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Abstract
Imaging can potentially make a major contribution to the zebrafish phenome project, which will
probe the functions of vertebrate genes through the generation and phenotyping of mutants.
Imaging of whole animals at different developmental stages through adulthood will be used to
infer biological function. Cell resolutions will be required to identify cellular mechanism and to
detect a full range of organ effects. Light-based imaging of live zebrafish embryos is practical
only up to ~2 days of development, due to increasing pigmentation and diminishing tissue lucency
with age. The small size of the zebrafish makes possible whole-animal imaging at cell resolutions
by histology and micron-scale tomography (microCT). The histological study of larvae is
facilitated by the use of arrays, and histology’s standard use in the study of human disease
enhances its translational value. Synchrotron microCT with X-rays of moderate energy (10-25
keV) is unimpeded by pigmentation or the tissue thicknesses encountered in zebrafish of larval
stages and beyond, and is well-suited to detecting phenotypes that may require 3D modeling. The
throughput required for this project will require robotic sample preparation and loading, increases
in the dimensions and sensitivity of scintillator and CCD chips, increases in computer power, and
the development of new approaches to image processing, segmentation, and quantification.

Introduction: The Zebrafish Phenome Project
A fundamental principle of genetics is that the structural, physiological or behavioral
phenotype of an organism with a deficiency in a specific gene function informs us about the
gene’s function(s). Phenotyping an organism is limited by the available methods, typically
limited to the focus of the individual scientist and complicated by the often multiple
functions of any given gene, as illustrated by pleiotropy [1, 2, 3, 4, 5]. The totality of
possible phenotypes, the phenome [6• 7•] is a conceptual construct that, together with
imaging, comprises the focus of this review. To address the functions of the more than
20,000 vertebrate genes, and inspired by the development of phenomics [8•, 9, 10,11, 12],
the international zebrafish community is planning a “Zebrafish Phenome Project1”. Multiple
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methods of mutagenesis [13] will be used toward the goal of producing at least one mutant
allele per gene in the next five years, and the mutants will then be phenotyped. At a March
2010 meeting sponsored by Sanger Center and the National Human Genome Research
Institute at NIH, the zebrafish research community discussed potential phenotyping assays.
These included physiological and behavioral assays, as well as fluorescence-based
morphological assays that require live animals. Here, we focus on the assessment of
phenotypes that change the morphological features of cells, tissues, and organs in whole,
fixed zebrafish that are too pigmented and too thick for 3D imaging at cell resolutions using
light. The issues discussed included methods of imaging, reproducibility of assays, and
throughput of mutant production. Imaging features ideal for this project are listed in Table 1.

Zebrafish as a model for vertebrate biology and human disease
The zebrafish is a vertebrate model with compelling experimental features, including
embryonic transparency, fecundity, and a sophisticated genetic tool box including genetic
screens, morpholino knock-downs of virtually any gene during embryogenesis, and facile
generation of fluorescently tagged transgenic animals [14, 15]. These advantages have made
the zebrafish an excellent model for understanding development, evolution, and diseases
such as cancer, aging, anemia, tissue regeneration, and cardiovascular disease [16, 17, 18,
19]. The exquisite transparency and small size of live, embryonic zebrafish make them as
accessible to light-based imaging as any other vertebrate model. With age, however, the
zebrafish body becomes less transparent, thicker, and increasingly pigmented. By adulthood,
pigmented cells cover a majority of the surface of the fish. These characteristics preclude
high-resolution light-based imaging. We review the most common and most powerful
imaging modalities the research community has used for embryos (Table 2), and the
advantages and disadvantages of each method by developmental stage of the zebrafish
(Table 3). Our understanding of development and biology will benefit from integration of
methods [20]. Despite its clear value after the affected cell types have been identified,
electron microscopy will not be discussed as a candidate for high-throughput phenotyping
because its small fields of view make it impractical to image whole zebrafish beyond
embryonic ages.

