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Development of novel cell migration modulators for anti-inflammatory and cardiovascular therapy is a complex task since any
modulator will necessarily interfere with a balanced system of physiological regulators directing proper positioning of diverse
immune cell types within the body. Whereas this shall serve efficient pathogen elimination, lack of proper control over these
processes may result in counterproductive chronic inflammation and progressive tissue injury instead of healing. Prediction of
the therapeutic potential or side effects of any migration modulator is not possible based on theoretical considerations alone
but needs to be experimentally evaluated in preclinical disease models and by clinical studies. Here, we briefly summarize
basic mechanism of cell migration, and groups of synthetic drugs currently in use for migration modulation. We then discuss
one fundamental problem encountered with single-target approaches that arises from the complexity of any inflammation,
with multiple interacting and often redundant factors being involved. This issue is likely to arise for any class of therapeutic
agent (small molecules, peptides, antibodies, regulatory RNAs) addressing a single gene or protein. Against this background
of studies on synthetic migration modulators addressing single targets, we then discuss the potential of endogenous proteins
as therapeutic migration modulators, or as parent compounds for the development of mimetic drugs. Regulatory proteins of
this type commonly address multiple receptors and signalling pathways and act upon the immune response in a
phase-specific manner. Based on recent evidence, we suggest investigation of such endogenous migration modulators as
novel starting points for anti-inflammatory and cardiovascular drug development.
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Basic considerations in cell
migration modulation

Pharmaceutical companies have targeted a broad spectrum of
molecules for the treatment of inflammatory diseases. A
number of immune cell migration-modulating drugs were
highly efficient in animal models of inflammatory disorders,
and some of these were also successful in clinical trials. The
search for novel mechanistic principles and approaches in
cell migration modulation continues, with increasing atten-
tion to the fact that single-target drugs have inherent limita-
tions due to the complexity of inflammatory processes with
multiple interacting and often functionally redundant factors
being involved (Mackay, 2008).

The development of novel immune cell migration modu-
lators for anti-inflammatory and cardiovascular therapy is a
complex task, since they will necessarily interfere with a
delicately balanced system of multiple migration regulators
that direct proper positioning of diverse immune cell types
within the body (Luster et al., 2005). In principle, this shall

serve efficient pathogen elimination and resolution either by
background immune surveillance or by non-destructive
short-term inflammation (Wolf et al., 2003) (Figure 1). On the
other hand, lack of control over these primarily beneficial
processes may result in ‘counterproductive’ chronic inflam-
mation associated with insidious chronic tissue injury,
instead of proper healing within a short time period. It
should be emphasized that it is impossible to predict, based
on theoretical considerations alone, the therapeutic potential
or side effects of any new immune cell migration modulator
for different disease settings. Instead, its overall effects need
to be investigated experimentally in detail (e.g. application
route, dosage regime) for every envisaged target disease sepa-
rately. The necessity to conduct detailed in vivo studies
addressing, for example drug dose issues, is illustrated by the
paradoxical stimulation of malignant tumour growth by low
concentrations of a RGD-mimetic integrin inhibitor prima-
rily developed as an anti-tumour agent (Reynolds et al.,
2009). Nevertheless, the identification of basic in vitro effects
of a new agent may serve as a guideline for the design of
in vivo experiments in disease models, that is which cell

Figure 1
Immune cell migration and its therapeutic modulation: Addressing a delicate balance between efficient pathogen elimination with non-destructive
and short-term inflammation versus chronic inflammation associated with progressive and often insidious tissue injury.
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functions should to be measured during treatment and which
side effects might be anticipated.

Molecular mechanisms of
cell migration

Our knowledge about the fundamental molecular mecha-
nism of cell migration (Figure 2) and their regulatory factors
has been greatly expanded by numerous groundbreaking
studies (Schulz et al., 2009; Mempel et al., 2006; Alvarez et al.,
2008; Laird et al., 2008; Mora and von Andrian, 2008) and
novel analytical methods (Wolf et al., 2003; Sumen et al.,
2004; Halin et al., 2005; Wolf et al., 2009) during the last
decade. This includes the molecular mechanisms of amoe-
boid migration of leucocytes including intracellular polariza-
tion processes, influences from the microenvironment of the
migrating cells and the balance between immigration and
egress (Matloubian et al., 2004) versus local confinement and
residency. Live-cell microscopy has refined the conception of
immune processes, from abstract models of leucocyte traffick-
ing, into a more immediate understanding of how and in
which sequence immune cells interact with each other, and
eliminate pathogens or repair tissues. We only briefly sum-
marize basic cell migration mechanisms since excellent
reviews on this topic are available (Friedl and Weigelin, 2008;
Wong et al., 2010).

