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ABSTRACT

Motivation: The human microbiome plays an important role in
human disease and health. Identification of factors that affect
the microbiome composition can provide insights into disease
mechanism as well as suggest ways to modulate the microbiome
composition for therapeutical purposes. Distance-based statistical
tests have been applied to test the association of microbiome
composition with environmental or biological covariates. The
unweighted and weighted UniFrac distances are the most widely
used distance measures. However, these two measures assign too
much weight either to rare lineages or to most abundant lineages,
which can lead to loss of power when the important composition
change occurs in moderately abundant lineages.
Results: We develop generalized UniFrac distances that extend
the weighted and unweighted UniFrac distances for detecting a
much wider range of biologically relevant changes. We evaluate
the use of generalized UniFrac distances in associating microbiome
composition with environmental covariates using extensive Monte
Carlo simulations. Our results show that tests using the unweighted
and weighted UniFrac distances are less powerful in detecting
abundance change in moderately abundant lineages. In contrast,
the generalized UniFrac distance is most powerful in detecting such
changes, yet it retains nearly all its power for detecting rare and
highly abundant lineages. The generalized UniFrac distance also has
an overall better power than the joint use of unweighted/weighted
UniFrac distances. Application to two real microbiome datasets has
demonstrated gains in power in testing the associations between
human microbiome and diet intakes and habitual smoking.
Availability: http://cran.r-project.org/web/packages/GUniFrac
Contact: hongzhe@upenn.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Understanding the compositional differences of microbial
communities (microbiomes) is essential in microbial ecology.
With the development of next-generation sequencing technologies,
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microbiome composition can now be determined by direct DNA
sequencing without the need for laborious cultivation (Dinsdale
et al., 2008; Gill et al., 2006; Grice et al., 2009; Qin et al., 2010;
Tringe et al., 2005; Turnbaugh et al., 2009; von Mering et al.,
2007). There has been a great interest in human microbiome studies
in different body sites, ranging from skin (Grice et al., 2009)
to gut (Arumugam et al., 2011; Muegge et al., 2011; Qin et al.,
2010; Wu et al., 2011) and respiratory tract (Charlson et al., 2010).
Important insights have been gained from analysis of large-scale
human microbiome data, including the discovery of enterotypes
(Arumugam et al., 2011) and discovery of the link between diet
and these enterotypes (Wu et al., 2011). Although the metagenomic
shotgun approach is potentially more powerful and unbiased, 16S
rRNA gene targeted sequencing is routinely performed to determine
the taxonomic composition. The generated 16S rRNA sequence
tags are usually clustered into operational taxonomic units (OTUs)
with a specified amount of variability allowed within each OTU
(Caporaso et al., 2010; Schloss et al., 2009). At 97% similarity,
these OTUs represent ‘species’. Downstream analysis is then
performed on the OTU abundance data.

Two central themes in human microbiome studies are to identify
potential biological and environmental factors that are associated
with microbiome composition, and to define the relationship
between microbiome features and biological or clinical outcomes.
The goal is to provide a better understanding of the factors that shape
our microbiome and, potentially, contribute to the development of
new therapeutic strategies to modulate the microbiome composition
and affect human health (Spor et al., 2011; Virgin and Todd,
2011). Testing the association of microbiome composition with
potential environmental factors using OTU abundances directly is
difficult due to high dimensionality, non-normality and phylogenetic
structure of the OTU data. Instead, distance-based non-parametric
testing, in which a distance measure is defined-between any two
microbiome samples, is usually used to achieve this goal (Charlson
et al., 2010; Fukuyama et al., 2012; Kuczynski et al., 2010a; Wu
et al., 2010, 2011). The power of the distance-based test depends
on a proper choice of the distance measure. Numerous distance
measures have been proposed to compare microbial communities
(Kuczynski et al., 2010b; Swenson, 2011). Phylogenetic distance
measures, which account for the phylogenetic relationship among
the species, provide far more power because they exploit the
degree of divergence between different sequences. Among these,
the UniFrac distances are the most popular ones (Lozupone and
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Knight, 2005; Lozupone et al., 2007). There are two versions of
UniFrac distances: an unweighted UniFrac distance that considers
only species presence and absence information and counts the
fraction of branch length unique to either community, and a weighted
UniFrac distance that uses species abundance information and
weights the branch length with abundance difference. Unweighted
UniFrac distance is most efficient in detecting abundance change in
rare lineages. When the abundance of a rare lineage falls below a
certain threshold, the sequencing machine may not be able to pick it
up and it will appear absent in the final dataset. On the other hand,
weighted UniFrac distance is most sensitive to detect change in
abundant lineages since it uses absolute abundance difference in its
definition. However, unweighted/weighted UniFrac distances may
not be very powerful in detecting change in moderately abundant
lineages. Recently, a variance-adjusted weighted UniFrac distance
(VAW-UniFrac), which moderates the branch proportion difference
by its variance, was developed to account for the fact that weighted
UniFrac distance does not consider the variation of the weights under
random sampling (Chang et al., 2011). VAW-UniFrac was shown to
increase the power over weighted UniFrac distance for detecting the
difference between two microbial communities.