Biological function and cellular mechanisms can be revealed by whole-
animal morphological phenotyping

To understand why imaging is a key part of phenome projects, it is appropriate to address a
fundamental question: “How is imaging related to gene function?” An awareness of the
semantics of “function” and of contributory principles from genetics and pathology are
necessary to understand the answer. Geneticists interested in gene function frequently study
the phenotype of mutants or knock-downs. In this phenotype-driven research, genetic
screens for mutant phenotypes are used to identify genes involved in any given function. For
example, a genetic screen for morphologically abnormal Drosophila embryos led to the
identification of genes that are necessary for embryogenesis, some of which were later found
to play a role in human cancer (reviewed by [21]). Zebrafish genetic screens have been
pursued for two decades [14], with contributory support from a cross-NIH zebrafish
initiative (http://grants.nih.gov/grants/guide/pa-files/PAR-08-138.html).

Whole-organism phenotyping is essential to understanding the biological function of genes.
Scientific definitions of gene functions include the molecular/biochemical, cellular, and
biological. A specific example illustrates this point. The commonly used “golden” zebrafish
are homozygous for a nonsense (presumably null) mutation in the potassium-dependent
sodium-calcium exchanger, slc24a5. At 48 hours of development, they lack pigmentation,
while wild-type fish have darkly pigmented cells in the eye and body [22]. Microscopic
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inspection of adult stages shows that the melanin-containing cells, the melanophores, are
lighter in color but similar in number to wild-type. Fewer, smaller, and more lightly
pigmented melanosomes were shown in golden embryos by electron microscopy of skin
[23]. In this example, the molecular/biochemical gene function identified by cloning was ion
exchange. The cellular mechanism – control of melanosome morphogenesis – was revealed
by microscopic and ultrastructural morphology. However, only the whole animal, mutant
morphological phenotype identifies the biological function of the golden gene as
pigmentation within pigment cells of the whole animal. Whole-animal morphology of
mutants, in cellular detail, is therefore central to understanding gene function.

Whole-animal imaging is necessary for the Zebrafish Phenome Project
Phenotypes caused by single gene deficiencies can cross organ systems in invertebrate and
vertebrate model systems, including humans, and can affect different sets of organ systems
at different developmental times [3, 1, 4]. Some organ systems, especially those having to
do with sexual maturity, are most affected at reproductive ages. We therefore need to
phenotype animals not only during embryogenesis, when primordial germ cell migration
takes place, but also into juvenile stages when sexual differentiation is complete.
Phenotyping juveniles and adults is relevant because humans with single gene deficiencies
often survive into adolescence and adulthood. It is therefore informative for phenome
projects of any model system to include analysis of the whole organism at different
developmental ages.

Phenotyping at cell resolution is essential for detecting pathophysiological
mechanisms

One hundred and fifty years ago, based on the discovery that all organisms are comprised of
cells (the cell theory), Virchow proposed that disease is a cellular process [24••] that can
often be characterized by the study of stained tissue sections at cell resolutions (classically,
histology). This principle revolutionized medicine and forms the existing gold standard for
diagnosis in anatomic pathology. Today, those criteria are supplemented by protein- and
gene-specific assays [25].

Imaging whole zebrafish at cell resolutions presents different problems at embryonic vs.
postembryonic stages of development (Tables 2, 3). In vivo, fluorescence-based imaging
during days 1 and 2 of zebrafish development takes advantage of embryonic transparency.
Imaging fluorescently-tagged proteins by laser confocal, two-photon, and sheet microscopy
[reviewed by 13] has allowed the monitoring of biological processes such as cell movements
and cell division in real time [26, 27•,28•, 29•, 30]. Some exciting, high-throughput methods
involving microfluidic handling of embryos have been developed [31, 32•, 33]. But how
might pigmented and larger fish be best imaged at cell resolutions? Block-face
reconstructions have yielded exciting results for the whole human [34]. A derivative of that
method based on fluorescence imaging of cut surfaces, episcopic fluorescence image capture
(EFIC) has great promise, but has not yet proven capable of achieving resolutions at or
below 1 μm, and is unlikely to approach the throughput needed for the zebrafish phenome
project due to built-in limitation of having to alternate between cutting and imaging the
entire surface for each of potentially thousands of sections through whole fish [35, 36, 37].
MRI has been used for other model systems [38, 39], can be used to image whole zebrafish
through adulthood, provides unique contrast, can be used as a molecular probe, and can
serve as a means of high-throughput phenotyping and as a reference scaffold for other
imaging methods [40]. It is presently impractical to generate useful voxel resolutions of less
than ~8 μm using MRI, which precludes the detection of small cell types. Optical projected
tomography (OPT) was used to rapidly generate a labeled on-line atlas through the life-span
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of the zebrafish [41•, 42, 43], but does not reach cell resolution (Tables 2, 3). Optoacoustic
imaging has the ability to derive functional information such as oxygen tension [44, 45•],
but also cannot provide cell resolution through the full volume of an entire organism. In
sum, a variety of in vivo imaging techniques have different advantages, but those that
produce images of cell resolution have fields of view too small to cover the entire fish older
than about 2 days of development (Table 2). We are left with only two methods to image
whole, pigmented larval, juvenile and adult zebrafish at cell resolutions: 1) histology, which
can yield 2D sections of ~0.25 μm in-plane pixel resolution, and 2) microCT, which yields
isotropic, 3-dimensional volumes of ~1 μm voxel resolutions.