Migration modulators may be roughly classified accord-
ing to a partial process that is strongly affected (Figure 3), but
any modulator may have different biological effects in
immune cell subtypes, and the overall effect therefore needs
to be determined in relevant disease models in vivo. Com-

monly, the effect of a new migration modulator is character-
ized for individual leucocyte subclasses only. Because of their
important role in mediating inflammatory reactions, intersti-
tial cell migration offers interesting therapeutic targets, both
for the attenuation of uncontrolled inflammation or the
enhancement of inadequate host immune responses.
Although a number of fundamental molecular mechanisms
of cell migration are active in any type of cells and tissues,
beyond this common basis, there are significant differences
in the trafficking behaviour of leucocytes to and from distinct
organs. The molecular foundations for these differences are
incompletely understood. For obvious reasons, it would be
preferable, however, to have tissue-specific cell migration
inhibitors (Marsolais and Rosen, 2009) targeting the diseased
organ only, instead of modulating migration throughout the
body. An example for tissue-specific migration inhibition in
late-stage clinical evaluation for Crohn’s disease is the CCR9
inhibitor CCX282 (Mackay, 2008).

Figure 2
Directional motility: Haptotaxis is the directional movement along a
gradient of cellular adhesion sites or substrate-bound chemoattrac-
tants as present in the extracellular matrix. Chemotaxis is the cell
movement following a gradient of soluble molecules such as
chemokines.

Figure 3
Checkpoints to target migration: Molecular targets of drugs in clini-
cal development include selectins (TBC1269, Revotar by Texas Bio-
technology), integrins (Eftaluzimab by MerckSerono, Natalizumab by
Elan and Biogen Idec, Cilengitide by Merck) and chemokine receptors
(INCB3284 by Incyte, MK0812 by Merck, CCX282 by ChemoCen-
tryx, Maraviroc by Pfizer, TAK-779 by Takeda, Fingolimod by Novartis,
MDX-1100 by Medarex).
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‘Dynamic’ regulators acting in
an immune response
phase-related manner

Multiple new inducers of cell migration have been identified,
but counterbalancing mechanisms (Friedl and Weigelin,
2008; Steevels and Meyaard, 2011; Steevels et al., 2011) have
also been intensely studied, including down-regulation or
desensitization of chemokine receptors, ligand competition,
termination of chemoattractant activity through capture by
neutralizing chemoattractant receptors and proteolytic deg-
radation. Intracellularly, chemoattractant receptors are inter-
nalized, recycled to the leading edge or stored in vesicles, thus
controlling the availability of both the chemoattractant and
its receptor. Activation-induced down-regulation of the S1P1
receptor in T cells is another well-known example of
chemoattractant signal tuning and was successfully targeted
by drugs in multiple sclerosis (Kappos et al., 2006; Carroll,
2011; Cohen et al., 2011), organ transplantation (Habicht
et al., 2006; Brinkmann, 2007; Lan et al., 2008) and allergic
diseases (Marsolais et al., 2011).

Whereas many drugs have permanent silencing effects
(e.g. conventional immunosuppressive drugs), this is not a
common mode of action of endogenous regulators of the
immune response, which instead act in a phase-related
manner (Figure 4). This type of physiological regulators is
commonly integrated into regulatory networks that have
evolved to coordinate a sequence of processes towards
optimal repair of injuries. Numerous cell migration and
differentiation-regulating proteins are active during fetal
development, become almost completely silenced in the
healthy adult organism, but are typically re-induced in
injured tissues. This type of re-induction of developmental

proteins (Fechner et al., 2003; Perbal, 2004; Kubota and Taki-
gawa, 2007; Hamilton, 2008; Llera et al., 2010), and also of
fetal microRNA (miR) patterns (Thum et al., 2007), is often
remarkably monomorphic irrespective of the specific type of
injury or organ involved. Many typical examples are found in
the large family of matricellular proteins (Vilmos et al., 2001),
commonly characterized by re-expression during tissue
injury and repair (Schellings et al., 2004; 2009; Leask and
Abraham, 2006; Okamoto, 2007; Chen and Lau, 2009; Kyri-
akides and Maclauchlan, 2009; Norris et al., 2009; Chiodoni
et al., 2011; Dobaczewski et al., 2011) and by multiple inter-
actions with immune cells (Kuznetsova and Roberts, 2004;
Frangogiannis, 2008; Sangaletti and Colombo, 2008). As
opposed to dedicated chemokine–chemokine receptor or
other specific ligand–receptor pairs, proteins of this type are
commonly multimodular in structure and exert complex,
context-dependent functions through multiple interacting
proteins and signalling pathways. A following chapter on
Endogenous Migration-Inhibiting Molecules as Parent Compounds
for Drug Development discusses how a matricellular protein of
this type, and a mimetic peptide, may have therapeutic
potential in cardiovascular and other diseases associated with
pathogenic inflammation. Whereas that chapter focuses on
CCN1 as one paradigm for endogenous immune cell migra-
tion modulators to be considered as parent compounds for
drug development, the full spectrum of proteins that dynami-
cally and physiologically regulate immune responses is
unknown. Remarkably, context dependency of endogenous
immunomodulating proteins (such as the CCN protein
family) has also been observed for adipocytokines (leptin,
adiponectin and others). For a full discussion of their prop-
erties, we refer to excellent recent reviews (Lago et al., 2007;
2009; Lang and Ratke, 2009) and papers investigating the
complex role of adiponectin in dilated (DCM) and inflamma-
tory (DCMi) cardiomyopathy (Wittchen et al., 2007; Skurk
et al., 2008; Bobbert et al., 2011). Briefly, leptin and adiponec-
tin are involved in the regulation of migration of both leu-
cocytes and tumour cells.