In this article, we introduce generalized UniFrac distances that
unify weighted UniFrac and unweighted UniFrac distances. The new
generalized UniFrac distances cover a series of distances ranging
from weighted to unweighted UniFrac by adjusting the weight on the
branches. The generalized UniFrac distances are designed to provide
a robust and powerful tool for detecting a wider range of biologically
relevant changes in microbiome composition. We conduct extensive
Monte Carlo simulation studies under various conditions to evaluate
their power in detecting environmental influence on microbiome
composition using PERMANOVA (McArdle, 2001), a distance-
based non-parametric test. Although each distance in the series
can perform the best in certain scenarios, none has the optimal
performance under all conditions considered. However, analyses
based on the generalized UniFrac distances are shown to be more
robust and has overall the best performances across a range of
possible scenarios. We demonstrate the power gain of using this
distance in detecting the microbiome differences by analysis of
two real human gut microbiome datasets related to linking human
gut microbiome composition to long-term diet (Wu et al., 2011)
and testing upper respiratory tract microbiome difference between
smokers and non-smokers (Charlson et al., 2010).

2 METHODS

2.1 Generalized UniFrac distances between two
microbial communities

Consider two microbiome communities A and B and suppose that we have
a rooted phylogenetic tree with n branches. Let bi be the length of the
branch i and pA

i and pB
i are the taxa proportions descending from the

branch i for community A and B, respectively. The unique fraction metric,
or UniFrac, measures the phylogenetic distance between sets of taxa in a
phylogenetic tree as the fraction of the branch length of the tree that leads to
descendants from either one environment or the other, but not both. The
original definition refers to unweighted UniFrac (Lozupone and Knight,
2005), which is mathematically defined as

dU =
n∑

i=1

bi
∣∣I(pA

i >0)−I(pB
i >0)

∣∣∑n
i=1 bi

,

where I(.) is the indicator function and only presence/absence of species
of branch i, I(pA

i >0) and I(pB
i >0), are used in the definition. The distance

definition dU completely ignores the taxa abundance information. In contrast,
the (normalized) weighted UniFrac distance (Lozupone et al., 2007) weights
the branch length with abundance difference and is defined as

dW =

n∑
i=1

bi
∣∣pA

i −pB
i

∣∣
n∑

i=1

bi(p
A
i +pB

i )

.

Note that dW cannot be reduced to dU even if we convert abundance data
into presence/absence data. Also note that dW uses the absolute proportion
difference

∣∣pA
i −pB

i

∣∣ in its formulation. The consequence of using the absolute
difference is that the value of dW is determined mainly by branches with large
proportions and is less sensitive to the abundance changes on the branches
with small proportions. To attenuate the weight on branches with large
proportions, we may instead use the relative difference

