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Abstract
Many surgical procedures require the placement of an inert or tissue-derived implant deep within
the body cavity. While the majority of these implants do not become colonized by bacteria, a
small percentage develops a biofilm layer that harbors invasive microorganisms. In orthopaedic
surgery, unresolved periprosthetic infections can lead to implant loosening, arthrodeses,
amputations and sometimes death. The focus of this review is to describe development of an
implant in which an antibiotic tethered to the metal surface is used to prevent bacterial
colonization and biofilm formation. Building on well-established chemical syntheses, studies
show that antibiotics can be linked to titanium through a self-assembled monolayer of siloxy
amines. The stable metal-antibiotic construct resists bacterial colonization and biofilm formation
while remaining amenable to osteoblastic cell adhesion and maturation. In an animal model, the
antibiotic modified implant resists challenges by bacteria that are commonly present in
periprosthetic infections. While the long-term efficacy and stability is still to be established,
ongoing studies support the view that this novel type of bioactive surface has a real potential to
mitigate or prevent the devastating consequences of orthopaedic infection.
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I. Introduction
Infection continues to plague all medical disciplines that rely on implantation of a foreign
object. In orthopaedics, while a diversity of organisms are present in deep infection, the
dominant bacteria are Gram-positive pathogens [1], with Staphylococcus aureus (S. aureus)
and the coagulase-negative staphylococci especially prevalent [2–5]. Established treatments
rely on controlled release of antibiotics [6–10], or, more recently, the release of silver ions
from the implant surface [11–19]. While both treatments have considerable strengths,
limitations such as tissue toxicity have prompted a search for alternatives that are
antibacterial over the lifetime of the implant. The objective of this review is to examine
factors leading to orthopaedic infection and consider the efficacy of immobilized antibiotics
for long-term prevention of implant-associated infections.
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II. Orthopaedic Infections
The incidence of infection depends on the surgical site and the procedure. Transcutaneous
fracture fixation pins have a 2–30% chance of infection [15, 20–22], bone supplementation
can be as high as 13%[23–24], spinal infections are in the 2–5% range [25–26], and
depending on the center, infection after arthroplasty can be significantly less than 1–2%[27–
31]. In cases of devastating trauma despite aggressive antibiotic prophylaxis and delay of
hardware placement, infection occurs frequently [32–34].

Pathogen colonization of hardware is enhanced by the host response to implantation.
Specifically, the host rapidly coats implanted materials with serum proteins that promote cell
recruitment and tissue repair. Unfortunately, these same serum proteins are used by
pathogens for adhesion and virulence [35–37]. The problem is further compounded by
activation of an inflammatory response as well as the complement system upon presentation
of these adsorbed proteins. These events, including attenuated activation of phagocytic cells,
blunt the local immune response creating an opportunity for pathogen colonization [38–40].
In addition, the proteins adsorbed onto the implant can promote bacterial adhesion to the
implant [5, 41–42]. Another complication is added as the bacteria use the adsorbed serum
fibronectin and vitronectin to interact with adjacent cells. In some cases, these interactions
lead to cellular internalization which can initiate a chronic infection [43–46] as antimicrobial
penetration into infected mammalian cells may be insufficient to eradicate the pathogen [47–
50]. Internalization is not limited to professional phagocytic cells—HeLa cervical carcinoma
cells [51], aortic endothelial cells, fibroblasts and osteoblasts, among others harbor bacteria,
in vitro [52–57]. Finally, the presence of a bacterial biofilm (a community of surface
adherent bacteria encased in a polymeric complex) protects microorganisms from antibiotic
activity and from immune cell surveillance. The avidity with which these pathogens
colonize implants, their recalcitrance to antibiotic treatment in an adherent state, and the
possibility that they can persist in the tissue despite implant removal, make prevention rather
than treatment of infection of paramount importance.

Since surfaces that tend to be biocompatible often promote bacterial colonization, it raises
the question, how can infection be avoided? Clearly, the first defense is rigid adherence to
sterile techniques. Clean room environments have been shown to lower orthopaedic
infection rates to below 1% [58]. A robust host response is also required. Approximately 20
years ago, Gristina [59], suggested that there was a “race to the surface” between the cells
from the host tissue and the invading pathogens. Conditions are optimum for the host when
mammalian cells rapidly populate the implant prior to contamination by pathogens. In the
process, the adhering mammalian cells remodel the serum proteins adherent to the implant
surface and initiate formation of either a fibrous or osseous interface with the implant, to
ultimately minimize the inflammation associated with the foreign body reaction to the
implant [38, 40]. In concert with tissue formation, immune cell surveillance, although
attenuated in the peri-implant space, serves to protect the site from bacterial colonization.
Such events would be expected to promote host cell survival and prevent bacterial biofilm
formation, thereby providing a level of protection that would be optimum for orthopaedic
implants.