Problems arising from biological
redundancy and limited knowledge

Beyond specific issues relating to individual drugs, one
general consideration relates to the fact that single-target
approaches may be problematic due to the multitude of inter-
acting and redundant factors involved in inflammatory pro-
cesses. Any acute or chronic inflammation in the tissue in
response to mechanical microbial injury, autoimmune
disease or allograft rejection triggers tissue infiltration by
effector cells: neutrophils, monocytes, T cells and in chronic
states also B cells. This creates a highly complex network of
interacting cells and signalling cascades that involve far more
players than can be addressed by targeting of a single mol-
ecule. Serious problems of limited or lacking efficacy of single
target drugs have indeed been encountered in multiple pre-
clinical or clinical trials (Horuk, 2009a,b). It appears that
multiple interactions and redundancy are commonplace in
the biological systems regulating and balancing proper
immune cell migration. It should be emphasized that the

Figure 4
A coordinated immune response encompasses both activating and
phase-related counterbalancing mechanisms. The latter are essential
for proper responses to injury and include (i) down-regulation of
chemokine receptors and desensitization of receptor-dependent sig-
nalling, (ii) termination of chemoattractant activity by neutralizing
receptors and proteolytic degradation and (iii) chemoattractant
receptor internalization and recycling or storage in vesicles.
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resulting limitation of narrowly targeted agents is likely to
apply to any class of therapeutic agent (small molecule drugs,
peptides, monoclonal antibodies, regulatory RNAs), unless
a single unique process of outstanding importance can be
identified.

The existence of unidentified subsets of immunological
target cells may also confound the conclusions drawn from
narrowly defined in vitro studies. One example are the mono-
cytic cells that consist of ‘inflammatory’ and ‘resident’
subsets with differential functions and trafficking properties
(Kamei and Carman, 2010). Notably, the spleen has recently
been identified as a peculiar reservoir of ‘inflammatory’
monocytes that are readily recruited to injured myocardium
and other tissues. In general, the complex architecture of the
interstitial space and the full spectrum of phenotypic and
functional changes of leucocytes resulting from their interac-
tions with the endothelium during adhesion and transmigra-
tion cannot be modelled by any current in vitro system (Wong
et al., 2010). Moreover, a single chemoattractant is frequently
used in vitro, whereas multiple chemoattractants are regularly
involved in vivo, which act upon intracellular signalling cas-
cades in a hierarchical manner.

Focusing on chemokine receptors, Horuk has recently
discussed possible reasons for the failures of multiple trials
using single-chemokine receptor antagonists. He suggests
that they may be attributable to trying to target a complex
disease with an antagonist to a single receptor, whereas the
more than 40 different chemokines and 19 chemokine recep-
tors so far identified create an immensely complex immuno-
regulatory network. As an alternative approach, he suggests
promiscuous non-peptide antagonists inhibiting multiple
targets (Horuk, 2009a,b).

Current drug classes and clinical
relevance in cardiac disease

Current single-target pharmacological approaches (Figure 3)
include selectin inhibition (Ley et al., 2007; Barreiro et al.,
2011; Fernandez-Borja et al., 2011), integrin targeting (Hehl-
gans et al., 2007) and chemokine or chemokine receptor
blockade (Horuk, 2009a,b; Zernecke and Weber, 2011), which
aim at cell surface targets involved in leucocyte rolling, adhe-
sion and transendothelial migration. One important example
for successful therapeutic integrin targeting is a monoclonal
antibody (mAb) to a4b1 and a4b7 integrin for the treatment
of multiple sclerosis and inflammatory bowel disease. The
results of two phase 3 clinical trials showed that natalizumab
markedly reduces the number of relapses in individuals with
multiple sclerosis (Polman et al., 2006; Havrdova et al., 2009;
Hutchinson et al., 2009).