∣∣pA
i −pB

i

∣∣/(pA
i +pB

i )
(∈[0,1]) in the formulation. We denote this distance measure as

d(0) =

n∑
i=1

bi

∣∣∣∣ pA
i −pB

i

pA
i +pB

i

∣∣∣∣
n∑

i=1

bi

,

where
∑n

i=1 bi in the denominator is the normalizing factor so that d(0) ∈
[0,1]. Now if we dichotomize the abundance data using the indication
function I(.), d(0) is reduced to dU . So d(0) can be seen as the ‘weighted
version’ of dU . Using the relative differences, we place equal emphasis on
every branch and the distance is not dominated by the branches with large
proportions, since the relative difference does not depend on the magnitude
of pA

i ,pB
i . However, the low-abundance branches may be more noisy and the

relative difference may amplify such noises. To strike a balance between
relative difference and absolute difference, we weight the branch length
both by the relative difference and its importance indicated by the branch
proportion. We propose the following generalized UniFrac distances

d(α) =

n∑
i=1

bi(p
A
i +pB

i )α
∣∣∣∣ pA

i −pB
i

pA
i +pB

i

∣∣∣∣
n∑

i=1

bi(p
A
i +pB

i )α
,

where α∈[0,1] controls the contribution from high-abundance branches, and∑n
i=1 bi(pA

i +pB
i )α is the normalizing factor so that d(α) ∈[0,1]. Branches

with zero proportions for both communities will not be included in the
calculation. As α changes from 0 to 1, more emphasis is placed on high-
abundance branches. When α=1, d(α) is reduced to dW . When α=0, we get
d(0) defined above.

Therefore, by varying α from 1 to 0 , we achieve a series of distances
ranging from dW to d(0). Note that dU is obtained by dichotomizing the
abundance in d(0), but is different from d(0). We are particularly interested
in d(0.5), the distance in the middle of the distance series

d(0.5) =

n∑
i=1

bi

√
pA

i +pB
i

∣∣∣∣ pA
i −pB

i

pA
i +pB

i
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n∑

i=1

bi

√
pA

i +pB
i

.

We also compare dW ,d(0.5),d(0) and dU with VAW-UniFrac distance dVAW

(Chang et al., 2011), which is defined as:

dVAW =

n∑
i=1

bi

∣∣pA
i −pB

i

∣∣
m(m−mi)

n∑
i=1

bi
pA

i +pB
i

m(m−mi)

,
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where mi is the total number of individuals/reads from both communities on
the ith branch and m is total number of individuals/reads.

2.2 Statistical test based on UniFrac distances
We study the power of generalized UniFrac distances using the distance-
based non-parametric test for association of microbiome composition with
environmental covariates. Suppose we have a set of m environmental
covariates. We assume that we have collected microbiome data and the m-
dimensional covariates data X on n samples. We apply the PERMANOVA
procedure (McArdle, 2001) [Permutational MultivariateAnalysis of Variance
Using Distance Matrices, ‘adonis’function from R package ‘vegan’(Oksanen
et al., 2011)], which partitions the distance matrix among sources of
variation, fits linear models to distance matrices and uses a permutation
test with pseudo-F ratios to obtain the P-values. The pseudo-F statistic is
defined as

F = tr(HGH)/(m−1)

tr[(I−H)G(I−H)]/(n−m)
,

where tr(.) is the trace function of a matrix, H=X(XT X)−1XT is the hat
(projection) matrix of the design matrix X, G is Gower’s centered matrix and
n and m is the number of samples and the number of predictors, respectively.
Let dij be the generalized UniFrac distance between community i and j and
denote A= (aij)= (− 1

2 d2
ij). The Gower’s matrix is defined as

G=
(

I− 11′

n

)
A

(
I− 11′

n

)
,

where 1 is a vector of 1’s.
Since dU and dW reflect the abundance change in either rare lineages

or abundant lineages, combining dU and dW may potentially increase the
overall power. Instead of applying Bonferroni correction to the P-values
from separate PERMANOVA tests using dU or dW to control the family-
wise Type I error rate, a more powerful approach is to take the maximum of
pseudo-F statistics for dU and dW as a new test statistic. The significance of
the pseudo-F statistics is assessed based on permutations.