The tissue infection paradigm has been elegantly modeled in vitro by Subbiahdoss, et al.
[60–62]. These researchers showed that when challenged with bacterial toxins, flow
conditions promoted cell survival and allowed examination of the competition between
bacteria and cell for surfaces. Using this flow system, pre-incubation of the surface with
bacteria supports osteoblast-like cell adhesion, albeit with a more rounded morphology and
very limited proliferative span. On the other hand, when cells first populate the surface, the
numbers of adherent bacteria decrease as coverage from adherent osteoblast-like cells
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increase. Overall, this in vitro model suggests that bacterial presence limits osteoblast-like
cell population of the implant whereas adhesion of osteoprogenitor cells to the implants
limits bacterial adhesion. These studies provide an in vitro competition model for major
non-immune events modulating implantation. In this “race for the surface,” the importance
of fostering the initial bone ingrowth to counteract bacterial colonization was deemed to be
of critical importance. Addition of macrophages to a bacterial-cell system allows an in vitro
measure of a simplified integration of the activated macrophage and its control of bacterial
colonization, allowing the mammalian cells to have the advantage in the race to the surface.

Clinically, early contamination, especially during the initial implantation period, is assumed
to occur peri-operatively through introduction of the pathogen either on the implant or into
the surgical site. Under these conditions, microorganisms would be present at the surface
during the initial post-operative stages which include clot formation and dissolution prior to
stem cell commitment and osteoblast colonization of the implant. This situation may be
particularly devastating as the host cell response to implantation includes complement
activation, recruitment of phagocytic cells whose activity quickly becomes attenuated in the
presence of the large foreign object, and release of inflammatory cytokines [63]. Together,
these events increase the probability for successful bacterial propagation. To mimic this
situation, Schwarz and his colleagues set up a peri-prosthetic infection model in which the
implant was already populated with bacteria at the time of surgery [64]. Infection ensues as
the colonizing bacteria further activate (in addition to the foreign body reaction) the immune
system to result in tissue degradation, sinus formation, and dissemination of bacteria into the
surrounding tissues.

Later infections may arise due to persistence of an indolent infection (seeded in the peri-
operative period) or hematogenous seeding of the implant by a low-level bacterial
contamination such as transient bacteremias experienced with urinary tract infections.

With revision arthroplasty (replacement of the implant due to aseptic loosening or infection),
infection and re-infection are more prevalent. Because even low levels of bacterial
colonization can induce implant loosening, some cases of aseptic loosening are now
considered to be due to subclinical contamination of the site. Infection rates can be greater
than 10% for revision of septic joints [65], even with aggressive antimicrobial treatment.
One explanation is that adjacent tissues can harbor bacteria [66–68] so that removal of the
implant, debridement of the bone, and aggressive antimicrobial treatment may be inadequate
to remove all of the bacterial contamination. In these cases, placement of an implant may
become impossible.

III. Implant Colonization
Except in cases of trauma where probable sources of infection are obvious, there still is
debate concerning the origin of the contaminating organisms. Implant colonization can
occur peri-operatively as detailed above or hematogenously later in the lifetime of the
implant. The hematogenous spread may occur when low numbers of bacteria are transiently
dispersed throughout the body, such as occurs during urinary tract infections or dental
procedures. Under ideal circumstances, these blood-borne bacteria are cleared by the host
immune system before they lodge in vulnerable sites. Unfortunately, transient bacteremias
of 100 or fewer microorganisms are capable of successfully colonizing an implant surface
[40, 68–69]. From this perspective, the limiting factor is time not organism dose.

Importantly, bacterial adherence to the implant initiates metabolic and phenotypic changes
that render the adherent pathogen resistant to antibiotics as well as protecting it from
immune surveillance [70]. As immune surveillance may already be compromised due to the
presence of the implant, protection of the bacteria may be even more effective. With respect
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to antibiotics, even with antibiotic concentrations that are 20–100X greater than the
minimum inhibitory concentration (MIC), some adherent bacteria can still persist on
implants, in vitro [71–72]. Fortunately, some antibiotics, such as vancomycin and
daptomycin, appear to be somewhat effective against biofilms [73–74].

This apparent antibiotic resistance is initiated upon adhesion to an implant when bacteria
change from a rapidly growing, non-adherent planktonic state to a sessile organism.
Generally, these adherent bacteria secrete and then become encased in a thick biofilm matrix
that serves to further protect them against host assault. Within this biofilm, channels exist
for nutrient exchange, and, as in any renewing structure, there is both proliferation and death
[41, 75–77]. This latter event results in the biofilm being a rich repository of DNA.
Exchange of biofilm-trapped DNA between bacterial species can cause transfer of traits, in
particular those responsible for true antibiotic resistance [41, 77].

An important corollary to the presence of a mature biofilm on an implant is the sloughing
off of bacteria into the environment. These bacteria can then colonize the surrounding tissue
[66–68], adhering to ECM proteins present in the tissue as well as initiating cellular
processes that cause pathogen internalization [36, 55, 78–81]. Thus, once implant
colonization has occurred, continuing infection is propagated not only through the bacteria
disseminated from the biofilm on the implant, but through adherence and colonization of
contiguous tissues.