In preclinical models in the context of cardiac diseases,
the usage of monoclonal antibodies against integrins b2 and
a4, either alone or in combination, showed a blockade of
inflammatory cell migration into the ischaemic myocardium
after myocardial infarction (MI) (Legare et al., 2007). Cai et al.
investigated the role of T-cell selectin ligands on cardiac
recruitment of CD8+ T cells during myocarditis and allograft
rejection. Here, selectin ligand-deficient CD8+ T cells showed
a reduction in their ability to interact with P- and E-selectins

and a blockade of heart-directed migration (Cai et al., 2006).
One of the earliest steps of an acute inflammatory response is
the selectin-dependent rolling of leucocytes. Hicks et al.
(2003) suggested recombinant P-selectin glycoprotein ligand-
1-immunoglobulin (rPSGL-Ig) as characteristic ligand to
influence leucocyte rolling in living blood vessels for an inhi-
bition of neutrophil migration. Baron et al. further compared
the effect of the chimeric antibody c7E3 Fab (abciximab) with
the antibody LM609, which is directed specifically against
integrin avb3, and observed comparable results in the pre-
vention of smooth muscle cell adhesion to the extracellular
matrix (ECM) proteins osteopontin and vitronectin, and of
cell migration during the development of restenosis. Overall,
combined administration of both antibodies represented the
most effective treatment (Baron et al., 2000). Furthermore,
the fibrin-derived peptide Bb15-42 (FX06) was shown by
Wiedemann et al. (2011) to reduce infarct size in a coronary
artery occlusion/reperfusion model by inhibition of leucocyte
migration and preservation of endothelial barrier function.

Intracellular migration-related signalling pathways
have been directly addressed by inhibition of specific
phosphoinositide-3-kinase (PI3K) isoforms (Barber et al.,
2005; Camps et al., 2005), and significant progress has
recently been made in understanding their differential func-
tions with respect to cell migration. Pharmacological inhibi-
tion of PI3K-g by synthetic small molecules has promoted
infarct resorption and prevented adverse cardiac remodelling
after MI in mice (Seropian et al., 2010). Loss of PI3K-g has
enhanced cAMP-dependent MMP remodelling of the myocar-
dial N-cadherin adhesion complex and the ECM in response
to biomechanical stress (Guo et al., 2011). At the molecular
level, the interplay between class I PI3Ks and Rac signalling in
phagocytic functions has been dissected (Costa et al., 2011),
and negative feedback regulation of Rac in leucocytes from
mice expressing a constitutively active PI3K-g has been dem-
onstrated (Costa et al., 2007). Leucocyte transmigration is
also modulated by chemokine-mediated PI3K-g-dependent
phosphorylation of vimentin (Barberis et al., 2009). Signal-
ling through PI3K-g has functional relevance beyond immune
cell migration, since it appears to be one common platform
for leucocyte, platelet and cardiovascular stress sensing
(Hirsch et al., 2006). For an overview on the role of PI3Ks in
cardiovascular diseases and current PI3K-targeting drugs, see
Eisenreich and Rauch (2011).

A therapeutic approach against autoimmune myocarditis
was further suggested by Goser et al. (2005) who demon-
strated that blockade of the chemokines MCP-1 or macroph-
age inflammatory protein-1a (MIP-1a) with monoclonal
antibodies attenuates the pathogenesis of experimental
autoimmune myocarditis (EAM), by inhibiting mononuclear
cell (MNC) migration via the receptors CCR2 and CCR5.

Other preclinical studies have investigated drugs with
migration-inhibiting properties. PPAR-g ligands inhibit
monocyte chemotactic protein-1 (MCP-1)-directed migration
of monocytes (Kintscher et al., 2000), endothelial cells
(Goetze et al., 2002) and vascular smooth muscle cells
(VSMCs) (Goetze et al., 2001). In a chronic cardiac transplant
rejection model, Ogawa et al. showed that clarithromycin, a
macrolide antibiotic involved in MMP regulation, suppressed
the development of graft arterial disease and myocardial
remodelling. This treatment led to inhibition of MMP-9 and
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suppression of smooth muscle cell migration and prolifera-
tion (Ogawa et al., 2008). Positive effects on myocardial
infarct size following left coronary ligation were observed by
Nichols et al. after treatment of animals with the thrombox-
ane A2 (TXA2) synthetase inhibitor U-63557A, and the TXA2
receptor antagonist SQ-29.548. Reduced neutrophil accumu-
lation in the infarcted zone, together with a decrease in
myocardial myeloperoxidase activity as a specific marker of
neutrophil infiltration, and blockade on f-MLP-directed
chemotaxis in vitro marked the protective effects in this study
(Nichols et al., 1989).

