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Mass spectrometry-based analyses of the low-molecular-weight fraction of serum proteome allow identifying proteome profiles
(signatures) that are potentially useful in detection and classification of cancer. Several published studies have shown that
multipeptide signatures selected in numerical tests have potential values for diagnostics of different types of cancer. However
due to apparent problems with standardization of methodological details, both experimental and computational, none of the
proposed peptide signatures analyzed directly by MALDI/SELDI-ToF spectrometry has been approved for routine diagnostics.
Noteworthy, several components of proposed cancer signatures, especially those characteristic for advanced cancer, were identified
as fragments of blood proteins involved in the acute phase and inflammatory response. This indicated that among cancer
biomarker candidates to be possibly identified by serum proteome profiling were rather those reflecting overall influence of a
disease (and the therapy) upon the human organism, than products of cancer-specific genes. Current paper focuses on changes in
serum proteome that are related to response of patient’s organism to progressing malignancy and toxicity of anticancer treatment.
In addition, several methodological issues that affect robustness and interlaboratory reproducibility of MS-based serum proteome
profiling are discussed.

1. Cancer Markers and Clinical Proteomics

Biological factors (e.g., proteins), whose status and/or quan-
tity reflect the risk of a disease, severity of an illness, or
the effects of therapy are called markers or biomarkers.
In oncology, appropriately selected sets of markers can
provide information about carcinogenic triggers to which
the organism was exposed, detect early changes (hyperplasia,
dysplasia) that appear prior to the occurrence of overt
forms of cancer, as well as monitor efficacy and toxicity of
the treatment. Such factors (i.e., potential biomarkers) are
present in tumor tissues or body fluids, and encompass a
wide variety of molecules, including transcription factors,
cell-surface receptors, and secreted proteins. Several protein
tumor markers have been used for decades in the traditional

oncology for detection of cancer, for example, prostate can-
cer antigen (PSA) or cancer antigen 125 kD (CA125). In fact,
effective tumor markers are in great demand since they have
the potential to reduce cancer mortality rates by facilitating
diagnosis of cancers at early stages and helping to plan
tailored treatment. Cancer biomarkers can be divided into
prognostic and predictive. Prognostic factors, which include
tumor size, histological type of cancer, grade, and nodal
status, allow the determination of prognosis regardless of a
treatment. Currently list of prognostic molecular factors has
been extended considerably including hormone receptors,
markers of angiogenesis, and proliferation [1]. A predictive
marker is a factor that indicates sensitivity or resistance to
a specific therapy. The use of predictive markers appears
increasingly relevant in contemporary cancer therapy as
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it allows for better identification of patients who will
respond positively to selected therapy. Predictive molecular
markers are used successfully in treatment of breast cancer
[2]. Expression of estrogen and progesterone receptors can
determine the benefits of hormone therapy, whilst the benefit
of treatment with herceptin is determined by the expression
of HER2. More recently predictive molecular markers are
tested in many other malignancies, like somatic mutations
of the EGF receptor gene used in the evaluation of the
potential sensitivity of lung cancer patients to treatment
with the receptor inhibitors [3]. However, approaching
era of individualized treatment requires identification and
validation of novel biomarkers. Hence proteomics, which
is expected to deliver knowledge on novel cancer-related
proteins, is among the most intensively developed field of
molecular oncology.

Clinical proteomics is a division of proteomics focused
on the analysis of proteome changes during development
of the disease and during the progress of a therapy. This
term was coined several years ago, inter alia, by Liotta and
Petricoin [4]. The major objectives of clinical proteomics is
to identify differences between proteomes of healthy and sick
persons, relations between the state of the proteome and the
degree of development of the disease, and changes initiated
in response to the treatment. The primary aim of clinical pro-
teomics is identification, characterization, and verification
of protein biomarkers useful in the molecular diagnostics
of the cancer [5–7]. There are generally two strategies for
the detection of biomarkers using proteomics technologies.
The first one is a “targeted” approach, which includes
evaluation of candidates preselected using assumptions given
from other traditional sources. The second strategy is a
“nontargeted” de novo discovery approach, which could take
advantage of full potential of proteomics. Most apparently
both strategies can complement each other, and both have
their positive and negative sides.