In summary, adhesion of bacteria to a surface and subsequent biofilm formation promotes
metabolic, phenotypic, and genotypic changes that make their eradication extremely
difficult. Moreover, continuous seeding of surrounding tissues increases the probability that
infection will continue. For these reasons, the single most important target for prevention of
implant-associated infections is eradication of bacteria before they can populate the implant/
tissue environment.

IV. Implant Designs to Minimize Bacterial Colonization
Depending on surgical requirements, orthopaedic implants can be comprised of a single
material, as in fracture fixation hardware and spinal hardware (metals or polymers such as
polyethylarylketone), multiple materials, such as the combinations of plastics or ceramics
and metals used for hip and knee implants (which are often accompanied by cements or
morselized bone to enhance implant fit) or complex proteins and minerals as found in
allograft bone. It is important to note that all implants are not designed to be osseointegrated.
Unfortunately, all implants are prone, to some degree, to bacterial colonization. The
propensity for bacterial colonization does, to some extent, depend on the material. However
the general rule of thumb is that in accord with the “race for the surface” scenario, i.e.,
enhanced protein adsorption will ultimately result in increased [osseo]integration and
resistance to infection; however during the early stages of this process, these self-same
properties predispose the implant to bacterial colonization.

At the material level, the composition of the implant has some impact on bacterial
colonization. For instance, in vivo, stainless steel is colonized more readily than titanium,
perhaps due to differences in osseointegration [82–83] which may reflect differences in
protein adsorption to the surface. Hydrophobicity/hydrophilicity, surface composition, and
texturing all impact bone ingrowth and bacterial adhesion [84–86]; of these, the most
important is surface hydrophobicity [87–89]. Texturing of surfaces at the micro level
through processes such as sand-blasting and at the macro level through introduction of
beads, sintering, etc., have improved osseointegration of the neck of joint replacement stems
[90–93]. Additionally, application of calcium phosphate, especially sintered hydroxyapatite
is common [94–95], with conflicting reports as to its efficacy in stabilizing bone growth
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around the implant [94, 96–97]. There is some debate whether any of these textured surfaces
or hydroxyapatite layers alter the frequency or extent of bacterial colonization [98] [85, 99–
101]. However, while hydroxyapatite coatings themselves may or may not be permissive for
bacterial colonization, they do serve as ready depots for adsorption of antibiotics for in situ
release [102–104]. In one application, adsorption of gentamicin to hydroxyapatite resulted in
sufficient antibiotic release to allow short-term prophylaxis [105–106].

At the other end of the size spectrum, nano-texturing is being introduced to foster drug
delivery and bone ingrowth. The effect of nanotexture on bacterial colonization appears to
depend on size, texture, and spacing [107–109], which will also affect serum protein
adsorption and mammalian cell adhesion. An interesting topography has been based on the
natural diamond-like texturing of shark skin, which shows a 50–80% decrease in
colonization [110]. In vivo experiments will be required to determine if nanotexturing
promotes tissue formation and remodeling while decreasing bacterial adhesion and biofilm
formation.

V. Treatment Of Surgical Infection
While low, the orthopaedic infection rate reflects the surgical technique, the health and age
of the patient, the physical dimensions and state of the surgical site and the implant material
[111]. To minimize infection, systematic antibiotics are administered 2 to 14 days post-
surgery with additional oral prophylaxis [111–112]. When there is severe trauma, implant
placement may be delayed to allow clearance of any contaminants introduced in the wound
[113].

When infection is present, it is often necessary to supplement antibiotic therapy with implant
removal and elimination of infected bone [114–117]. For arthroplasties, optimum treatment
includes removal of the infected component and debridement of surrounding bone to remove
additional sources of bacteria that have been detected in the tissue around orthopaedic
implants, catheters, and other implants [118–119]. When the two-stage procedure is used, an
antibiotic-eluting spacer is implanted, and, after treatment periods of ~6 weeks, assuming a
good outcome, a new implant can be inserted into the bone [65, 120–121]. Even with these
measures, re-infection rates can be high, which again emphasizes the possibility that
contamination from the surrounding tissue can re-seed the implant and cause active
infection. For the most difficult cases, arthrodesis or amputation may be the only options
[114]. This propensity for re-infection underscores the importance of preventing the initial
bacterial colonization of the implant.

Because the higher antibiotic doses associated with the antibiotic-eluting spacers can
eradicate most infections, systems have been proposed to deliver antimicrobials at high
doses from the implant itself to obviate the need for a two-stage procedure. Porous
materials, such as cancellous bone [122], collagen sponges and PMMA [123] have been
loaded with antibiotics. In common with the antibiotic-bearing cements, the goal of these
elution systems is to keep the implant surface sterile while eradicating bacterial
contamination of the surrounding tissue [124–128]. Newer systems have used biodegradable
implant coatings to facilitate and control antibiotic release [129–133]. A detailed synopsis of
controlled-release systems is outside the scope of this review.