A different therapeutic strategy is exemplified by the drug
fingolimod (FTY-720) (Chiba et al., 1999), a receptor modula-
tor that mimics the serum component sphingosine-1-
phosphate (S1P) and acts as an agonist for four of the five
members of the S1P family of GPCRs. The physiological role
of S1P receptors on lymphocytes is control of their exit from
lymphoid tissues (Schwab and Cyster, 2007), which is tightly
regulated. Stimuli such as antigen challenge can block lym-
phocyte egress from lymph nodes. FTY-720 thus sequesters
lymphocytes in lymphoid organs, prevents their migration to
sites of inflammation and limits T-cell access to organ grafts
and autoimmune lesions. In contrast to the synthetic selec-
tin, integrin, chemokine or chemokine receptor blockers that
antagonize endogenous migration activators, S1P-mimetic
drugs mimic the action of an endogenous molecule that
physiologically limits immune cell migration. In rodent
models, S1P administration or FTY720 treatment were cardio-
protective against ischaemia (Jin et al., 2002; Zhang et al.,
2007; Karliner, 2009), improved recovery during reperfusion
and reduced infarct size after coronary artery ligation
(Hofmann et al., 2009; 2011). In clinical phase 2 and 3 trials
of patients with multiple sclerosis, FTY-720 significantly
reduced clinical relapse rates and infiltration of autoreactive
lymphocytes into the CNS (Kappos et al., 2006). Side effects
included an enhanced risk for respiratory tract infections and
a reduction of total circulating lymphocytes.

Another example for endogenous limitation of migratory
processes was found in the suppressors of cytokine signalling
(SOCS). The eosinophil chemoattractant CCL11 interacts
with CCR3, a chemokine receptor expressed by multiple cell
types including macrophages (Menzies-Gow et al., 2002),
resulting in SOCS induction and thereby blunted response
to proinflammatory cytokines and microbial products
(Yoshimura et al., 2007). SOCS controls signalling pathways
downstream of integrins, for example, inhibiting focal adhe-
sion kinase (FAK) that is indispensable for cell migration (Liu
et al., 2003). Stevenson et al. (2011) showed that SOCS1 and 3
enhanced cell adhesion but strongly inhibited migration
towards CCL11, and that inhibition of SOCS1 and 3 signal-
ling pathway via FAK and RhoA blocked of immune cell
infiltration to the site of allergic inflammation.

Endogenous migration-inhibiting
molecules as parent compounds for
drug development

Therapeutic tools employed for migration modulation by the
various principles outlined above mainly comprise synthetic

compounds: traditional small molecule drugs (Barber et al.,
2005) (Camps et al., 2005), synthetic peptides (Rother et al.,
2010; Jahns et al., 2011), monoclonal antibodies (Goser
et al., 2005; Chan and Carter, 2011; Lee et al., 2011; Weiner
et al., 2011) or bispecific protein–monoclonal antibody
recombinant molecules (Langer et al., 2011). As possible
future tools, we discuss here the possible use of endogenous
proteins with inflammation-modulating, cell migration and
chemotaxis blocking, or immune signalling properties, as
parent compounds for the development of drugs mimicking
effects of the endogenous protein or its subdomains. Such
therapeutics comprised of, or mimicking, naturally occurring
and often evolutionary ancient proteins are one approach
towards the exploitation of biological resources. Of note, a
number of biological systems such as innate immunity, or
miRs with their dependent genes, may be considered as
master regulators of fundamental biological processes includ-
ing tissue repair and regeneration. Not surprisingly, such
systems are often conserved during evolution back to ancient
species, as illustrated impressively by phylogenetic studies of
innate immunity components (Hoffmann et al., 1999; Chris-
tophides et al., 2002; Rast et al., 2006; Haine et al., 2008; Lee
et al., 2011).

Against the background of more conventional drug dis-
covery strategies, we illustrate this strategy using recent data
from our group on a protein from the CCN family (Perbal,
2004; Rachfal and Brigstock, 2005; Kubota and Takigawa,
2007). The starting point for our study (Rother et al., 2010)
was the fact that the CCN1 protein is an evolutionary highly
conserved matricellular protein that modulates biological
processes associated with tissue repair. Recently, we found
first evidence of a novel function of CCN1 as a novel modu-
lator of immune cell migration, with therapeutic potential in
diseases associated with chronic pathogenic inflammation. In
a proof-of-concept study, we used CCN1 gene transfer to
evaluate its therapeutic potential in animal models of human
inflammatory cardiomyopathy and of MI. CCN1 therapy sig-
nificantly reduced immune cell infiltration in both models.
Figure 5 shows data for the cardiomyopathy model and
mechanistic studies demonstrating that the CCN1 treatment
resulted in strongly suppressed random migration of immune
cells both in vivo and in vitro, and in abrogation of their
chemotactic response to various chemokines.

These data suggest that CCN1 has potential as a new
broad-spectrum immune cell migration inhibitor, in contrast
to specific chemokine- or chemokine receptor-blocking
agents with their known limitations arising from the fact that
in most inflammatory diseases, multiple chemokines and
chemokine receptors are involved, and no single target of
outstanding pathogenic importance exist (see above). From a
clinical translational perspective, it was of particular interest
that the effects of the endogenous protein CCN1 on immune
cell chemotaxis and migration were partially mimicked by
cyclic RGD (cRGD) peptides that are currently being evalu-
ated in clinical trials, although as yet for cancer therapy only
(Figure 6). Our proof-of-concept study therefore suggests
further investigation of CCN1 as a new parent compound for
immune cell migration modulation and of cRGD peptides as
partial CCN1 mimetics with immediate potential for clinical
evaluation in cardiac diseases associated with chronic patho-
genic inflammation. At the same time, this study describes a
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novel migration-inhibiting effect for cRGD peptides, which
should be relevant for both anti-cancer and anti-
inflammatory treatment.

