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SUMMARY
Understanding how complex phenotypes arise from individual molecules and their interactions is
a primary challenge in biology that computational approaches are poised to tackle. We report a
whole-cell computational model of the life cycle of the human pathogen Mycoplasma genitalium
that includes all of its molecular components and their interactions. An integrative approach to
modeling that combines diverse mathematics enabled the simultaneous inclusion of fundamentally
different cellular processes and experimental measurements. Our whole-cell model accounts for
all annotated gene functions and was validated against a broad range of data. The model provides
insights into many previously unobserved cellular behaviors, including in vivo rates of protein-
DNA association and an inverse relationship between the durations of DNA replication initiation
and replication rates. In addition, experimental analysis directed by model predictions identified
previously undetected kinetic parameters and biological functions. We conclude that
comprehensive whole-cell models can be used to facilitate biological discovery.

INTRODUCTION
Computer models that can account for the integrated function of every gene in a cell have
the potential to revolutionize biology and medicine, as they increasingly contribute to how
we understand, discover and design biological systems (Di Ventura et al., 2006). Models of
biological processes have been increasing in complexity and scope (Covert et al., 2004; Orth
et al., 2011; Thiele et al., 2009), but with efforts at increased inclusiveness of genes,
parameters, and molecular functions come a number of challenges..
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Two critical factors in particular have hindered the construction of comprehensive, “whole-
cell” computational models. First, until recently not enough has been known about the
individual molecules and their interactions to completely model any one organism. The
advent of genomics and other high-throughput measurement techniques have accelerated the
characterization of some organisms to the extent that comprehensive modeling is now
possible. For example, the mycoplasmas, a genus of bacteria with relatively small genomes
that includes several pathogens, have recently been the subject of an exhaustive
experimental effort by a European consortium to determine the transcriptome (Güell et al.,
2009), proteome (Kuhner et al., 2009), and metabolome (Yus et al., 2009) of these
organisms.

The second limiting factor has been that no single computational method is sufficient to
explain complex phenotypes in terms of molecular components and their interactions. The
first approaches to modeling cellular physiology, based on ordinary differential equations
(ODEs) (Atlas et al., 2008; Browning et al., 2004; Castellanos et al., 2004; Castellanos et al.,
2007; Domach et al., 1984; Tomita et al., 1999), were limited by the difficulty in obtaining
the necessary model parameters. Subsequently, alternative approaches were developed that
require fewer parameters, including Boolean network modeling (Davidson et al., 2002) and
constraint-based modeling (Orth et al., 2010; Thiele et al., 2009). However, the underlying
assumptions of these methods do not apply to all cellular processes and conditions, and
building a whole-cell model entirely based on either method is therefore impractical.

Here, we present a “whole-cell” model of the bacterium Mycoplasma genitalium, a human
urogenital parasite whose genome contains 525 genes (Fraser et al., 1995). Our model
attempts to (1) describe the life cycle of a single cell from the level of individual molecules
and their interactions; (2) account for the specific function of every annotated gene product;
and (3) accurately predict a wide range of observable cellular behaviors.

EXPERIMENTAL PROCEDURES
Reconstruction

The whole-cell model was based on a detailed reconstruction of M. genitalium developed
from over 900 primary sources, reviews, books, and databases. First, we reconstructed the
organization of the chromosome including the locations of each gene, transcription unit,
promoter, and protein binding site. Second, we functionally annotated each gene beginning
with the CMR annotation. Functional annotation was primarily based on homologs
identified by bidirectional best BLAST. To fill gaps in the reconstructed organism, and to
maximize the scope of the model, we expanded and refined each gene's annotation using
primary research articles and reviews (see Data S1 and Table S3). Third, we curated the
structure of each gene product, including the post-transcriptional and post-translational
processing and modification of each RNA and protein and the subunit composition of each
protein and ribonucleoprotein complex. After annotating each gene, we categorized the
genes into 28 cellular processes. We curated the chemical reactions of each cellular process.
The reconstruction was stored in a MySQL relational database. See Data S1 and Table S3
for further discussion of the reconstruction.

Cellular Process Sub-models
Because biological systems are modular, cells can be modeled by (1) dividing cells into
functional processes, (2) independently modeling each process on a short time scale, and (3)
integrating process sub-models at longer time scales. We divided M. genitalium into the 28
functional processes illustrated in Figure 1, and modeled each process independently on a 1
s time scale using different mathematics and different experimental data. The sub-models
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spanned six areas of cell biology: (1) transport and metabolism, (2) DNA replication and
maintenance, (3) RNA synthesis and maturation, (4) protein synthesis and maturation, (5)
cytokinesis, and (6) host interaction. Sub-models were implemented as separate classes. See
Data S1 for further discussion of each sub-model.