The object of clinical proteomics studies, similar to other
types of medical diagnostics, can be either target tissue (or
organ), where the disease develops, or a replacement tissue.
Blood and its derivatives (serum or plasma) is the most
common replacement tissue used in medical diagnostics.
We expect that composition of blood reflects the presence
and severity of disease. Given that serum (or plasma)
is a very complex mixture and that hypothetical disease
markers are present in low concentrations, testing the blood
proteome requires properly selected and carefully optimized
research tools. Current clinical proteomics is based on mass
spectrometry (MS) tools, which different methods have
successfully implemented also in analyses of blood proteome.

2. Implementation of Mass Spectrometry in
Molecular Profiling of the Blood Proteome

Constantly improved mass spectrometric methods are widely
used in proteomic studies. By using different techniques of
MS it is possible to read the molecular weights of specific
peptides and proteins in complex mixtures containing only
pM of particular molecules. Depending on a type of analyte

various techniques of ionization and separation of ions
in the analyzers are used in the field. Two ionization
methods: electrospray ionization (ESI) and matrix-assisted-
laser(induced)desorption ionization (MALDI) are the most
commonly used for protein analyses in current clinics-
oriented studies. In MALDI, the analyte molecules (e.g.,
protein or peptide) are cocrystallized with matrix molecules
that absorb UV light; cinnamic acid derivatives (such
as sinnapinic acid, α-cyano-4-hydroxycinnamic) are the
most frequently used for protein studies. As a result of
matrix and analyte mixture irradiation molecules of analyte
are protonated and desorbed from the crystals (matrix
molecules serve as a source of protons). The resulting ions
of the analyte are usually endowed with single protons
([M+H]+ molecular ions); the analyte molecules are not
fragmented in normal conditions. MALDI spectrometers
are used for the analysis of proteins and peptides with
molecular weights ranging from 500 Da to as much as several
hundred thousand Da [8, 9]. Similar principle of ionization
is used in surface-enhanced laser desorption ionization
(SELDI) spectrometers. In this type of spectrometers, the
laser-beam-induced desorption of analyte molecules occurs
from different types of surfaces, which specifically bind
different fractions of proteins (such surfaces are coated
with substances which are equivalent to chromatography
deposits). MALDI (and SELDI) spectrometers are usually
coupled with time of flight (ToF) ion analyzers. Registered
time of flight of analyzed molecular ions (typically ranging
from 0.01 to 1 ms) is directly proportional to the square
root of m/z value and can be converted into mass of the
analyte particles [8, 9]. Described method in its basic version
allows on identification of characteristic features of the
protein profiles of analyzed mixtures. However, MALDI-
ToF spectrometry also allows the identification of proteins
based on the amino acid sequence in polypeptide chains.
Most typically, analyzed protein is processed enzymatically
(e.g., by trypsin digestion), then selected peptides undergo
further fragmentation in spectrometer, and sizes (m/z values)
of fragmentary ions are determined in the so called tandem
mass spectrometry (MS/MS). On the basis of fragmentary
ion sizes, the appropriate computational analysis allows
establishing of amino acids sequence in the peptide chain and
identification of corresponding protein [10, 11].

The proteomics approach that takes into consideration
characteristic features of the whole proteome but does
not rely on particular protein, is called proteome pattern
analysis or proteome profiling. In this approach specific pro-
teome signatures are built based on several peptide/protein
components, which are exemplified by ions registered at
defined m/z values in the mass spectrum. Such proteome
signatures (or patterns) can be used for further sample
identification and classification (rev. [12–18]). The low-
molecular-weight fraction of the blood proteome (up to
15,000 Da) appears to be a promising source of novel
biomarkers of human diseases. Mass spectrometry methods,
which allow characterization of this particular component
of blood proteome, emerge as a potential and valuable tool
of clinical proteomics and disease diagnostics. Numerous
works have been published exploring the applicability of
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Table 1: Examples of MS applications to analyze the serum
proteome in the diagnosis of cancer.