Controlled release systems are powerful therapeutic tools and effectively eradicate bacterial
contamination. However, they have a number of shortcomings. Firstly, high local antibiotic
concentrations are only achieved over the short term. Specifically, in an allograft system,
independent of initial concentrations and time of impregnation, ~75 % of the adsorbed
vancomycin and ~99% of netilmicin elutes within 120 hours [134]. Likewise within a six
week time period, the concentration of antibiotics from spacers has significantly decreased
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[111], [135]. While these levels may initially approach supratherapeutic levels, bacteria may
still be able to evade the antimicrobial agents by adoption of a metabolic state that allows
them to “persist,” by biofilm formation, and by dissemination into the surrounding tissues
where antibiotic penetrance will be low. Thus, while controlled release of antibiotics provide
a highly effective modality for treatment of acute infection, at late treatment times, when
antibiotics levels fall to sub-therapeutic levels, surviving bacteria can slowly re-establish a
biofilm which will again serve as a nidus for bacterial dissemination [66–67, 136]. This high
dissemination rate is in keeping with the relatively high re-infection rates after revision for
an infected component. Secondly, the drop in antibiotic levels exposes the surviving bacteria
to sub-inhibitory concentrations of antibiotics. This metabolic pressure increases the risk of
fostering development of resistant strains of bacteria [77, 137]. Resistant bacterial sub-
populations with extremely high MICs were detected after use of gentamicin beads during
two-stage exchange arthroplasty [137], supporting the need for integrated systems which
ensure that conditions that foster resistance are not established. Thirdly, high levels of
antibiotics can cause local tissue toxicity, compromising bone regrowth, immune system
surveillance and implant osseointegration.

Silver-impregnated surfaces have enjoyed success as wound healing dressings and appear to
decrease levels of both adherent bacteria and bacteria adjacent to the implant [12–15, 138].
Elution times tend to be longer than conventional controlled release systems giving the
surfaces an additional advantage. Questions remain as to implant efficacy, long-term tissue
toxicity as well as acquisition of silver-resistance.

In the search for complementary systems, we and others have explored the possibility that
antibiotics, and in a few cases antimicrobial peptides, covalently attached to an implant
surface, may provide protection long after controlled release of antibiotics has waned. The
advantage of such a system is firstly, unlike elution systems, the surface could remain anti-
bacterial over the lifetime of the coating. While this coating is present, the implant should
display antimicrobials, unlike controlled release systems where the antibiotic-depleted
surface becomes susceptible to bacterial colonization. [134, 139–141] [142–143]. The long-
term antibacterial coverage would have greatest impact in cases of established infection
where re-contamination of the implant from the surrounding tissue is always a possibility.

Secondly, because the antibiotics are tethered, no bulk tissue toxicity would be anticipated.
If toxicity were experience, it would be expected to be limited to the sub-micron tissue-
implant interface. Thirdly, it is likely that the probability of fostering of antibiotic resistance
with use of these attachment systems would be low. Indeed, the amounts of antibiotic or
other tethered antimicrobial attached to the surface is very low compared to either the MIC
of the agent or to controlled release systems. On metal surfaces, based on previous
measurements [144–146] we would expect quantities of antibiotic that are in the nanogram
range, a million-fold less than the amounts immobilized in the controlled release systems. At
these concentrations, even if catastrophic release were to occur, the amount of antibiotic
would be too low to foster resistance. Whether resistance will occur and the frequency of its
occurrence is, so far, outside the limits of our test. Our resistance experiments to date have
been solely based on metabolic pressure exerted by vancomycin-tethered Ti rods on S.
aureus under laboratory conditions [144]. Similarly, the strains isolated from our animal
experiments, based on limited testing, remain vancomycin sensitive. Thus, the question
about the surface’s effects on antibacterial resistance remains open.

Although there are very obvious advantages for non-eluting systems, they also have their
weaknesses. Coatings tend to be fragile—a problem both with controlled release as well as
tethered systems. For all systems, the fragility is associated with the significant forces that
are often applied to orthopaedic hardware during insertion—forces that are sufficient to
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cause scraping of the metal which would be certain to score the coating. Bare surfaces then
re-acquire the original problem, i.e., that they are prone to bacterial contamination and
biofilm formation. Furthermore on the tethered surface, such scoring could cause increased
instability of the otherwise stable SAM due to its disruption and subsequent hydrolysis.
Again, exposure of the underlying surface would occur, giving rise to the same weakness as
the spent elution system.

An additional weakness is linked to the role of tissue-associated bacteria in the propagation
of infection. By necessity, a tethered antibiotic is only active in the space immediately
adjacent to the implant. Thus, the antibiotic would not be able to interact with those bacteria
that are but a few microns distant from the surface. For this reason, the best use of such
systems would be in combination treatments that include systemic or locally delivered
antibiotics.