Sub-model Integration
We integrated the sub-models in three steps. First, we structurally integrated the process
sub-models by linking their common inputs and outputs through 16 state variables (shown in
Figure 1) which together represent the complete configuration of the modeled cell: (1)
metabolite, RNA, and protein copy numbers, (2) metabolic reaction fluxes, (3) nascent
DNA, RNA, and protein polymers, (4) molecular machines, (5) cell mass, volume, and
shape, (6) the external environment including the host urogenital epithelium, and (7) time.
Second, the common inputs to the sub-models were computationally allocated at the
beginning of each time step. Third, we refined the values of the sub-model parameters to
make the sub-models mutually consistent. See Data S1 for further discussion.

Simulation Algorithm
The whole-cell model is simulated using an algorithm comparable to those used to
numerically integrate ODEs. First, the cell state variables are initialized. Second, the
temporal evolution of the cell state is calculated on a 1 s time scale by repeatedly allocating
the cell state variables among the processes, executing each of the cellular process sub-
models, and updating the values of the cell state variables. Finally, the simulation terminates
when either the cell divides, or the time reaches a predefined maximum value. See Data S1
for further discussion.

Single Gene Disruptions
Single-gene disruptions were modeled by (1) initializing the cell state, (2) deleting the in
silico gene, and (3) calculating the temporal evolution of the cell state for the first generation
post-disruption. We also calculated the mean growth rate of each single-gene disruption
strain at successive generations post-disruption. See Data S1 for further discussion of the
implementation of disruption strains and their computational analysis.

Computational Simulation and Analysis
We used the whole-cell model to simulate 192 wild type cells and 3,011 single-gene
deletants. All simulations were performed with MATLAB R2010b on a 128 core Linux
cluster. The predicted dynamics of each cell was logged at each time point and subsequently
analyzed using MATLAB. See Data S1 for further discussion.

Bacterial Culture
M. genitalium wild type and mutant strains with single-gene disruptions by transposon
insertion (Glass et al., 2006) were grown in Spiroplasma SP-4 culture media at 37°C and 5%
CO2. Growth was detected using the phenol red pH indicator. Cells were harvested for
quantitative growth measurement at pH 6.3–6.7. See Data S1 for more information about
media and culture conditions.

Colorimetric Assay to Measure Cell Growth
To measure the growth rates of the wild type and mutant strains, cells were collected from
10 cm plate cultures at pH 6.3–6.7, resuspended in 3 ml of FBS, and serial filtered through
1.2, 0.8, 0.45, and 0.2 µm polyethersulfone filters to sterilize and separate individual cells.
Cells were then plated at 5-, 25-, and 125-fold serial dilutions in triplicate on a 96-well plate,
and incubated at 37°C and 5% CO2. Six wells per plate were filled with blank SP-4 phenol
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red media as a negative control. Optical density readings were taken twice a day at 550 nm
to measure the decrease in phenol red color as pH decreased. Growth rate constants were
calculated from the additional time required for consecutive dilutions to reach the same
OD550 value, and were averaged over 2–3 independent sets of three replicates. See Data S1
for further description of these calculations. We used a heteroscedastic 2-sample 2-tailed t-
test to determine whether the doubling time of each single-gene disruption strain differed
significantly from that of the wild type. The growth rates of several slow growing strains
were also measured by DNA quantification using a modified version of the procedure
described in Glass et al., 2006. See Data S1 for further discussion.

RESULTS
Whole-cell model construction and integration

Our approach to developing an integrative whole cell model was to divide the total
functionality of the cell into modules, model each independently of the others, and integrate
these sub-models together. We defined 28 modules (Figure 1A) and independently built,
parameterized, and tested a sub-model of each. Some biological processes have previously
been studied quantitatively and in-depth, while other processes are less well-characterized or
are hardly understood. Consequently, each module was modeled using the most appropriate
mathematical representation. For example, metabolism was modeled using flux-balance
analysis (Suthers et al., 2009) whereas RNA and protein degradation were modeled as
Poisson processes.

A key challenge of the project was to integrate the 28 sub-models into a unified model.
Although we and others had previously developed methods to integrate ordinary differential
equations (ODEs) with Boolean, probabilistic, and/or constraint-based sub-models (Covert
et al., 2001; Covert et al., 2004; Covert et al., 2008; Chandrasekaran and Price, 2010), the
current effort involved so many different cellular functions and mathematical
representations that a more general approach was needed. We began with the assumption
that the sub-models are approximately independent on short time scales (less than one
second in this work). Simulations are then performed by running through a loop in which the
sub-models are run independently at each time step, but depend on the values of variables
determined by the other sub-models at the previous time step. Figure 1B summarizes the
simulation algorithm and the relationships between the sub-models and the cell state
variables. Data S1 provides a detailed description of the complete modeling process,
including reconstruction and computational implementation.

