss Institute of Bioinformatics Yes [296]

VMD University of Illinois, USA Yes [297]
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