2.3 Simulation strategies
We use two simulation strategies to evaluate the power of the generalized
UniFrac distances under various conditions. The first strategy is a
modification of the simulation method proposed by Schloss (2008), where
we draw points (16S rRNA sequences) from a 2D circle with known densities
(Fig. 1A). This strategy facilitates simulations of different community
characteristics such as species evenness and species richness. The Euclidean
distance between points is analogous of the genetic distance between the
sequences. The diameter of the circle represents the maximum genetic
divergence between any pair of sequences within a sample. The area of
the circle is proportional to the richness and the density distribution of the
circle is proportional to the evenness. By varying the centroid positions (o)
and their radius (r), it is possible to vary the fraction of shared membership
and species richness within each sample (Fig. 1B and D). By varying the
point distribution on the circle (density proportional to rα, where α controls
the degree of evenness and α=0.5 for uniformly distribution), it is possible
to change the species evenness (Fig. 1C). We also simulate scenarios where
lineages of different abundance levels change by a k fold (Fig. 1E–G). These
are achieved by simulating the community with point mass concentrated at
the circle center (r1.0) and varying the point density in different regions of
the 2D circle corresponding to abundant lineages (0−0.2r from the center;
Fig. 1E), moderately abundant lineages (0.4r−0.8r from the center; Fig. 1F)
and rare lineages (0.8r−1.0r from the center; Fig. 1G). We further bin
the sampled points into small hexagons as ‘OTU’s before calculating the
UniFrac distance [‘hexbin’ function from the R package ‘hexbin’ (Carr et al.,
2011)]. The phylogenetic tree of these ‘OTU’s is built using NJ algorithm
(Neighbor Joining, ‘nj’function in R) and rooted by midpoint rooting method.
Generalized UniFrac distances are then calculated based on the NJ tree and
‘OTU’ abundances. Each replication consists of drawing 400 points from

each community, a bin size of 0.015 units to form ‘OTUs’ (∼300 OTUs
per sample), and the maximum distance between any two points is 0.3 units
(r =0.15), corresponding to typical phylum level divergence of 30% for 16S
rRNA gene. These conditions allow us to simulate the sampling intensity
and biodiversity found within a typical 16S rRNA gene targeted sequencing
experiment (Schloss, 2008).

The second set of simulations utilize a real upper respiratory tract
microbiome dataset consisting of 60 samples and 856 OTUs from Charlson
et al. (2010) (Fig. 1H). A common way of modeling multivariate count
data is to use the multinomial model. However, the multinomial model
assumes fixed underlying proportions for each sample, which do not hold
for real microbiome data due to high degree of heterogeneity among the
samples. The real OTU count distribution (Supplementary Fig. S1A) exhibits
more variance than expected from a multinomial model (Supplementary
Fig. S1B). To realistically simulate the data, it is important to model extra-
variation or overdispersion of the OTU counts. This can be achieved by
using the Dirichlet-multinomial (DM) model (Mosimann, 1962), which
assumes the underlying proportions of the multinomial model come from
a Dirichlet distribution. The density function of a DM random variable N is
given as

P(N =n)=
(

n

n

)
k∏

j=1

nj∏
r=1

{πj(1−θ)+(r−1)θ}
n∏

r=1

{1−θ+(r−1)θ}
,

where n=∑
j nj is total count, k is the OTU number and proportion mean

π= (π1,π2,··· ,πk) and dispersion θ are parameters. When θ=0, it is reduced
to multinomial model. We estimate the DM parameters π,θ using maximum
likelihood method (‘dirmult’ function from R package ‘dirmult’). We then
generate OTU counts using the DM model with the estimated parameters
and 1000 counts per sample. Supplementary Figure S1C shows an OTU
heatmap generated by the DM model, in which the overdispersion is
similar to that of the real data. To study the power of UniFrac variants
for identifying potential environmental factors, we let the abundance of a
certain OTU cluster change in response to environment. We use the UPGMA
tree of the OTUs based on the OTU distance matrix calculated under the
K80 nucleotide substitution model (Felsenstein, 2004), QIIME (FastTree
algorithm (?)) and partition the 856 OTUs into 20 clusters using Partitioning
Around Medoids (PAM) (‘pam’ function from R package ‘cluster’) based
on patristic distances (the length of the shortest path linking two OTUs
on the tree). These OTU clusters are highlighted in different colors in
Figure 1H.

We call the first strategy 2D circle-based simulation and the second tree-
based simulation. For power calculation, we use 2000 replications.