Orthopaedic implants are highly engineered to display textures or surfaces that either foster
bone ingrowth, or in the case of fracture fixation nails, stability without osseointegration.
While we have shown that we can tether antibiotics with retention of topography [175], the
addition of the SAM, linkers, and the antibiotic to the surface readily allows osteoblast
adhesion and maturation. On the one hand, such enhanced cell adhesion would support the
osteoblast’s ability to win the race for the surface; on the other hand, application of these
surfaces to components that need to be removed might prove problematic.

VI. Surface Tethering Of Antibiotics
Based on the overall advantages of the surface-tethered implant, we developed a strategy to
prevent bacterial colonization of implants with two key objectives: 1. Prevent bacterial
adhesion and biofilm formation. 2. Avoid therapies likely to foster pathogen resistance. For
this purpose, the most efficacious approach is to create an implant surface that integrates a
controlled release system (days to weeks) with a permanent, covalently-tethered
antibacterial layer that resists colonization over the long-term (months to years). We
reasoned that (1) non-adherent planktonic bacteria can be eradicated by local antibiotic
release or by the immune system and (2) that minimizing bacterial adhesion through implant
coating would prevent biofilm formation and effectively remove the implant as a reservoir
of bacteria. Our research findings support the power of these hybrid antibacterial surfaces to
combating bacterial adhesion and colonization [147–148]. In this manuscript, the remainder
of the discussion is focused on the value of the antibacterial surface.

Bonding of molecules to surfaces has an extensive literature. The cell adhesion peptide RGD
has been immobilized to glass [149], quartz [150–152], gold [153], silicone [154], silica
[155] and titanium [156–158]. Different linkages have been used on titanium surfaces
including diphosphonic acids [159–160], plasma amination [161], silanization to reveal
active amines [145, 156, 162], surface photopolymerization of PEG-acrylamide groups
[163], reaction with p-nitrophenyl chloroformate to activate the surface [164] and
interestingly, titanium-binding peptides to allow PEGylation [165]. Antimicrobial peptides
have also been grafted onto surfaces with successful bacterial killing for the cationic LL-37
on Ti [166], and the pore forming toxin maiganin I on thiol-gold [167]. Covalent
modification of titanium surfaces with antibiotics has focused to date predominantly on
vancomycin [163, 168–170], with one report on daptomycin [171]. In our studies, we have
tethered vancomycin to commercially pure titanium [169]; vancomycin [145, 172]
gentamicin, ceftriaxone, kanamycin, tetracycline, and doxycycline (unpublished data) to
titanium alloy (Ti90Al6V4); and vancomycin [173] and doxycycline to bone allograft.
These surfaces showed antibacterial activity with retention of antibiotic specificity.
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The immobilization strategy that we have used to facilitate chemical coupling of linkers and
antibiotics to metal surfaces relies on initial formation of an amine-rich, reactive surface.
Our strategy is to generate and maintain the Ti-O linkage which can then be used to form
bonds with other agents, in particular aminopropyltriethoxy silane (APTES). APTES forms
three siloxy bonds to the titanium oxide; this layer is further stabilized by cross-linking to
generate a self-assembled monolayer (SAM) [174]. In this reaction scheme, a fresh oxide
layer is formed (i.e., passivation) through use of oxidizing solutions (e.g., chromic acid
(H2SO4/HNO3) or piranha acid (H2O2/H2SO4)[161]) that etch the metal or through use of
hydrothermal aging [169, 173, 175]. An important consideration is retention of the
topography of the highly engineered implant surface. Thus, while piranha acid increased
surface pitting, hydrothermal aging appeared to retain surface features (Figure 1 [173]).

The presence of the SAM that is covalently grafted on the surface of the Ti metal and
displays primary amines provides a convenient first step for subsequent tethering reactions.
We have confirmed the formation of the amine-bearing SAM (1) through reaction with
fluorescamine and detection of fluorescence by confocal laser scanning microscopy [173,
176] and (2) through colorimetric detection of primary amines using the ninhydrin reaction
[145, 169].

To enhance the entry of the tethered antibiotic into the bacterium, we sequentially coupled
two membrane-soluble Fmoc-[2-(2-amino-ethoxy)-ethoxy]-acetic acid (Fmoc-AEEA)
linkers to the APTES surface in the presence of O-(7-azabenzo-triazole-1-yl)-1,1,3,3-
tetramethyluronium hexa-fluorophosphate (HATU). After deprotection of the second linker,
we coupled the Ti-APTES-(AEEA)2 product with vancomycin in the presence of HATU
[169]. The predicted structure would give vancomycin an ~30–40 Å arm for inserting into
the bacterium [172].

Vancomycin coverage was visualized through indirect immunofluorescence. Coverage was
also estimated through recovery of fluorescent antibodies which suggested that ~29 ng of
vancomycin was immobilized on a 1 × 10 mm pin [144–145, 176–177]. Using acid cleavage
of the siloxy bonds, the cleaved material was analyzed with MALDI-TOF mass
spectroscopy (MALDI-TOF MS). The array of molecular ions detected were consistent with
the predicted structure [169, 172], confirming that the desired Ti-APTES-(AEEA)2-
vancomycin product was formed.