Type of cancer Publications

Ovarian cancer [19–24]

Head and neck cancer [25–36]

Breast cancer [37–44]

Prostate cancer [39, 45–48]

Uterus cancer [49]

Lung cancer [50]

Colon cancer [51]

Pancreatic cancer [52]

Thyroid cancer [53]

Renal cell carcinoma [54]

Bladder cancer [39]

Liver cancer [55]

Leukemia [56, 57]

MALDI/SELDI-based profiling of the low-molecular-weight
fraction of serum/plasma proteome for cancer diagnostics
since the milestone paper was published by Petricoin and
coworkers in 2002 [19]. These studies have shown that multi-
peptide signatures selected in numerical tests have potential
values for diagnostics of different types of cancer. Several
major papers relevant for this topic are listed in Table 1.

Authors of those works (as well as other works not
quoted in the table) proposed multicomponent classifiers
that could be used for detection and/or classification of
cancer. This approach seems to be accepted as the first
stage of the biomarker’s discovery pipeline—identification
of marker candidates. However due to apparent problems
with standardization of methodological details, both experi-
mental and computational, none of proposed serum peptide
signatures analyzed directly by mass spectrometry has been
approved for routine diagnostics yet. Noteworthy, several
components of proposed cancer signatures, especially those
for advanced cancer, were identified as fragments of blood
proteins involved in the acute phase and inflammatory
response [34, 48, 54]. This indicated that among cancer
biomarker candidates to be possibly identified in serum
proteome were rather those reflecting overall influence of a
disease (and the therapy) upon the human organism, than
cancer-specific molecules. Here, we aimed to point out the
methodological issues that affect robustness of MS-based
serum proteome profiling and to focus on two particular
areas where such analyses seem to be the most rational and
promising: assessment of cancer progression and monitoring
of cancer treatment.

3. Problems Related to Standardization of
Sample Processing and Data Analysis

One of the major challenges of MS-based serum/plasma
proteomics is the high dynamic range in the abundance of
particular blood proteins, exceeding 10 log scale [58]. The
reproducibility and reliability of MS-based profiling of serum

specimens is questionable because of problems with iden-
tification of low-intensity components in the background
of highly abundant “housekeeping” proteins (e.g., albumins
and immunoglobulins) [26, 59]. The fragments of highly
abundant proteins dominate the peptide profiles of plasma
specimens [39, 60]. In fact, most studies demonstrated
that candidate biomarkers represent fragments of high-
abundance serum proteins, rather than specific tumor-
associated gene product (rev in [11]). In theory, mass
spectrometer should detect the presence of all types of
molecules present in the specimen. However, MS is not
a quantitative method, and the intensity of registered ion
does not reflect its actual concentration in the sample.
The major difficulties associated with the measurement of
potential biomarkers in serum/plasma samples are: (i) low
abundance of particular components in the specimen, (ii)
masking the candidate by abundant proteins (such albumin
and immunoglobulins), and (iii) the candidate stability.