Model training and parameter reconciliation
Our model is based on a synthesis of over 900 publications and includes more than 1,900
experimentally observed parameters. Most of these parameters were implemented as
originally reported. However, several other parameters were carefully reconciled; for
example, the experimentally measured DNA content per cell (Morowitz et al., 1962;
Morowitz, 1992) represents less than one third of the calculated mass of the mycoplasma
chromosome. Data S1 details how we resolved this and several similar discrepancies among
the experimentally observed parameters.

Once the model was implemented and all parameters reconciled, we verified that the model
recapitulates key features of our training data. We simulated 128 wild type cells in a typical
Mycoplasma culture environment, with each simulation predicting not only cellular
properties such as the cell mass and growth rate, but also molecular properties including the
count, localization, and activity of each molecule (Movie S1 illustrates the life cycle of one
in silico cell). We found that the model calculations were consistent with the observed
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doubling time (Figure 2A and 2B), cellular chemical composition (Figure 2C), replication of
major cell mass fractions (Figure 2D), and gene expression (R2 = 0.68; Figure S1A).

Model validation against independent experimental data
Next, we validated the model against a broad range of independent datasets that were not
used to construct the model and which encompass multiple biological functions –
metabolomics, transcriptomics, and proteomics – and scales, from single cells to
populations. In agreement with earlier reports (Yus et al., 2009), the model predicts that the
flux through glycolysis is >100-fold more than that through the pentose phosphate and lipid
biosynthesis pathways (Figure 2E). Furthermore, the predicted metabolite concentrations are
within an order of magnitude of concentrations measured in Escherichia coli for 100% of the
metabolites in one compilation of data (Sundararaj et al., 2004) and for 70% in a more
recent high-throughput study (Bennett et al., 2009; Figure 2F). Our model also predicts
“burst-like” protein synthesis due to the local effect of intermittent mRNA expression and
the global effect of stochastic protein degradation on the availability of free amino acids for
translation, comparable to recent reports by Yu et al., 2006 and So et al., 2011 (Figure 2G).
The mRNA and protein level distributions predicted by our model are also consistent with
recently reported single-cell measurements (Figure 2H, compare to Taniguichi et al., 2010).
Taking all of these specific tests of the model's predictions together, we concluded that our
model recapitulates experimental data across multiple biological functions and scales.

Prediction of DNA binding protein interactions
Models are often used to predict molecular interactions that are difficult or prohibitive to
investigate experimentally, and our model offers the opportunity to make such predictions in
the context of the entire cell. Whereas previous studies have either focused on the genomic
distribution of DNA-binding proteins (Vora et al., 2009) or on the detailed diffusion
dynamics of specific DNA-binding proteins (Bratton et al., 2011), the whole-cell model can
predict both the instantaneous protein chromosomal occupancy as well as the temporal
dynamics and interactions of every DNA-binding protein at the genomic scale at single-cell
resolution. Figure 3A illustrates the average predicted chromosomal protein occupancy, as
well as the predicted chromosomal occupancies for DNA and RNA polymerase and the
replication initiator DnaA, three of the 30 DNA binding proteins represented by our model.
Consistent with a recent experimental study by Vora et al., 2009, the predicted high-
occupancy RNA polymerase regions correspond to highly transcribed rRNAs and tRNAs. In
contrast, the predicted DNA polymerase chromosomal occupancy is significantly lower and
biased toward the terC (see below for further discussion).

The model further predicts that the chromosome is explored very rapidly, with 50% of the
chromosome having been bound by at least one protein within the first 6 min of the cell
cycle, and 90% within the first 20 min (Figure 3B). RNA polymerase contributes the most to
chromosomal exploration, binding 90% of the chromosome within the first 49 min of the
cell cycle. On average, this results in expression of 90% of genes within the first 143 min
(Figure 3C), with transcription lagging RNA polymerase exploration due to the significant
contribution of non-specific RNA polymerase-DNA interactions to RNA polymerase
diffusion (Harada et al., 1999).