Histology
Histology is a standard and detailed way to relate mutant phenotypes to human disease. The
principles of cellular pathology – based on the cell theory – serve as a foundation for
modern medicine and tell us that disease processes are revealed by the study of tissues at
cell resolutions [24, 46••]. Tissue sections allow us to identify a majority of cells, to
determine whether and how cells and tissue may be abnormal, and to detect unusual cell
types, foreign organisms, and/or unusual deposits or foreign matter. For example, the
different possible causes of a human lung mass – types of cancer, a benign tumor, acute
infection, chronic infection with a fungus, or foreign body reaction – can be easily
distinguished by histology with no more than a standard hematoxylin and eosin stain. These
distinctions are difficult to impossible without cell resolutions (pixels of about 1 μm2 or
less), and motivate pathologist-driven quantitative histology for the mouse phenome project
[47••].

Array technology facilitates histology for small fish [48•, 49•, 50], has been used for genetic
screens [2], and greatly facilitated the creation of an online atlas by the Cheng lab’s atlas
team at Penn State (www.zfatlas.psu.edu). Whole adults fit into a single cassette. Histology
is a standard tool not only for human diagnosis [46••], but also for toxicity testing [51] and
for the characterization of mouse mutants [52], facilitating comparisons between normal and
diseased zebrafish [53], mice, and humans. These considerations make histology an essential
tool for phenotypic screens, especially in support of translational research. The future
development of automated and quantitative analysis of histological data may address the
common absence of morphological data from systems biology analyses [54].

MicroCT
MicroCT is a tomographic technique by which a series of hundreds to over a thousand x-ray
projection images are taken at each of multiple angles over at least 180° through a fixed,
intact specimen, from which a 3-dimensional volume is computationally reconstructed [55•].
Contrast within the reconstructed volume is proportional to the attenuation of the X-rays that
pass through the sample, and can be scaled by modulating the energy of the X-rays
(measured in keV) and by altering the absorption of the sample using heavy metal stains
(high atomic number, Z). MicroCT specimens can be left intact for reimaging as technology
improves.

There are two types of microCT imaging relevant to the current discussion: commercial
microCT and synchrotron-based microCT [Fig 1, reviewed by 56••]. Commercial scanners
use a cone-beam imaging geometry in which polychromatic, low-flux X-rays emanate from
a focal spot, whose size (“spot size”) is a tradeoff between resolution and X-ray flux. The
so-called Feldkamp reconstruction algorithm converts a series of projection images
generated by the scanner into stacks of aligned, digital, 2D slices. Isotropy of the voxels
(cubic, rather than elongated rectangular shape) allows the digital volume to be viewed and
re-sectioned in any orientation (e.g. coronal, sagittal, transverse, oblique) without loss of
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resolution. The size of the field of view is inversely proportional to resolution since any
given length is distributed across the same number of pixels, so optimizing the balance
between these factors is one of the challenges of this field. Cone beam microCT imaging
achieves cell resolutions only for the smallest of animals, and at scanning speeds that extend
over multiple hours. Only a portion of the X-ray spectrum in commercial X-ray tubes is of
sufficient energy to traverse a larger specimen, contributing to artifact and longer scan times.
Cone-beam microCT has been proposed as a potential high-throughput screening tool for
phenotyping mouse embryos [57•], but neither the faster 27 μm voxel size scans, nor the
alternative 8 μm voxel scans with a 6-fold slower scanning time will allow scoring of
individual cell types. Even if commercial microCT reach cell resolutions for whole animals,
their low X-ray flux is a barrier to throughput and their X-ray polychromicity precludes the
use of phase contrast.