The presence of albumin (representing approximately
60% of all serum proteins, 50 mg/mL) is the major factor
changing the yield of ionization and affecting the ability
to register low abundance serum components [61]. Such
influence on measurement of less abundant molecules is
named suppression effect. Preprocessing of the serum sample
and removal of albumin (and other high-molecular-weight
proteins) from the specimen before the analysis should
be always considered. The depletion of highly abundant
proteins form the serum specimen could be achieved in
different ways. Among them are: immunoaffinity depletion
using custom made or commercially available columns (e.g.:
Qproteome Albumin/IgG Depletion Kit (Qiagen), Montage
Albumin Deplete Kit (Millipore), or MARS columns/spin
cartridges (Agilent)), fractionation by size exclusion chro-
matography, ion exchange chromatography, and/or isoelec-
tric focusing. Ultrafiltration of serum (and other body
fluids), where components of high molecular weight are
retained while the low molecular weight proteins/peptides
pass through the membrane, is among the most popular
methods of sample preprocessing [62]. However, even
though removal/depletion of the most abundant proteins
increases coverage of serum components [63], depletion
of albumin might be risky because several low-molecular-
weight components of the blood are attached to this
carrier protein and could be codepleted from the speci-
men [64]. Several methods, including size exclusion ultra-
filtration under denaturation conditions [65], continuous
elution denaturing electrophoresis [66], or fractionation of
serum/plasma by nanopores [67, 68] have been proposed to
omit this problem. In many applications, serum is diluted
with solution of a denaturing factor acetonitrile (final v/v
concentration 20–25%). The presence of acetonitrile affects
protein/protein interactions and releases low-molecular-
weight peptides/proteins associated with albumin or other
carrier proteins, which significantly increases amount of
proteins passing through the ultrafiltration membrane [62].
Conditions of ultrafiltration (e.g., selection of size of pores
in the membrane, dilution of specimen, and concentration
of acetonitrile) largely affect composition of the filtrate and
has to be carefully considered [62, 69–71]. Another problem
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related to serum sample processing and storage is stability
of analyzed proteins/peptides. First of all, blood for isolation
of serum should be collected, transported, stored, and
processed in conditions that minimize sample degradation
by proteases and contamination (e.g., by bacteria) [72,
73]. Recently hydrogel nanoparticles have been applied in
biomarker purification and preservation (rev. [66–68, 74]).
Hydrogel particles containing an affinity bait could be used
for: (i) rapid one-step sequestration of the low-molecular-
weight fraction of serum proteins and metabolites; (ii)
removal of the target molecules from sample; (iii) protection
of proteins from enzymatic degradation; (iv) concentration
of the target protein. This technology might increase the
detection limit of mass spectrometry and immunoassays by
>100 fold [75]. Depending on selected method of serum
sample processing, including or excluding depletion of the
high-molecular-weight proteins, different low-molecular-
weight peptide signatures (classifiers) should be expected
even though overall power of resulting classification might
be similar [42].

Proteomics studies generate high-dimensional data sets
where traditional statistical and computational methods
are not sufficient for analyses, hence novel “nonstandard”
mathematical approaches are frequently required. A typical
proteomic analysis of spectral data consists of three steps: (i)
preprocessing of data, (ii) identification of spectral compo-
nents, and (iii) statistical analyses and classification based on
identified components. The first step includes: “smoothing”
of the spectrum, removing the baseline, normalization, and
averaging of technical replicates. The simplest method of
spectra “smoothing” is averaging among several neighboring
points. The baseline correction flattens specific noise named
baseline. Interpolation is performed to standardize points
on the m/z axis among all spectra. Normalization is used
for scaling the spectra—the most frequently used algorithms
base on total ion current (TIC) value or constant noise.
All procedures reduce dimensionality of data and improve
quality of further analyses. There are several algorithms
accepted for procedures and most of proteomics studies
used comparable methods for spectra preprocessing. How-
ever, there is no single protocol generally accepted as the
standard. In fact some of the key parameters are tuned
and adjusted for particular analyses, and type and order of
preprocessing steps may significantly differ among different
analyses [76–78]. There are two general types of approaches
allowing comparison of multiple spectra. One of them
bases on comparing the signal in successive measurement
points (called point-to-point analysis). The second one uses
identification and matching of spectral components. This
approach usually starts from peak detection. The aim of
peak detection procedures is to find peaks describing the
composition of spectra, which is followed by alignment of
peaks identified in different spectra. Most of algorithms used
for peak detection identify local maxima and minima; local
maxima are classified as peaks only when they have signal-
to-noise ratio above a given threshold [79]. Alternative
procedure for identification of spectral components bases
on modeling of spectra as a sum of Gaussian components,
then the model is adjusted to experimental data. Such