The model also predicts protein-protein collisions on the chromosome. Previous researchers
have studied the collisions of pairs of specific proteins (Pomerantz and O’Donnell, 2010),
but experimentally determining the collisions among all pairs of DNA-binding proteins at
the genomic scale at single-cell resolution is currently infeasible. Our model predicts that
over 30,000 collisions occur on average per cell cycle, leading to the displacement of 0.93
proteins per second. Figure 3D illustrates the binding dynamics of the same proteins
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depicted in Figure 3A over the course of the cell cycle for one representative simulation, and
highlights several protein-protein collisions. Further categorization of the predicted
collisions by chromosomal location indicates that the flux of protein-protein collisions
correlates strongly with DNA-bound protein density (Figure 3F), and that the majority of
collisions are caused by RNA polymerase (84%) and DNA polymerase (8%), most
commonly resulting in the displacement of Structural Maintenance of Chromosome (SMC)
proteins (70%), or single-stranded binding proteins (6%) (Figure 3E and Table S2F).

Identification of metabolism as an emergent cell cycle regulator
The model can also highlight interesting aspects of cell behavior. In reviewing our model
simulations, we noticed variability in the cell cycle duration (Figure 2B), and wanted to
determine the source of that variability. The model representation of the M. genitalium cell
cycle consists of three stages: replication initiation, replication itself, and cytokinesis. We
found that there was relatively more cell-to-cell variation in the durations of the replication
initiation (64.3%) and replication (38.5%) stages than in cytokinesis (4.4%) or the overall
cell cycle (9.4%; Figure 4A). This data raised two questions: (1) what is the source of
duration variability in the initiation and replication phases, and (2) why is the overall cell
cycle duration less varied than either of these phases?

With respect to the first question, replication initiation occurs as DnaA protein monomers
bind or unbind stochastically and cooperatively to form a multimeric complex at the
replication origin (Figure 4B, top) (Browning et al., 2004). When the complex is complete,
DNA polymerase gains access to the origin and the complex is displaced. We found a
correlation (R2 = 0.49) between the predicted duration of replication initiation and the initial
number of free DnaA monomers (Figure 4C); however, the somewhat low correlation
indicated that the duration depends on more than the initial conditions. In particular, we
observed that the stochastic aspect of the transcription and translation sub-models creates
variability in the number of new DnaA monomers produced over time, as well as the DnaA
binding and unbinding events themselves. This indicates that the variability in replication
initiation duration depends not only on variability in initial conditions, but also in the
simulation itself.

As to the second question, because the replication sub-model is substantially more
deterministic than the initiation sub-model, we expected to find a straightforward
relationship between the progress of replication and the cell cycle. Instead, the model
predicts that DNA replication proceeds at two distinct rates during the cell cycle. This is
reflected in the motion and DNA-binding density of DNA polymerase (Figure 3A and 3D),
and in the dynamics of DNA synthesis as compared to the synthesis of other
macromolecules (Figure 4B, middle). Initially replication proceeds quickly, due to the free
dNTP content in the cell (Figure 4B, bottom). When DNA polymerase initially binds to the
replication origin, dNTPs are abundant and replication can proceed unimpeded. When the
dNTP pool is exhausted, however, the rate of replication slows to the rate of dNTP
synthesis. Accordingly, the duration of the replication phase in individual cells is more
closely related to the free dNTP content at the start of replication than to the dNTP content
at the start of the cell cycle (Figure 4D).

This change in the availability of dNTPs imposes a control on the cell cycle duration.
Specifically, the duration of the initiation and replication phases are inversely related to each
other in single cells (Figure 4E), such that longer initiation times led to shorter replication
times. This occurs because cells that require extra time to initiate replication also build up a
large dNTP surplus, leading to faster replication. This interplay buffers against the high
variability in the duration of replication initiation, giving rise to substantially less variability
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in the length of the cell cycle. The whole-cell model therefore presents a novel hypothesis of
an emergent control of cell-cycle duration that is independent of genetic regulation.

Global distribution of energy
The model also provided an opportunity to develop a quantitative assessment of cellular
energetics, which represents one of the most connected aspects of our model. To begin, we
investigated the synthesis dynamics of the high energy intermediates ATP, GTP, FAD(H2),
NAD(H), and NADP(H), and found that ATP and GTP are synthesized at rates over 1,000-
fold higher than the others (Figure 5A). Notably, the overall usage of ATP and GTP did not
vary considerably in all but the very slowest of our simulations (Figure 5B), underscoring
the role of metabolism in controlling the cell cycle length. We then considered the processes
that use ATP and GTP, and found that usage is dominated by production of mRNA and
protein (Figure 5C). We also found a large (44%) discrepancy between total energy usage
and production (Figure 5D). Others have noted an uncoupling between catabolism and
anabolism, attributing the difference to factors such as varying maintenance costs or energy
spilling via futile cycles (Russell et al., 1995), and the model’s prediction estimates the total
energy cost of such uncoupling.