3 RESULTS

3.1 Comparison of the power of different UniFrac
variants using 2D circle-based simulations

We use PERMANOVA to test for environmental effect and
compare the power of dW ,d(0.5),d(0), dU and dVAW . Specifically,
we simulate two environmental conditions (e.g. smoking versus
non-smoking) under which we draw 10 samples each. We then vary
the degree of community difference under these two conditions and
produce the power curve over a grid of 10 for each UniFrac distance.
We investigate six scenarios, where the environmental factor affects
the community membership, species evenness, species richness,
most abundant lineages moderately abundant lineages and rare
lineages (Fig. 1B–G). For each scenario, we vary one community
characteristic (Supplementary Table S1). Suppose x1 and x2 are the
mean values of the community characteristic for Conditions 1 and
2. We simulate 10 communities for each condition with community
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Fig. 1. Two simulation strategies to evaluate the generalized UniFrac distances. (A–G), 2D circle-based simulation of microbial communities with different
characteristics. (A) The microbial community is represented by a 2D circle. Points are drawn from the circle to simulate the 16S-based sampling process. These
points are further binned into small hexagons as OTUs. UPGMA or NJ method is used to build the OTU phylogenetic tree. Six scenarios are investigated,
where the difference occurs in: community membership (B), evenness (C), richness (D), most abundant lineages (E), moderately abundant lineages (F) and
rare lineages (G). The affected lineages are indicated by a red circle or ring. H, tree-based simulation of microbial communities based on the phylogenetic tree
and DM model. A real OTU phylogenetic tree from a throat microbial community dataset is used. These OTUs are roughly divided into 20 clusters (lineages)
by performing PAM method using the OTU patristic distance matrix. Each cluster is subjected to abundance change in response to the environment. Counts
are generated from a DM model.

characteristic value xij ∼Uniform(xj −s,xj +s) for i=1...10 and
j=1,2, where s controls the variation within each condition and
takes different values for different scenarios (see Supplementary
Table S1). Each community is sampled once. Initially, we let
x1 =x2 (no difference) and then increase the difference between x1
and x2 to simulate stronger environmental effect. PERMANOVA
is then performed on the distance matrices and the power curve is
created over a grid of 10 using Type I error α=0.05. Figure 2 shows
the power curves for different UniFrac distances under the six
scenarios considered. When the environmental factor has no effect
(x1 =x2), PERMANOVA controls the Type I error at the nominal
level of 0.05 for all five UniFrac distances. As the environmental
effect becomes stronger, all the distances have better power. When
the environmental factor affects the community membership or
richness (Panels 1 and 3), all the distances give a similar power and
their power curves are nearly identical. For the evenness change
scenario (Panel 2), the power of dW and d(0.5) is very close and
is more powerful than d(0) and dU . dW is the most powerful for

detecting change in most abundant lineages (Panel 4) but is much
less powerful for change in rare lineages (Panel 6). dU shows an
opposite trend: it is the most powerful for detecting change in rare
lineages (Panel 6) but has almost no power for change in most
abundant lineages (Panel 4). In contrast, d(0.5) is the most powerful
for detecting change in moderately abundant lineages (Panel 5).
They are also the most robust among the distances investigated: its
power is close to the best UniFrac distance under all scenarios. The
performance of d(0) lies between d(0.5) and dU and is also very
robust. Finally, under the 2D circle simulations, the performance of
dVAW is almost identical to that of d(0.5).

In the above simulations, we use a bin size of 0.015 to form
‘OTU’s (∼300 OTUs per sample). To study the effect of bin size,
we compare the power curves of the generalized UniFrac distances
using a smaller bin size of 0.01 (∼700 OTUs per sample) or a
larger bin size of 0.03 (∼80 OTUs per sample). The bin size does
not change the general conclusion (Supplementary Fig. S2). To
study the effect of tree construction methods, we also construct the
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Fig. 2. Power comparison of different UniFrac variants for detecting
environmental effect using 2D circle-based simulation. PERMANOVA is
used for testing hypotheses. The specific community difference caused by
different environmental conditions is indicated in the panel title. The power
curves are created by varying the degree of environmental effect. The initial
point of the power curve is the power when there is no environmental effect.

phylogenetic tree using UPGMA. The general conclusions still hold
(Supplementary Fig. S3).