As for most other migration modulating drugs, a full
elucidation of the mechanisms by which CCN1 and cRGD
peptide modulates immune cell migration at the molecular
level has not yet been achieved. However, current data indi-
cate that both random migration and directed migration
along a chemotactic gradient are affected by these agents. We
do not yet know if there are differential effects of CCN1 or
cRGD peptide on the migration of immune cell subpopula-

tions in vivo, if a T-cell response is generated in draining
lymph nodes and if antigen-presenting cells (APCs) migrate
there normally during these treatments. Differential effects of
CCN1 and cRGD dose and timing with respect to disease
course need to be evaluated further in the future. Despite
these limitations of our current knowledge, however, CCN1
is likely to expand the spectrum of tools for chemotaxis
modulation and offer new therapeutic perspectives for car-
diovascular and autoimmune disorders. Beyond this proof-of-
principle study using recombinant protein and a mimetic
peptide, it certainly is necessary to better understand the

Figure 5
Systemic CCN1 therapy attenuates murine autoimmune cardiomyopathy (Rother et al. 2010) (reproduced by permission from Circulation).
(A) Treatment with a CCN1 gene transfer vector (AdV-CCN1) significantly reduced cardiac immune cell infiltration as assessed by histological
analysis of mouse hearts after 3 weeks, in comparison with RR5 control vector-treated animals. (B) The cardiac disease score was significantly
reduced by this treatment. (C) Migration assays of splenocytes isolated from mice at peak inflammation showed significantly reduced ex vivo
migration of CD11b+ macrophages (left) and CD3e+ T cells (right) from AdV-CCN1-treated mice compared with controls. (D) No difference in cell
viability was detected. (E) Mechanistic studies of CCN1 effects in vitro showed a significantly reduced basal migration rate of human CD14+

monocytes. (F) Abrogation of the chemotactic response to chemokines (SDF-1a, MCP-1. MIP-1a) important in the pathogenesis of diverse
cardiovascular and inflammatory diseases. SFD-1a, stromal cell-derived factor-1a; MIP-1a.
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metabolism of CCN1 (proteolytic cleavage, products with
different biological functions) before a systematic search for
the most useful mimetic drugs can be finalized. Interestingly,
another group has arrived at a similar general strategy for
drug development starting from thrombospondin-1 (TSP-1),
another endogenous protein inhibiting angiogenesis
(Colombo et al., 2011; Taraboletti et al., 2011). It is quite
remarkable that this ‘parent compound’ TSP-1 is also a matri-
cellular protein that is re-induced in the adult organism by
tissue injury, similar to CCN1 with which it interacts.

Therapeutic interest in CCN1 was initially triggered by
genomics studies in humans, which resembles the path of
other investigations that have used genomic approaches
to drive novel compound pipelines. Before any anti-

inflammatory approach can be undertaken, it is crucial to
delineate the distinction between acute inflammation sup-
porting tissue repair and regeneration, as opposed to chronic
inflammation without reparative advantage but instead
inducing progressive tissue injury. With respect to the latter
type of inflammation, further investigation of CCN1 as a new
parent compound for immune cell migration modulation
appears warranted, as well as of cRGD peptides as a first class
of partially CCN1-mimetic drugs with immediate potential
for clinical evaluation in cardiac disorders associated with
chronic pathogenic inflammation. Cardiac transplant rejec-
tion and transplant injury in other organ transplants appear
as particularly interesting disease targets because in these
cases preconditioning of the host by CCN1 or cRGD treat-

Figure 6
Migration modulation by CCN1: Within the context of other migration-modulating substances, the endogenous protein CCN1 showed significant
inhibition of the random migration and chemotaxis of immune cells in vitro and in vivo. The complex multidomain protein CCN1 does not only
interact with a broad spectrum of integrins including a6b1 (Chen et al., 2000), avb3 (Kireeva et al., 1998), avb5 (Monnier et al., 2008), aMb2
(Schober et al., 2002), a2b1 (Lin et al., 2007) and aIIb3 (Jedsadayanmata et al., 1999), but also with heparansulphate proteoglycans (HSPGs)
(Chen et al., 2000). Nevertheless, immune cell preincubation with a structurally simple cRGD peptide binding selectively to av type integrins only
inhibited their chemotactic response in a similar way as CCN1 preincubation. Obviously, CCN1 effects on immune cells are in part mediated via
integrins, and cRGD peptides may be evaluated as a first class of CCN1-mimetic drugs with immediate potential for clinical evaluation. CCN1
treatment certainly exerts more complex effects on inflammatory processes in vivo than cRGD peptides by way of the huge spectrum of integrin
heterodimers that can be addressed by CCN1 on multiple cell types, but partial functions of therapeutic use may be extracted by further dissection
of the proteins domain and subdomain functions. Regarding most matricellular proteins, our knowledge in this respect is only fragmentary.
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ment would be feasible, allowing modulation of the host
before its immune response is initiated. Experimental inves-
tigations in transplant models (Nykänen et al., 2010) are cur-
rently in progress.