Determining the molecular pathologies of single-gene disruption phenotypes
Having considered these above-described model predictions for the wild type M. genitalium
strain, we next performed in silico genome perturbations to gain insight into the genetic
requirements of cellular life. We performed multiple simulations of each of the 525 possible
single-gene disruption strains (over 3,000 total simulations), and found that 284 genes are
essential to sustain M. genitalium growth and division, and 117 are non-essential. The model
accounts for previously observed gene essentiality with 79% accuracy (P < 10−7; Glass et
al., 2006; Figure 6A).

In cases where the model prediction agrees with the experimental outcome with respect to
gene essentiality, we found that a deeper examination of the simulation can generate insight
into why the gene product is required by the system. We examined the capacities of the 525
simulated gene disruption strains to produce major biomass components (RNA, DNA,
protein, lipid) and to divide. As shown in Figure 6B, the non-viable strains were unable to
adequately perform one or more of these major functions. The most debilitating disruptions
involved metabolic genes and resulted in the inability to produce any of the major cell mass
components. The next most debilitating gene disruptions impacted the synthesis of a specific
cell mass component such as RNA or protein. Interestingly, in these cases the model
predicted an initial phase of near-normal growth followed by decreasing growth due to
diminishing protein content. In some cases (Figure 6B, fifth column), the time required for
the levels of specific proteins to fall to lethal levels was greater than one generation (Figure
6C and 6D). A third class of lethal gene disruptions impaired cell cycle processes. For these,
the model predicted normal growth rates and metabolism, but incapacity to complete the cell
cycle. The remaining lethal gene disruption strains grew so slowly compared to wild type
that they were considered non-viable (Figure 6B, Figure S2). We conclude that the model
can be used to classify cellular phenotypes by their underlying molecular interactions.

Model-driven biological discovery
Using computational modeling as a complement to an experimental program has previously
been shown to facilitate biological discovery (Di Ventura et al., 2006). This is often
accomplished by reconciling model predictions that are initially inconsistent with
observations (Covert et al., 2004). To test the utility of the whole-cell model in this context,
we experimentally measured the growth rates of twelve single-gene disruption strains – ten
of which were correctly predicted to be viable and two of which that were incorrectly
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predicted to be nonviable – for comparison to our models' predictions (Figure 7A). We
found that two-thirds of the predictions were consistent with the measured growth rates.

The most interesting of these comparisons concerned the lpdA disruption strain. The lpdA
gene was originally determined to be non-essential (Glass et al., 2006). Consequently, we
initially classified the model’s prediction as false (Figure 6A). However, we did not detect
growth using our colorimetric assay (Figure 7B), a discrepancy that warranted further
investigation. An alternative method to determine the doubling time yielded a value that was
40% lower than the wild type (Table S1). Taken together, the data suggested that disrupting
the lpdA gene had a severe, but non-critical impact on cell growth.

In an effort to resolve the discrepancy between our model and the experimental
measurements, we determined the molecular pathology of the lpdA disruption strain. The
lpdA gene product is part of the pyruvate dehydrogenase complex, which catalyzes the
transfer of electrons to NAD as a subset of the overall pyruvate dehydrogenase chemical
reaction (de Kok et al., 1998). The viability of the lpdA disruption strain suggests that this
reaction could be catalyzed by another enzyme with a lower catalytic efficiency.

Since previous studies have shown that many M. genitalium genes are multi-functional
(Pollack et al., 2002; Cordwell et al., 1997), we searched the genome for candidates
encoding an alternative NAD electron transfer pathway. We found that the Nox sequence
was far more similar to the LpdA sequence than any other gene product in the genome, with
61% coverage, 25% identity, and an expectation value less than 10−6 (Figure 7C).
Furthermore, the nox gene product, NADH oxidase, has been shown to oxidize NAD
(Schmidt et al., 1986). Moreover, the nox locus falls in a sub-operon that contains two other
pyruvate dehydrogenase genes and has been shown to be coexpressed with pdhA (Guell et
al., 2009) (Figure 7D), strongly suggesting a functional relationship between the products of
these two genes. Our model suggests that to reproduce the observed growth rate in the
absence of lpdA, the hypothetical Nox-dependent reaction would require a kcat of
approximately 50 s−1 (Figure 7E), which represents only approximately 5% of the maximum
throughput of this enzyme. We therefore concluded that substrate promiscuity of Nox is
likely to enable the lpdA disruption strain to survive.