3.2 Comparison of the power of different UniFrac
variants using tree-based simulations

We also compare the power of different UniFrac distances for
detecting environmental effect using tree-based simulations that
mimic the throat microbiome data (see Section 3.4 for details).
A recently proposed variance adjusted UniFrac distance (dVAW )
(Chang et al., 2011) is also compared in this setting. dVAW

was developed to moderate the branch proportion difference by
its variance and was shown to increase the power of detecting
the difference between two microbial communities. We use the
phylogenetic tree of the 856 OTUs from the throat microbiome
dataset and divide them into 20 clusters (Fig. 1H). The mean OTU
proportions and the dispersion parameter are estimated from the
real data by fitting a DM model. We assume that the environmental
factor causes an increase of the abundance of a particular OTU
cluster. Specifically, suppose that the proportion of the ith OTU
cluster under Condition 1 is pi. For Condition 2, the proportion of
ith OTU cluster is increased by k fold where k varies from 1 (no
difference) to 1/

√
pi (strong effect) on a grid of 10. The proportion

vector is re-normalized to sum to 1. Next, 10 samples are simulated

for each condition with their OTU counts generated by the DM
model with the corresponding proportion vector and the common
dispersion parameter. As expected, the five UniFrac distances differ
in their power for detecting environmental effect for the 20 OTU
clusters tested. Except for d(0), all the UniFrac distances have their
best-performance scenarios. dW , d(0.5), dU and dVAW achieve the
highest power in seven, six, three and one cases, respectively. For
the remaining three cases, dW and d(0.5) are equally the most
powerful (Supplementary Fig. S4). The results are consistent with
the 2D circle-based simulation: dW is most powerful in detecting
the environmental effect on most abundant lineages, d(0.5) is most
powerful for moderately abundant lineages and dU is most powerful
for rare lineages. In contrast, performance of the test with d(0) and
dVAW is generally between dU and d(0.5). The power of dW and
dU has a reciprocal relationship and neither of them is as robust
as d(0.5). Figure 3A shows the power curves of four representative
cases. As the proportion of the affected cluster decreases from 19.7%
to 0.9%, dW becomes less powerful and the power of dU has the
opposite trend.

In the simulations presented above, the power is calculated
assuming the affected cluster is known. Since the affected cluster can
be abundant or rare, we randomly choose an affected OTU cluster
in each replication and calculate the power over 2000 replications.
We also report the power for the test combining dW and dU by
taking the maximum of their pseudo-F statistics. We denote this
method as dMAX . Figure 3B (left plot) shows that dU has the lowest
overall power and d(0.5) and dMAX have the best power, indicating
combining dU and dW can lead to power gain. In contrast, the power
of d(0), dVAW and dW is in between. As the environmental effect
becomes stronger, d(0) becomes as powerful as d(0.5) and dMAX .
Finally, we assume that the environmental factor affects a random
set of 40 OTUs instead of a random OTU cluster. At this extreme
where the phylogenetic relationship is no longer important, d(0.5)

has even higher power than the other distances, followed by d(0),
dMAX , dW , dU and dVAW (see Fig. 3B, right plot). Overall, d(0.5)

has a better power than other UniFrac distances including the one
that combines dW and dU .

3.3 Results from analysis of a dataset linking long-term
diet to gut microbiome composition

Diet strongly affects the human health, partly by modulating gut
microbiome composition. Wu et al. (2011) studied the habitual diet
effect on the human gut microbiome, where the diet information
was converted into a vector of micro-nutrient intakes. A total of
98 healthy volunteers were enrolled in this cross-sectional study.
Habitual long-term diet information was collected using food
frequency questionnaire (FFQ). The questionnaires were converted
to intake amounts of 214 micro-nutrients. Nutrient intake was
further normalized using the residual method to standardize for
caloric intake. Stool samples were collected and DNA samples were
analyzed by 454/Roche pyrosequencing of 16S rRNAgene segments
of the V1-V2 region. The pyrosequences were denoised (Quince
et al., 2009) prior to taxonomic assignment yielding an average of
9265±3864(SD) reads per sample. The denoised sequences were
then analyzed by the QIIME pipeline (Caporaso et al., 2010) with
the default parameter settings in the QIIME pipeline. The OTU
table contains 3068 OTUs after discarding the singleton OTUs. One
objective of the study is to identify nutrients that have a significant
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A