Vancomycin, the antibiotic used in these studies, interferes with cell wall synthesis in two
ways: inhibiting synthesis of the polymeric glycan molecules and blocking polymer cross-
linking by reversible binding to the peptidoglycan Lys-D-Ala-D-Ala. The carboxylic acid
that is used for tethering of the vancomycin to the implant has been used to make other
adducts of vancomycin with retention of activity [178]. The reversibility of the bonding
allows the surface to be regenerated after exposure to bacteria. Specifically, because
vancomycin has a relatively low affinity for its substrate, bacterial fragments can be released
from the surface, even after they have interacted with the vancomycin. We have tested these
surfaces in small (rat [148]) and large (sheep (Schaer, Hickok, et al., unpublished data))
animal models. If efficacy were lost due to the presence of either dead bacteria or bacterial
fragments on the surface, we would expect a small lag in the establishment of infection, i.e.,
the animals with coated implants would still establish infection after a lag period. However,
we have not observed establishment of a fulminating infection; indeed, these VAN-tethered
implants have been surprisingly successful. With respect to other antibiotics, especially
those that contain the β-lactam ring, we would expect them to irreversibly bind to the cell
wall of the bacterium. While these surfaces would be active initially, we would expect them
to loose active antibiotic with repeated exposure, in keeping with out preliminary results
(Hickok, et al., unpublished data).
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The vancomycin-tethered surface showed a time dependent inhibition of bacterial
colonization for the Gram-positive organisms S. aureus [145] and S. epidermidis [177]. The
vancomycin surfaces clearly decreased bacterial colonization, but did not eradicate all
adherent bacteria. Therefore in studies of vancomycin tethered to bone allograft, we asked
the utility of the surfaces against different starting bacterial inocula. At 103–104 cfu bacteria
(6 h exposure), the vancomycin-allograft surfaces were most effective, with increased
colonization with inocula above 104 cfu [179]. In keeping with the known activity of
vancomycin against Gram-positive organisms and as a control, the Gram-negative organism
Escherichia coli (E. coli) readily adhered to vancomycin-modified surfaces (Figure 2,
[177]). Importantly, the vancomycin-tethered surface could inhibit biofilm formation by S.
epidermidis (Figure 3 [177]). While these studies addressed the short-term activity of the
surface, they did not assess conservation of biocidal activity for a long time period (months,
even year after implant placement). For these studies, vancomycin coverage was assayed in
the presence of S. aureus in tryptic soy broth. Both vancomycin coverage and activity
appeared to be maintained for dry pins or pins maintained in PBS for times out to 2 years
[145, 177]. A similar modification of native allograft bone was stable for at least 10 months
by antibody staining and at least two months on the basis of activity determinations [173].
The longevity of polymerized VAN on surfaces has not been published [163, 170, 180], nor
is there information on the long-term activity of the antimicrobial peptide surfaces.
However, if these surfaces are indeed stable, then they too should be capable of preventing
the establishment of bacterial colonization over the long-term—the major advantage over
the controlled release systems. Longevity and efficacy will need to be measured in vivo to
assess their success.

If the surfaces described above are to have clinical utility, they must retain their antibacterial
character in a physiological environment and withstand multiple challenges by bacteria. The
vancomycin-coupled surfaces were tested for activity in the presence of serum proteins.
Firstly, antibody binding and reactivity of the tethered vancomycin was retained in the
presence of these proteins [145, 177]. Secondly, the tethered vancomycin continued to
inhibit bacterial adhesion, even in the presence of serum proteins (Figure 4 [177]). To
determine if these surfaces withstand multiple bacterial challenges, the antibiotic tethered
pins were repeatedly challenged for 24 h with S. epidermidis, followed by removal of the
adherent bacteria, washing and re-challenge [145]. By the fifth re-challenge, based on Live/
Dead staining, some variability appeared not only in colonization of the vancomycin
tethered pin, but also in the ability of the bacteria to colonize the control pins probably due
to the presence of residual detergent [177]. Overall, however, the tethered vancomycin
appeared to endow the implant with the ability to resist bacterial colonization, not only for
the first bacterial assault, but for several subsequent challenges.

Importantly, recovery of adherent bacteria from challenges such as those described above
and from challenges maintained for several months, indicated that there was no evidence of
acquisition or fostering of resistance [144]. Of course, selection for resistance has only been
measured under conditions of metabolic pressure. As the bulk of the bacteria (i.e., those not
in contact with the surface) will not be experiencing a metabolic pressure, an incidental
resistant organism, which is typically slow-growing [181–182], will not have a selective
growth advantage and is likely to lose out in the struggle for nutrients. In addition to
metabolic pressure, resistance arises in mixed populations of bacteria, especially in biofilms,
where transfer of plasmid elements can cause transfer of traits [181–182]. Importantly, as
biofilm formation appears to be retarded on these surfaces, the ability to horizontally
transfer plasmids is limited, which would minimize the possibility of resistance. Finally,
acquisition of antibiotic resistance is rare. Thus, on an implant where the numbers of surface
bacteria are limited, the probability of development of resistance is small. While all of these
predictions suggest that resistance due to surface-tethered antibiotics will be infrequent, only
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the simple conditions have been tested and further more detailed studies need to be
performed.