Synchrotron microCT uses parallel-beam geometry and monochromatic, highly coherent X-
rays [58• ] (Figure 1) whose energy can be customized to the size and composition of the
subject. The coherence can be used for phase-contrast based edge enhancement, which is
modulated by changing the distance between sample and sensor (Fig. 1) [56••, 58•]. Low-
energy (“soft”) X-rays in the <1keV “water window” corresponding to the K shell
absorption edges of carbon (284 eV) and oxygen (543 eV) can be used to image organelles
within single cells within fields of view in the range of 15 μm [59•]. Higher-energy (“hard”)
x-rays of 10 to 25 keV are needed to penetrate samples as large as zebrafish stained with a
variety of heavy atoms whose absorption maxima lie within that higher range. The latter
technology is available at third-generation synchrotrons such as the Advanced Photon
Source at the U.S. Department of Energy’s Argonne National Labs in Argonne, IL, the
European Synchrotron Radiation Facility in Grenoble, France, and Japan’s Spring-8. Their
high flux (equivalent to brighter light in photography) allows for shorter exposure times, and
therefore higher throughput. Unstained samples are scanned to image bone, as seen for a
commercial scan of a zebrafish juvenile (Fig. 2). High-quality imaging of soft tissues
requires the use of contrast agents containing heavy metals such as osmium, uranium,
iodine, and tungsten [56, 60, 61•, 62••]. Increases in quantum efficiency and size of both
scintillator and CCD chips, together with modifications to X-ray and light optics will bring
us closer to the resolution, field of view, and speed needed for high-throughput imaging of
zebrafish for the Zebrafish Phenome Project. Comparing results between microCT and
histology will provide critical validation for each methodology, based on the 3D information
content of microCT and the power of interspecies cross-referencing and availability of
special stains in histology. Since microCT images have high resolution over the entire
embryo, they may be a good scaffold with which to integrate data that lack anatomical
context, or that have small fields of view.

The zebrafish is the only well-developed vertebrate genetic model that is small enough to
image the whole animal at cell resolutions using microCT. For existing chip dimensions of
2048 × 2048 pixels, assuming that animals can be scanned one section at a time at full
width, resolution is limited by fields of view within which the width of the animal can fit
(Table 4). The fields of view for synchrotron microCT at beamline 2-BM at Argonne
National Laboratory are about 2.92 and 1.52 mm for 5x and 10x optics, respectively.
Distributing 2048 pixels across those fields of view yields calculated voxel sizes on the
order of about 0.753 and 1.43 μm for scans of larvae and juvenile zebrafish, respectively.
This compares with pixel sizes of about 0.52, 12, and 22 μm associated with 20x, 10x and 5x
magnification for scans of histological sections that were originally created at 0.252 μm
pixel resolution with the model XT commercial scanner from Aperio technologies (Vista,
CA; Cheng lab, unpublished). Presently, even the larger field of view at 2-BM is too small
for mature mouse embryos of 8mm diameter.
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Challenges and Solutions
Image data from live and fixed fish need to be made available to the zebrafish community in
a way that is integrated between morphological, behavioral and physiological assays and
across model systems, including humans. Meeting this challenge will require the use of
anatomic and phenotypic ontologies that cross model systems [9, 26, 42, 63], integration of
data across imaging modalities [64], and integrating across multiple imaging modes,
including those, such as electron microscopy, that will be used for more detailed study of
detected cellular phenotypes [65]. Among the greatest deficiencies in phenomics today are
1) a shortage of annotators who have a wide range of knowledge of human and animal
disease [66], 2) a high frequency of incorrect and inadequate phenotyping [8], and 3) a lack
of a comprehensive set of tools for generating quantitative data associated with
morphological abnormalities.

How critical is the challenge of throughput for the phenome project? Consider for the
moment 10,000 mutant lines. Several ages need to be imaged per mutant, and at least 3
experimental and 3 control individuals imaged per age. For each animal tested, 3D
reconstructions include thousands of slices through the animal in each orthogonal direction
(transverse, coronal, and sagittal). A minimum analysis of just 15 images along one
orientation yields 2,700,000 images (10,000 genes × 3 ages × 6 individuals per age × 15
slides/individual) for interpretation. Sample processing, sample loading, imaging, and
computational reconstruction would have to keep up, and the rate of image analysis would
be 2,700,000/(50 weeks/year × 5 days/week × 5 years) = 2,160 images per day. Even semi-
quantitative assessment of morphological features used in pathology requires training,
experience and reference materials. Pathologists are insufficient in number to interpret so
many images, and variation in training, fatigue, and experience would be expected to
introduce human error.