B

Fig. 3. Power comparison of different UniFrac variants for detecting
environmental effect using tree-based simulation. PERMANOVA is used
for testing hypotheses. The power curves are created by varying the degree
of environmental effect. (A) The environmental factor affects a particular
lineage (OTU cluster). Four example lineages of different abundance levels
that are affected by environment are given. The lineage abundance is given in
parentheses in the panel title. (B) The environmental factor affects a random
lineage (left panel) or a random subset of 40 OTUs (right panel). The initial
point of the power curve is the power when there is no environmental effect.

impact on the gut microbiome composition. We use PERMANOVA
to test for association of microbiome composition with nutrient
intake based on different UniFrac distance matrices. We compare
d(0.5) with dU , dW , their combination dMAX and dVAW . We plot
the number of selected nutrients against different P-value cutoffs to
create a ROC-like curve (Fig. 4). For P<0.01, all distances except
the dU identify the same number of nutrients. For P>0.03, the curve
for d(0.5) is above all the other four curves. Wilcoxon signed-rank
tests show that d(0.5) results in smaller P-values than other distances
(P<0.05), indicating that d(0.5) is most powerful in selecting the
relevant microbiome-associated nutrients. Using dW or dU alone
could miss important associations when the nominal P-value of
0.03–0.05 is used. Although using a relatively large nominal P-
value can certainly lead to inclusion of possible false-positive
nutrient-microbiome associations, there are situations when one
might want to include all possible associations for further validation
or replications. dVAW performs the second best. Interestingly, dMAX ,

Fig. 4. Comparison of different UniFrac variants for detecting nutrient
effects on gut microbiome composition. PERMANOVA is used for testing
hypotheses. 214 nutrients are included in the testing. The curves are generated
by varying the P-value cutoffs.

the joint use of dW and dU , does not increase the power over dW ,
indicating most associations can be recovered by dW alone.

3.4 Results from analysis of a throat microbiome
dataset of smokers and non-smokers

Cigarette smokers have an increased risk of multiple diseases,
including upper respiratory tract infections. Previous studies had
linked smoking to specific respiratory tract bacteria, but the
consequences of smoking for global airway microbial community
composition had not been fully clarified. Charlson et al. (2010),
investigated the smoking effect on the oropharyngeal and
nasopharyngeal bacterial communities using 454 pyrosequencing
of 16S sequence tags. Specifically, a total of 291 swab samples
from the right and left nasopharynx and oropharynx of 29 smoking
and 33 non-smoking healthy asymptomatic adults were collected.
The variable region 1-2 (V1-V2) of the bacterial 16S rRNA gene
was PCR-amplified using individually barcoded primer and subject
to multiplexed pryosequencing. The pyrosequences were denoised
(Quince et al., 2009) prior to taxonomic assignment and yielded an
average of 1335±603(SD) reads per airway sample. The denoised
sequences were then analyzed using the QIIME pipeline (Caporaso
et al., 2010) with default parameter setting. We use the left
oropharyngeal samples in this study. After removing two samples
with read number <500 and discarding singleton OTUs, i.e OTU
with only one read, we finally have an OTU table of 60 samples (28
smokers versus 32 non-smokers) and 856 OTUs.

We test the smoking effect on the throat microbial community
composition by applying PERMANOVA (10000 permutations). All
the five UniFrac distances achieve statistical significance at α=
0.05 level, indicating smoking alters the community composition.
However, test using d(0.5) produces the smallest P-value of 0.006,
followed by 0.008 from d(0). The P-values based on dW , dU and
dVAW are 0.012, 0.019 and 0.043, respectively. We also perform
a principle coordinate analysis using the distance matrices and
plot the samples on the first two principle coordinates (Fig. 5).
The distance d(0.5) separates the samples better than the other
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Fig. 5. Comparison of different UniFrac variants for clustering samples from
smokers and non-smokers. Principle coordinate analysis is performed on
the distance matrices of dW , d(0.5), dU and dVAW . The samples are plotted
on the first two principle coordinates. The PERMANOVA P-values are
also indicated in this figure. The ellipse center indicates groups means, its
main axis corresponds to the first two principle components from principle
component analysis and the height and width are variances on that direction.