VII. Effects Of Tethered Vancomycin on Osteoblast-like Cells
While the tethered antibiotic surfaces are promising with respect to inhibiting bacterial
colonization, it is important to characterize them with respect to biocompatibility. As a first
measure of this complex phenomenon, which should ultimately address its effects on the
immune system as well as the surrounding bone tissue, we have focused on effects of the
tethered vancomycin-Ti surface on osteoblast-like cells. As discussed earlier, antibiotics can
block osseointegration by down-regulating pre-osteoblast recruitment, proliferation,
differentiation, and maturation. Indeed, when osteoblast-like cells are cultured on either
control or tethered vancomycin surfaces, we have found that there is little change in
morphology, size and density of adherent cells (Figure 5 [144]). In other studies, we have
found no significant differences in number, viability, or levels of maturation markers
associated with maintaining osteoblasts on vancomycin-modified allograft surfaces [173,
179]. Based on these studies, we would predict that in vivo the surfaces would preserve cell
commitment, differentiation and proliferative status while maintaining the osseointegrative
properties of the modified implant. Fortunately, as the antibiotic surfaces limit bacterial
adherence, biofilm formation and the deleterious effects of colonization in the “race for the
surface” would be minimized.

We have performed preliminary testing of vancomycin-modified titanium alloy (VAN-Ti)
rods in our rodent model of osteomyelitis [148]. After three weeks in uninfected femora, the
difficulty of removal of VAN-Ti rods suggested bone ongrowth and osseointegration. As
assessed by microCT analysis, when control titanium alloy rods were present in infected
femora, bone lysis was apparent; in those femora that contained VAN-Ti rods, bone
structure remained close to normal (Figure 6 [161]). This preliminary study thus supports
the contention that removal of the implant as a nidus of infection allows the rat’s robust
immune system to clear the infection.

Thus, these antibiotic-coupled surfaces, whether constrained to classical antibiotics or
embracing new antimicrobials and antimicrobial peptides, appear to overcome many of the
problems associated with controlled release systems, i.e., finite lifespan, tissue toxicity, and
release of sub-therapeutic levels of antibiotics. Our in vitro and in vivo studies suggest that
these antimicrobial-tethered implants decrease bacterial colonization and biofilm formation
[148]. Based on the results of these studies and available knowledge concerning organism
adherence and biofilm organization, we are of the opinion that this antimicrobial implant
surface is ready for pre-clinical and clinical evaluation. Finally, the organometallic
chemistry that has been employed to generate the hybrid surface can be adapted to couple a
host of other agents to solid surfaces. These surface-bound agents can be tailored to maintain
an implant that resists bacterial colonization. Importantly, these surfaces require long-term
testing in animal and clinical models to determine if their activity is stable and to test if
tissue healing and resistance to infection leads to decreased pain, suffering, and disability
due to orthopaedic infection.
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ABBREVIATIONS

APTES aminopropyltriethoxysilane

Cfu colony forming units, referring to bacterial numbers

cpTi commercially pure titanium

ECM extracellular matrix

Fmoc-AEEA Fmoc-[2-(2-amino-ethoxy)-ethoxy]-acetic acid

HATU O-(7-azabenzo-triazole-1-yl)-1,1,3,3-tetramethyluronium hexa-
fluorophosphate

MALDI-TOF MS Matrix Assisted Laser Desorption Ionization-Time of Flight Mass
Spectroscopy