microRNAs as novel therapeutic tools
and targets
In addition to innate immunity proteins and other ancient
proteins involved in tissue repair and regeneration, with the
regulatory (non-coding) RNA molecules, a completely new
class of biological regulators has been discovered. These RNAs
are distinct from the protein-coding messenger RNAs
(mRNAs) and other RNAs essential for protein biosynthesis
(ribosomal rRNAs, transfer tRNAs) and have long been
neglected as dysfunctional molecules. The currently most
intensely studies class of regulatory RNAs are miRs, which are
capable of regulating complex gene networks, as well as short
interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs),
which mediate gene silencing by the process of RNA interfer-
ence (Poller and Fechner, 2010; Poller et al., 2010). Both
classes, in particular shRNAs, have already been successfully
employed as novel therapeutic tools in diverse diseases
including cardiovascular (Suckau et al., 2009) and malignant
disorders.

It has become evident that naturally occurring miRs are
involved in the physiological regulation of the innate
(Davidson-Moncada et al., 2011) and adaptive immune
system (Baltimore et al., 2008; Carissimi et al., 2009; Sonkoly
and Pivarcsi, 2009; Xiao and Rajewsky, 2009; O’Connell et al.,
2011), and are deregulated in various diseases including
autoimmune disorders (Pauley et al., 2009; Tang et al., 2009;
Fulci et al., 2011; Furer et al., 2011; Liston et al., 2010), anti-
viral immunity (Cullen, 2006), organ transplant rejection
(Harris et al., 2010) and atherosclerosis (Weber et al., 2010).
Specifically, miRs are directly involved in immune cell migra-
tion (Pucci et al., 2009), function (Kohlhaas et al., 2009; Wei
and Pei, 2010) and differentiation, (Schmeier et al., 2009), or
mediate the effects of cell signalling molecules such as AKT1
(Androulidaki et al., 2009).

The importance of miRs in the immune response has also
been demonstrated in studies that employed miR modula-
tions to induce antigen-specific regulatory T cells (Tregs) and
promote immunologic tolerance (Annoni et al., 2009), or to
suppress the development of allergic airways disease (Mattes
et al., 2009). Selective miR ablation in Treg cells has resulted
in uncontrolled autoimmunity (Zhou et al., 2008), and inac-
tivation of the miR-processing enzyme Dicer has disrupted
invariant NKT cell development.

With respect to the regulation of cell migration in general,
it has recently been discovered that miRs are not only syn-
thesized and processed within individual cells, but that for
certain miRs, there is active secretion via packaging into
microvesicles (MVs) (Hunter et al., 2008; Yuan et al., 2009;
Ogawa et al., 2011; Wang et al., 2011; Zhang et al., 2011), and
that such vesicles can enter other cells and deliver miR-150
into, for example, endothelial cells where they then promote
cell migration (Zhang et al., 2011). Based on these quite unex-
pected recent discoveries, microvesicle-encapsulated miR
mimetics (Poller and Fechner, 2010; Poller et al., 2010) may
also be considered as possible migration modulators.

Delivery systems for novel
migration modulators

The above discussed novel migration modulators could be
delivered as recombinant proteins as long as no mimetic
small molecule drugs or peptides are available, or by gene
transfer using vectors that continuously produce and deliver
a therapeutic protein into the circulation. Use of a gene
vector as a inexpensive ‘protein factory’ with the additional
advantage that all posttranslational modifications are exerted
by the host itself and thus in the most appropriate way is a
rather old idea (Kay et al., 1993; 1994) first promoted in the
field of haemophilia with its need for repetitive infusion of
expensive blood-derived (and thus infection-prone) coagula-
tion factors or recombinant proteins. Gene therapy has been
significantly advanced by haemophilia researchers and with
the employment of adeno-associated virus (AAV)-based
vectors (Nathwani et al., 2007; Nathwani et al., 2011), an
efficient system for long-term production of therapeutic pro-
teins in liver (Mount et al., 2002; Niemeyer et al., 2009; Saba-
tino et al., 2011) or skeletal muscle (Arruda et al., 2011;
Haurigot et al., 2011), has become available. Whereas most
studies to date have been performed in rodents and non-
human primates, clinical investigations have also been per-
formed in humans (Arruda et al., 2001; Jiang et al., 2006)
where vector dose reduction by use of advanced vector
systems has been identified as a key determinant of long-term
stability (Herzog et al., 2002; Grimm et al., 2008; Zhong et al.,
2008). Given the fact that mimetic drugs are not yet available
for numerous proteins of high clinical interest, the gene
transfer option deserves continued attention.