Four gene disruption strains exhibited growth rates that were quantitatively different than
those predicted by the model (Figure 7A); of these, we used the complete simulations for the
thyA and deoD strains to determine the underlying pathology of the respective gene
disruptions. The thyA gene product catalyzes dTMP production and can be complemented
by the tdk gene product. We therefore hypothesized that by reducing the kcat value for Tdk
in the model we would see a reduction in the growth rate of the tdk disruption strain.
Reducing the Tdk kcat in the model did indeed reduce the predicted growth rate of the thyA
strain, but it also affected the wild type growth rate (Figure 7F). Only a small range of the
kcat values both reduced the thyA strain growth rate to the experimentally observed levels
and was also consistent with the wild type growth rate.

In a similar case, DeoD catalyzes the conversion of deoxyadenosine to adenine and D-
ribose-1-phosphate; these products can also be produced by the pdp gene product from
deoxyuridine. We identified a Pdp kcat range for which the wild type and deoD gene
disruption strains produce the same growth rate (Figure 7G).

Significantly, these newly predicted kcat values are consistent with previously reported
values. In the original model reconstruction, to least constrain the metabolic model, we
conservatively set each of these kcats to the least restrictive value found during the
reconstruction process. For Tdk and Pdp, these values corresponded to distantly related
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organisms; however, the newly predicted kcat values are consistent with reports from more
closely related species (Figure 7H).

In each of these three cases (lpdA, deoD, thyA), identifying a discrepancy between model
predictions and experimental measurements led to further analysis which resolved the
discrepancy, and also provided novel insight into M. genitalium biology (Figure 7I). These
results support the assertion that large-scale modeling can be used to support biological
discovery (Kitano, 2002; Brenner, 2010).

DISCUSSION
We have developed a comprehensive, whole-cell model that accounts for all of the
annotated gene functions identified in M. genitalium and explains a variety of emergent
behaviors in terms of molecular interactions. Our model accurately recapitulates a broad set
of experimental data, provides insight into several biological processes for which
experimental assessment is not readily feasible, and enables the rapid identification of novel
gene functions as well as specific cellular parameters.

In contemplating these results, we make two observations based on comparing this work in
whole-cell modeling with earlier work in whole genome sequencing. First, similar to the
first reports of the human genome sequence, the model presented here is a "first draft", and
extensive effort is required before the model can be considered complete. Of course, much
of this effort will be experimental – for example, further characterization of gene products –
but the technical and modeling aspects of this study will also have to be expanded, updated
and improved as new knowledge comes to light.

Second, in whole genome sequencing as well as whole-cell modeling, M. genitialium was a
focus of initial studies, primarily because of its small genome size. The goal of our modeling
efforts, as well as that of early sequencing projects, was to develop the technology in a
reduced system before proceeding to more complex organisms. However, M. genitalium
presents many challenges with regard to experimental tractability. Resistance to most
antibiotics, the lack of a chemically defined medium, and a cell size that requires advanced
microscopy techniques for visualization, all greatly limit the range of experimental
techniques available to study this organism. As a result, much of the data used to build and
validate the model was obtained from other organisms. Therefore, while the results we
report suggest several new experiments that could yield important new insight with respect
to M. genitalium function, comprehensive validation of our approach will require modeling
more experimentally tractable organisms such as E. coli.

We are optimistic that whole-cell models will accelerate biological discovery and
bioengineering by facilitating experimental design and interpretation. Moreover, these
findings, in combination with the recent de novo synthesis of the M. genitalium
chromosome and successful genome transplantation of Mycoplasma genomes to produce a
synthetic cell (Gibson et al., 2008; Gibson et al., 2010; Lartigue et al., 2007; Lartigue et al.,
2009), raise the exciting possibility of using whole-cell models to enable computer-aided
rational design of novel microorganisms. Finally, we anticipate that the construction of
whole cell models, and the iterative testing of them against experimental information, will
enable the scientific community to assess how well we understand integrated cellular
systems.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Entire organisms can be modeled in terms of their molecular components

• Complex phenotypes can be modeled by integrating cell processes into a single
model

• Whole-cell models can provide novel insights into unmeasured cellular
behaviors