three distance measures. This indicates that smoking might affect
not only the predominant lineages but also these less abundant
lineages in the throat microbial community. We then perform
Wilcoxon rank-sum or Fisher’s exact test to select the differential
OTUs. At α=0.05 level, we identify 32 OTUs. These OTUs
belong to genera Prevotella (8), Lachnospiraceae (5), Veillonella
(3), Streptococcus (2), Fusobacterium (2), Treponema (2), Neisseria
(1), Haemophilus (1), Megasphaera (1), Dialister (1), Moryella (1),
Erysipelotrichaceae (1) and four genera from Actinobacteria. Most
of the selected OTUs are moderately abundant or rare, so we expect
d(0.5) and d(0) to have better power.

4 DISCUSSION
Microbiome data are multivariate count data in their original
form and are statistically challenging to analyze due to their
high dimensionality, phylogenetic constraints among species/OTUs,
overdispersion and excessive zeros. To circumvent the difficulty,
the data are often summarized in the form of distance matrix.
Testing association of microbiome composition with environmental
covariates is performed using the distance matrix. We have
demonstrated in simulations that the weighted and unweighted
UniFrac impose large weight either to abundant lineages or to
rare lineages; they can be underpowered in detecting change
in moderately abundant lineages. Since microbiome composition
change could occur in any lineages, our generalized UniFrac
distances, which unify the weighted and unweighted UniFrac in
a common framework, enable us to detect a much wider range
of biologically relevant changes. Our simulation studies have
clearly demonstrated that the generalized UniFrac distance d(0.5)

is more robust than dW or dU , and its performances are in general
comparable to the best UniFrac distances among the scenarios we
considered. In addition, the generalized UniFrac distances are very
robust to tree constructing methods. We suggest the use of d(0.5) for

testing association of microbiome composition with environmental
covariates to avoid missing important findings.

Both weighted and unweighted UniFrac distances are sensitive to
sampling depth (Lozupone et al., 2010). Inflated distances at a low
sampling depth are caused by sampling variation especially for the
rare lineages. The generalized UniFrac distances are also sensitive to
sampling depth (Supplementary Fig. S5). However, as the sampling
depth increases, the distance stabilizes. For the gut microbiome
dataset, we found a sequencing depth of ∼1000 reads is sufficient
to stabilize the generalized UniFrac distances. To overcome the
potential adverse effects of uneven sampling, rarefaction is usually
used to subsample the samples to the same depth. However, when
the sampling depth varies greatly across the samples, rarefaction
throws away a significant portion of the 16S reads and increases
the sampling variation. We found that rarefaction is not necessary,
at least, in the context of testing the association of the microbiome
composition with covariates (Supplementary Fig. S6).

The power of UniFrac variants can also be compared in the
context of testing whether two microbial communities differ
significantly as in (Chang et al., 2011; Schloss, 2008). Instead
of comparing power for detecting the difference between two
communities, we focus our evaluations on the performance
of UniFrac distances for associating microbiome composition
to environmental covariates by collecting multiple independent
samples. The rational is that as the sequence depth increases, two
sample comparison will have increased power to detect differences
due to sources that we are not interested in (random noises), such
as the individual-to-individual variability, day-to-day variability,
sampling location variability or even technical variability (e.g.
sample preparation). Multiple samples from a population coupled
with multivariate statistical methods such as the distance-based
PERMANOVA provide powerful design and analysis methods
to overcome these potential random noises (Lozupone et al.,
2010). As more and more large-scale microbiome datasets are
being collected, we expect that our generalized UniFrac distances
can help to identify important covariates that are associated
with the microbiomes that could be missed using the commonly
used UniFrac distances. In addition to identifying environmental
covariates that may be determinants of microbiome composition,
our approach would be equally suited to identifying microbiome
features associated with biological or clinical outcomes, which is
needed to begin to understand the impact of the microbiome on
health.
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