procedure avoids artifacts linked with the methods of point-
to-point and peak alignment, and facilitates quantitative and
statistical analysis [43]. The objective of the last step of
spectral data analysis is to find patterns in the data sets and to
classify samples. Many of statistical and analytical algorithms
and tools developed for functional genomics are being used
in proteomics. Different combinations of unsupervised and
supervised clustering, machine learning, pattern recognition,
statistical analysis, modeling techniques, and database min-
ing are used in the field. Some researchers use custom-build
protocols and algorithms while others base on commercially
available software for spectra analysis (e.g., ClinProTools
(Bruker Daltonics), Spectrolyzer (MedicWave)). All these
computational tools have to be tuned and optimized for
specific applications and datasets, which apparently add
diversity to these protocols.

Many different experimental and computational pro-
cedures are used in the field for sample preprocessing
and data analysis. All these procedures are modified and
adjusted for specific objectives and sample or data sets to
deliver optimal results. However, the major drawback of the
situation is the lack of “golden standard” in sample and
data processing, which makes impossible direct comparison
of peptide signatures delivered in different studies of blood
proteome of cancer patients. Hence, comparative analysis
and interpretation of such data requires caution and should
be preferably performed based on sequence-identified com-
ponents of peptide profiles.

4. Features of Serum Proteome Profiles Reflect
Stage and Progression of a Cancer Disease

Precise and adequate assessment of degree of tumor progres-
sion is a key factor for proper selection of the optimal treat-
ment. However, the traditional anatomy-based classification
of cancer stages, the so-called TNM classification [80–83],
turns out to be imperfect and in many cases insufficient for
planning of modern-tailored therapy. Therefore, preliminary
trials and attempts are implemented in oncology during last
years to supplement traditional classification of cancer stages
with novel measures and parameters. Some of these attempts
base on precise measurement of tumor volume and assess-
ment of clonogenic cells number by functional/molecular
imaging methods [84, 85]. Another obvious direction of
research is aimed at identification of novel molecular
factors that correlate with degree of tumor progression, and
could be used as biomarkers complementary with anatomi-
cal/volumetric methods for the classification of solid tumors.
Currently the dominant diagnostic tools for the analysis
of protein markers in the blood bases on immunological
methods (e.g., ELISA). In clinical practice immune-based
methods are used to measure the number of protein markers,
which levels in blood correlate with the progression of
cancer. Such markers include protein CA125, CEA, PSA,
betaHCG, AFP, and CA19-9. Importantly, these markers,
although used routinely, have limited predictive value and
their increased levels are observed primarily in patients with
heavily advanced cancer (usually in the stage of spreading)
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[86–88]. Detectability of those markers mostly in advanced
cancer cases apparently limits their use for more refined
assessment of cancer progression. Hence, identification of
new markers with potential applicability in cancer staging
is an important task for cancer proteomics. Among several
important mechanisms involved in tumor biology, which
could serve as a source of potential biomarker for assessing
progression of cancer, there are immune response and
inflammatory reactions. In general immunity and inflamma-
tion processes related to immune response have dual role in
malignant tumors. The immune system plays an important
role in anticancer protection. However, inflammation could
also enhance tumor growth when become a chronic reaction.
On the other hand, a growing malignant tumor often
maintains the tissue in the inflammatory state. Lymphocytes
and other components of the immune system present
in tumor are often immunosuppressed (i.e., unable to
destroy the cancer cells), but still secrete growth factors and
cytokines that contribute to tumor growth (rev. [89–93]).
Chronic inflammatory reactions are frequently observed in
cancer patients and their escalation putatively correlates
with progression of malignancy. This is due to stimulation
of the immune system and tissue damage in the course
of the disease. A sensitive marker of chronic and acute
inflammatory processes are acute phase proteins. Their levels
in the blood increase in response to tissue damage, infection,
and other stimulants of the inflammatory response (e.g.,
cytokines). The most important acute phase proteins are: α1-
proteinase inhibitor, α1-acid glycoprotein, serum amyloid A
(SAA), haptoglobin, ceruloplasmin, α2-macroglobulin, and
C-reactive protein (CRP). Interestingly, many acute-phase
proteins were identified as potential markers of the process of
carcinogenesis [94–96]. An important inflammation-related
protein, which increased abundance in blood is characteristic
for cancer patients is serum amyloid A (SAA). SAA is
an acute-phase apolipoprotein typically induced in liver
in response to inflammatory stimuli. However, increased
expression of SAA was also observed during tumorogenesis,
and elevated serum level of this protein was a general feature
of progressive and metastatic cancer cases. For example, the
presence of SAA was demonstrated in 55% of ovarian cancer
cases and only in 6% of healthy individuals [97, 98]. Other
authors have shown nearly 20-fold increase in SAA in the
case of lung cancer patients compared to healthy subjects,
and SAA levels in patients with poor prognosis (survival less
than 5 years) was 2-fold higher than in patients with a better
prognosis [99]. Thus SAA was proposed to be a prognostic
cancer marker [88].