• Whole-cell models can be used to facilitate biological discovery
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Figure 1. M. genitalium whole-cell model integrates 28 sub-models of diverse cellular processes
(A) Diagram schematically depicts the 28 sub-models as colored words – grouped by
category as metabolic (orange), RNA (green), protein (blue), and DNA (red) – in the context
of a single M. genitalium cell with its characteristic flask-like shape. Sub-models are
connected through common metabolites, RNA, protein, and the chromosome which are
depicted as orange, green, blue, and red colored arrows, respectively.
(B) The model integrates cellular function sub-models through 16 cell state variables. First,
simulations are randomly initialized to the beginning of the cell cycle (left grey arrow).
Next, for each 1 s time step (dark black arrows) the sub-models retrieve the current values of
the cellular variables, calculate their contributions to the temporal evolution of the cell
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variables, and update the values of the cellular variables. This is repeated thousands of times
over the course of each simulation. For clarity, cell functions and variables are grouped into
5 physiologic categories: DNA (red), RNA (green), protein (blue), metabolite (orange), and
other (black). Colored lines between the variables and sub-models indicate the cell variables
predicted by each sub-model. The number of genes associated with each sub-model is
indicated in parentheses. Finally, simulations are terminated upon cell division when the
septum diameter equals zero (right grey arrow).
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Figure 2. The model was trained with heterogeneous data and reproduces independent
experimental data across multiple cellular functions and scales
(A) Growth of three cultures (dilutions indicated by shade of blue) and a blank control
measured by OD550 of the pH indicator phenol red. The doubling time, τ, was calculated
using the equation at the top left from the additional time required by more dilute cultures to
reach the same OD550 (black lines).
(B) Predicted growth dynamics of one life cycle of a population of 64 in silico cells
(randomly chosen from the total simulation set). Median cell is highlighted in red.
Distribution of cell cycle lengths is shown at bottom.
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(C) Comparison of the predicted and experimentally observed (Morowitz et al., 1962)
cellular chemical compositions. Red bars indicate model s.d.; Morowitz et al. did not report
s.d.
(D) Temporal dynamics of the total cell mass and four cell mass fractions of a representative
in silico cell. Mass fractions are normalized to their initial values.
(E) Average predicted metabolic fluxes (see Figure S1B for metabolite and reaction labels).
Arrow brightness indicates flux magnitude. The ratios of the GpsA and TalA fluxes to the
Glk flux are indicated in orange boxes and are comparable to experimental data (Yus et al.,
2009).
(F) Ratios of observed (Sundararaj et al., 2004; Bennett et al., 2009) and average predicted
concentrations of 39 metabolites.
(G) Temporal dynamics of cytadherence high molecular weight protein 2 (HMW2, MG218)
mRNA and protein expression of one in silico cell. Red dashed lines indicate the direct link
between mRNA synthesis and subsequent bursts in protein synthesis.
(H) HMW2 mRNA and protein copy number distribution of an unsynchronized population
of 128 in silico cells. Histograms indicate the marginal distributions of the copy numbers of
mRNA (top) and protein (right). Red lines indicate log-normal regressions of these marginal
distributions. The absence of correlation between the copy numbers of mRNA and protein
and the shapes of the marginal distributions are consistent with recent single-cell
measurements by Taniguchi et al., 2010.
See also Movie S1, and Tables S1 and S2.
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Figure 3. The model highlights the central physiologic role of DNA-protein interactions
(A) Average density of all DNA-bound proteins and of the replication initiation protein
DnaA and DNA and RNA polymerase of a population of 128 in silico cells. Top
magnification indicates the average density of DnaA at several sites near the oriC; DnaA
forms a large multimeric complex at the sites indicated with asterisks, recruiting DNA
polymerase to the oriC to initiate replication. Bottom left label indicates the location of the
highly expressed rRNA genes.
(B and C) Percentage of the chromosome that is predicted to have been bound (B), and the
number of genes that are predicted to have been expressed (C) as functions of time. SMC is
an abbreviated name for the name of the chromosome partition protein (MG298).
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(D) DNA-binding and dissociation dynamics of the oriC DnaA complex (red) and of RNA
(blue) and DNA (green) polymerases for one in silico cell. The oriC DnaA complex recruits
DNA polymerase to the oriC to initiate replication, which in turn dissolves the oriC DnaA
complex. RNA polymerase traces (blue line segments) indicate individual transcription
events. The height, length, and slope of each trace represent the transcript length,
transcription duration, and transcript elongation rate, respectively. Inset highlights several
predicted collisions between DNA and RNA polymerases leading to the displacement of
RNA polymerases and incomplete transcripts.
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Figure 4. The model predictions regarding regulation of the cell cycle duration
(A) Distributions of the duration of three cell cycle phases, as well as that of the total cell
cycle length, across 128 simulations.
(B) Dynamics of macromolecule abundance in a selected cell simulation: top, the size of the
DnaA complex assembling at the OriC (in monomers of DnaA); middle, the copy number of