When it comes to long-term therapies based on regula-
tory RNA molecules including RNAi-mediating sequences,
efficient production and delivery is highly dependent upon
gene transfer technology, due to the instability of these novel
therapeutic agents in blood and tissues. For long-term treat-
ments, they are either repetitively delivered in short time
intervals, or continuously produced from tissue-targeted and
long-term stable vectors. As a major breakthrough in the
vector field has been achieved with the introduction of AAV
vector systems (Muller et al., 2003; Waterkamp et al., 2006; Li
et al., 2008; Schnepp et al., 2009; McPhee and Samulski,
2009), in particular the discovery of highly cardiotropic AAV
serotypes (Inagaki et al., 2006; Pačak et al., 2006; Gray and
Samulski, 2008). This has not only led to successful gene
therapy (Sakata et al., 2007a,b; Muller et al., 2008; Raake et al.,
2008; Goehringer et al., 2009; Rengo et al., 2009) and recently
also to the first successful regulatory RNA therapy of a cardiac
disease (Suckau et al., 2009) in vivo, by direct i.v. vector injec-
tion in animal models but is already in the status of clinical
translational phase I and II trials (Jaski et al., 2009; Jessup
et al., 2011). If perfect physical vector targeting to the dis-
eased tissue cannot be achieved (transductional targeting),
additional transcriptional confinement of the transgene may
be achieved by using cardiac-specific promoters (Muller et al.,
2006). A number of experimental papers on therapeutic cell
migration modulation has successfully employed this deliv-
ery mode, for example gene transfer for IL-10 or chemokine
MCP-1-7ND in autoimmune myocarditis (Goser et al., 2005;
Kaya et al., 2011).
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An issue of paramount importance before clinical trans-
lation of these experimental strategies is the safety of the
delivery tools, which is high for AAV vectors and AAV-derived
biological nanoparticles (BNPs), as well as an option to shut
down the transgene in the case of serious adverse effects. In
summary, current vector systems offer a realistic perspective
to serve as relatively simple ‘drug factories’ for the delivery
of biologicals such as proteins or RNA drugs in humans.
Regulated delivery based on vector systems is still under
development and has not yet reached the stage for clinical
translation.

Side effects – general and specific

Any novel immune cell migration modulator for anti-
inflammatory and cardiovascular therapy will inevitably
interfere with a carefully balanced system of multiple migra-
tion regulators directing proper positioning of immune cells
within the body. This intervention shall not, however, sig-
nificantly impair pathogen elimination by background
immune surveillance, thus provoking infectious complica-
tions. Due to the extraordinary complexity of the immune
defence and our still limited knowledge of its regulation, it is
impossible to predict the side effects of any new immune cell
migration modulator by theoretical reasoning, but this needs
to be investigated experimentally for each target disease. The
need to conduct detailed in vivo studies on optimal drug doses
and other issues is well exemplified by the stimulation of
malignant tumour growth by low concentrations of a RGD-
mimetic integrin inhibitor actually developed and clinically
employed as an anti-tumour agent (Reynolds et al., 2009).

Conclusions

Because cardiovascular and immunological diseases that are
not immediately fatal will be targeted by cell migration
modulators as discussed above, issues of safety will be of
paramount importance. Since leucocyte migration is an inte-
gral to immune surveillance and molecular recognition,
including APC and target cell search and scanning of recep-
tors expressed at cell surfaces, avoidance of unspecific chronic
immunosuppression requires careful drug dose selection. Fur-
thermore, cell migration targeting should ideally address spe-
cific leucocyte subsets and achieve functional effects related
to immune response phase, possibly complementing interfer-
ence with cell cycle progression (cytostatic drugs). In this
regard, we have discussed a fundamental problem encoun-
tered with single-target approaches that arises from the com-
plexity of any inflammation, with multiple interacting and
often redundant factors (chemokines, receptors for chemok-
ines and other ligands, intracellular signal proteins) being
involved. Such discordance between simple synthetic tools
versus complex natural networks is likely to cause problems
for any class of therapeutic agent (small molecules, peptides,
antibodies, regulatory RNAs) addressing single targets.

Against this background of single-target agents, we have
discussed the potential of more complex, endogenous pro-
teins addressing multiple receptors and signal pathways and

acting on the immune response in a phase-specific manner,
either a recombinant proteins or as parent compounds for the
development of novel drugs. Based on recent evidence, we
specifically suggest further investigation of matricellular pro-
teins with their rich and context-dependent migration-
migration modulating properties, and of their interaction
partners, as novel starting points for anti-inflammatory and
cardiovascular drug development.
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