MIC Minimum Inhibitory Concentration

PBS phosphate buffered saline

SAM self-assembled monolayer

SEM scanning electron microscopy

TSB BHL Tryptic Soy Broth

VAN-Ti Ti alloy displaying covalently tethered vancomycin
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Figure 1. SEM imaging reveals preservation of topography
Microtopographical assessment of smooth and beaded surfaces was performed by scanning
electron microscopy (SEM) imaging (1000×). (A) Control titanium alloy surfaces showed
normal, shallow machining lines across the surface. (B) Control, commercially pure titanium
(cpTi) beaded surfaces showed concentric shallow machining lines. (C) Hydrothermally-
aged Ti alloy appeared similar to control surfaces (D) Hydrothermally-aged, beaded cpTi
surfaces were also similar to control surfaces. (E) The H2SO4:H2O2 treated Ti alloy surface
disc showed obvious etching and deepening of the natural crevices of the metal. Dark areas
indicate pitting. (F) Similarly, the etched, beaded cpTi exhibited extensive pitting.
(Magnification: 1000X, bar = 100 μm). Figure reproduced from [176] with permission of
Springer.
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Figure 2.
Bacterial colonization of vancomycin-tethered Ti (Vanc-Ti) surfaces. A. Control or
vancomycin-tethered surfaces were challenged (initial concentration ~1×104 cfu/ml) with S.
epidermidis (Gram-positive), which should be sensitive to vancomycin or E. coli (Gram-
negative) which does not have vancomycin sensitivity. Colonization of control surfaces
were robust, as indicated by green fluorescence, for both S. epidermidis and E. coli. Only E.
coli could show any significant colonization of the Vanc-Ti surface, in keeping with the
Gram-positive spectrum of activity of vancomycin. B. Numbers of adherent bacteria
recovered at each time point for the two surfaces, expressed as a percent of the two hour
controls in the histograms and given as colony forming units (cfu) in the tables below the
histograms. Values are shown are cfu ± SEM, where * denotes p < 0.5. Magnification: bar =
200 μm. Figure reproduced from [177]with permission of Elsevier.
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Figure 3.
A. Biofilm formation by S. epidermidis was assessed on control or vancomycin-tethered Ti
(Vanc-Ti) surfaces by detection of crystal violet incorporation. Biofilm formation was
expressed relative to the absorbance of the 2 h control for both control and Vanc-Ti surfaces,
with absorbance values presented in tabular form below the histogram. B, C.. The presence
of S. epidermidis on control (B) and Vanc-Ti (C) surfaces was visualized by SEM. The
characteristic clusters of grape-like S. epidermidis are apparent on control surfaces whereas
on the Vanc-Ti surface, few if any S. epidermidis are visible. Magnification: bar = 5 μm.
Figure reproduced from [177]with permission of Elsevier
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Figure 4. Antimicrobial activity of the tethered vancomycin (Vanc-Ti) surface in the presence of
serum
(A) Fibronectin adsorption and vancomycin fluorescence. (Left) Control or Vanc-Ti rods
were incubated with FBS for 24 h and fibronectin adsorption detected by
immunofluorescence analysis. Both surfaces showed abundant fibronectin (red stain),
compared to the rods incubated in H2O. (Right) Following incubation with serum proteins,
rods were incubated with an antibody against vancomycin and visualized by
immunofluorescence. Despite protein adsorption, vancomycin fluorescence (blue stain) was
clearly detectable on the Vanc-Ti rods, with no staining on control surfaces. (B)
Antimicrobial activity. Vanc-Ti rods that had been treated with serum proteins were
challenged with S. epidermidus (initial concentration=~1 × 104 cfu/ml) for 24 h and live,
adherent bacteria stained with the Live/Dead kit (green). Fluorescence detected from the
serum-treated Vanc-Ti rods was very low and similar to the fluorescence detected from the
H2O-incubated Vanc-Ti rods. In both cases, this fluorescence was much less intense than the
fluorescent yield generated by bacteria that had colonized the control rods. Magnification:
bar = 200 μm. reproduced from [177]with permission of Elsevier.
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Figure 5.
Vancomycin-tethered titanium surfaces support normal cellular morphology. Preosteocyte-
like MLO-A5 cells (initial inoculum: ~30,000 cells) were assessed for morphology and
cytoskeletal architecture on the different surfaces. (A) MLO-A5 cells readily adhered to
smooth, control surfaces, with a number of cells exhibiting an array of actin stress fibers;
other cells showed cellular extensions that are characteristic of cells undergoing shape or
size changes. (B) MLO-A5 cells readily colonized the VAN-hTi surface, with cell shapes
ranging from small to more trapezoidal shapes. Actin stress fibers were apparent throughout,
as were cells bearing microspikes, presumably a sign of cell spreading. (C) Cells on control,
beaded surfaces appeared well-spread, with abundant actin staining. Some stress fibers were
apparent as were short actin bundles. Morphology was within that normally observed for the
MLO-A5 cells. (D) Cells seeded on beaded surfaces VAN-hTi surfaces showed abundant
cellular colonization, with a normal actin cytoskeletal network. Cell shape appeared normal.
(Stain: Actin cytoskeleton: Alexafluor 488 conjugated phalloidin – Red; Nuclei: Propidium
Iodide - Blue; Original Magnification: 40X). figure reproduced from [176] with permission
of Springer.
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Figure 6.
MicroCT cross-sectional analysis of the control and vancomycin-modified titanium rods
based on animals sacrificed at Day 14. (A) Cortical mid-shaft cross-sections from the
control infected side are compared to (B) sections from the side receiving the modified rod,
where severe changes in bone anatomy are observed. (C) In the control femur of another
animal, aggressive remodeling with cortical bone penetration and destruction, abundance of
cysts, severe periosteal reaction and reorganization, and enlargement of the entire femoral
bone are readily apparent in distal diaphyseal cross-sections when compared to (D) sections
from the side receiving a vancomycin-modified titanium rod. Figure reproduced from
[148]with permission of Wolters Kluwer Health.
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