the chromosome; and bottom, the cytosolic dNTP concentration. The quantities of these
macromolecules correlate strongly with the timing of key cell cycle stages.
(C) Correlation between the initial cellular DnaA content and the duration of the replication
initiation cell cycle stage across the same 128 in silico cells depicted in (A).
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(D) Correlation between the dNTP concentrations (both at the beginning of the cell cycle
and at the beginning of replication) and the duration of replication across the same 128 in
silico cells depicted in (A).
(E) Correlation between the duration of replication initiation and replication across the same
128 in silico cells depicted in (A).
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Figure 5. Model provides a global analysis of the use and allocation of energy
(A) Intracellular concentrations of the energy carriers ATP, GTP, FAD(H2), NAD(H), and
NADP(H) of one in silico cell.
(B) Comparison of the cell cycle length and total ATP and GTP usage of 128 in silico cells.
(C) ATP (blue) and GTP (green) usage of 15 cellular processes throughout the life cycle of
one in silico cell. The pie charts at right denote the percentage of ATP and GTP usage (red)
as a fraction of total usage. (D) Average distribution of ATP and GTP usage among all
modeled cellular processes in a population of 128 in silico cells. In total, the modeled
processes account for only 44.3% of the amount of energy that has been experimentally
observed to be produced during cellular growth.
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Figure 6. Model identifies common molecular pathologies underlying single-gene disruption
phenotypes
(A) Comparison of predicted and observed (Glass et al., 2006) gene essentiality. Model
predictions are based on at least five simulations of each single-gene disruption strain; see
Data S1 for details.
(B) Single-gene disruption strains were grouped into phenotypic classes (columns)
according to their capacity to grow, synthesize protein, RNA, and DNA, and divide
(indicated by septum length). Each column depicts the temporal dynamics of one
representative in silico cell of each essential disruption strain class. Disruption strains of
non-essential genes are not shown. Dynamics significantly different from wild type are
highlighted in red. The identity of the representative cell and the number of disruption
strains in each category is indicated in parenthesis.
(C and D) Degradation and dilution of N-terminal protein content (C) of methionine
aminopeptidase (map, MG172) disrupted cells causes reduced growth (D). Blue and black
lines indicate the map disruption and wild type strains, respectively. Horizontal bars indicate
s.d.
See also Figure S2 for the distribution of simulated growth rates.
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Figure 7. Quantitative characterization of selected gene disruption strains leads to identification
of novel gene functions and kinetic parameters
(A) Comparison of measured and predicted growth rates for wild type and 12 single-gene
disrupted strains. Model predictions that fall within the shaded region were considered
consistent with experimental observations; the region has a width of four times the standard
deviation of the wild type strain growth measurement. Error bars represent s.d.
(B) Growth curves for the wild type and lpdA gene disruption strains and blank; similar to
Figure 2A.
(C) Expectation values determined by performing a pBLAST search of the M. genitalium
genome with the LpdA sequence as a query. The asterisk and colored bar indicate a
significant match (E < 10−6).
(D) Detail of the M. genitalium genome. The pyruvate dehydrogenase complex genes are
indicated by the top bracket, and transcription units identified in M. pneumoniae (Güell et
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al., 2009) are indicated by arrows. The transcription unit including nox is highlighted in
color.
(E) Allowing Nox to partially replace LpdA in pyruvate dehydrogenase reconciles model
predictions and experimental observations. The blue and red lines represent the predicted
wild type and ΔlpdA strain growth rates as a function of the Nox-pyruvate dehydrogenase
kcat. The pink box indicates the kcat at which the model predictions are consistent with both
the wild type and ΔlpdA strain experimentally measured growth rates.
(F and G) Diagnosing the discrepancy between predictions and experiment for the thyA (F)
and deoD (G) gene disruption strains. Some of the functionalities of ThyA and DeoD can be
replaced by the enzymes Tdk and Pdp, respectively. The predicted growth rates of the wild
type and gene disruption strains depend on the kcat of these enzymes. The green region
highlights the range of kcat values consistent with the measured growth rates of both the wild
type and gene disruption strain.
(H) Newly predicted kcat values are similar to values that were measured in closely related
organisms. Measured values of kcat for Tdk (top) and Pdp (bottom) are shown; green arrow
indicates the initial and revised kcat values. The nearest M. genitalium relative is highlighted
in green.
(I) Model-based biological discovery. Comparison of model predictions to experimental
measurements identified gene disruption strains of particular interest, including the lpdA,
deoD and thyA disruption strains. Further investigation – using a combination of
experiments, modeling and/or informatics – led to new and more consistent measurements
and predictions. Most importantly, the higher consistency reflected novel insights into M.
genitalium biology. The arrows (red for lpdA, green for deoD and thyA) indicate the shift
from lower to higher consistency between model and experiment, and each arrow is
annotated with the new biological insight and the supporting evidence in parentheses. The
overall graph format is the same as Figure 7A.
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