New computational methods for quantitative image analysis for both 2D histology and 3D
analysis can ameliorate the problems of personnel and expertise. The translational relevance
of interpretation is dependent upon medical and veterinary expertise. Individuals with that
expertise know what types of patterns are important to use as diagnostic criteria, and those
with some experience with programming or working with programmers know how to
suggest realistic algorithms for software solutions. Likewise, programmers who can
understand biological and pathologic vocabulary will more likely create usable solutions and
make fewer errors caused by misunderstanding. Our experience in interdisciplinary
environments supports the idea that individuals with cross-training in some combination of
anatomy, pathology, model system genetics, programming, engineering and bioinformatics
would likely be able to design and write high-throughput segmentation, pattern-recognition,
morphometric, and analytical software with user-friendly interfaces for data mining and
web-based community input (“crowdsourcing”). There is potential synergy between the
computational approaches developed for histology, microCT, and live-animal imaging
(Figure 3). We anticipate unique contributions to systems biology and that the derived tools
will be usable across multiple model systems and fields of image-based inquiry.
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Figure 1. Comparison of Synchrotron Parallel Beam vs. Commercial Cone Beam MicroCT
geometry
In cone beam microCT, the X-ray comes from a focal spot, for which diameter is inversely
proportional to resolution and directly proportional to flux. The flux (brightness) is low. The
cone shape of the beam allows magnification of the desired area by adjusting the relative
position of the sample and scintillator to the focal spot, and can be used to focus a subarea of
the specimen across the full area of the scintillator. These scintillators may be coupled by
fiber optics to the cooled CCD. In synchrotron microCT, X-rays are of parallel geometry,
monochromatic, phased, and of high flux. There is no geometric specimen magnification by
the X-ray. Edge enhancement by phase contrast is made possible by phased monochromatic
X-ray, and is adjusted by changing the sample-to-scintillator distance. The transmitted X-ray
induces light in the scintillator, which is projected through optical lenses (e.g. 5x or 10x
microscope objectives) whose magnification onto the cooled CCD determines optical
magnification of the scintillator surface. For both types of microCT, the specimen is rotated
over at least 180 degrees, commonly with one projection image taken every 0.1 to 0.3
degrees of rotation (yielding 1800 and 600 images, respectively).
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Figure 2. Micron-Scale Computed Tomography (microCT)
A series of processing steps allows 3D models to be generated from microCT data.
Demonstrated here is the application of these steps to reconstruct a zebrafish’s skull and
inner ear. (A) One of 600 x-ray projection images taken, over ~4 hours, through 180° of the
head of an unstained, 60 dpf juvenile zebrafish wrapped in parafilm (one image every 0.3°).
(B) One of 1500 digital, coronal 2D slices generated by applying the Feldkamp cone-beam
reconstruction algorithm to these 600 images. (C) A screen-capture of part of a 3D model
generated from these 1500 2D slices in a Volume Graphics software package known as
VGStudio Max (Heidelberg, Germany). The arrows labeled L, S, and A, are the lapillus,
sagitta, and asteriscus, which are found in the utricl, saccule, and lagena, respectively [67].
A similar comparison can be accessed at http://www.zfatlas.psu.edu/comparison.php?
s[]=262&s[]=267&s[]=268. Scale bar, 1mm.
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Figure 3. Zebrafish Phenome Project Paradigm
For the phenome project, mutant and control animals will be generated for live and fixed
animal studies. The imaging data will benefit from segmentation software, as well as
software to facilitate analysis, visualization, and integrated interpretation (black boxes). The
output, as well as raw data, would then become available to the zebrafish and other research
communities.
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Table 1

Ideal Features of Imaging for the Zebrafish Phenome Project

• Whole animal

• Cell resolutions (~ 1 μm)

• Embryos, juveniles and adults

• Isotropic (each voxel dimension same)

• Digital output

• High-throughput

• Quantitative Digital analysis

• Fluorescence in vivo when possible

• 3D modeling
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