Several components of cancer signatures proposed in
MS-based serum proteome studies, especially those charac-
teristic for advanced cancer, were identified as fragments of
blood proteins involved in the acute phase and inflammatory
response (rev. in [90, 100]). This indicated that among
cancer biomarker candidates to be found by this approach
were those reflecting overall influence of a disease upon the
human organism. Most profiling studies have demonstrated
that candidate biomarkers represent mere fragments of
high-abundance serum proteins, rather than specific tumor-
associated gene products. The contribution in proposed

cancer signatures of components specific for particular types
of malignancies and “nonspecific” components related to
general response of the organism was not established so far.
Comparative analysis of serum peptides detected in samples
from healthy persons and breast, bladder, or prostate cancer
patients allowed identification of cancer-specific features, yet
some differentiating peptides were common for all three can-
cer signatures (e.g., fragments of fibrinopeptide A). Another
coagulation-related candidate biomarker identified by serum
profiling of cancer patients is 2664 Da fibrinogen alpha-chain
fragment. This peptide has significantly increased abundance
in blood of patients with oral cancer when tested using
MALDI spectrometry [28]. Importantly, increased level of
fibrinogen alpha-chain was previously reported in blood
of patients with gastric cancer, where it was correlated
with progression of the malignancy [101], and melanoma
patients [102]. Another cancer-specific marker identified by
MS-based serum proteome profiling was SAA. Increased
levels of fragments of SAA (∼11,5 kDa and ∼11,7 kDa)
were detected by MALDI/SELDI spectrometry in serum of
patients with different types of advanced cancer, for example,
ovarian cancer [98], prostate cancer [48], renal cancer [54,
103], colon cancer [104], and lung cancer [34, 95, 105].
All these reports indicate collectively that SAA1 fragments
are indeed cancer-stage-specific but not cancer-type-specific
components of cancer peptide signatures.

5. Features of Serum Proteome Profiles
Reflect Response of Patients’ Organism
to Anticancer Therapy

A few studies have focused on application of MS-based
serum proteome profiling to identify possible therapy-
related features that could be used for monitoring of
progression, efficacy, and toxicity of the treatment. Some
of these works were related to analysis of serum/plasma
of patients undergoing chemotherapy because of breast
cancer. SELDI-ToF analysis of the plasma proteome of breast
cancer patients who underwent paclitaxel-based neoadju-
vant treatment revealed one peptide (m/z = 2790 Da) that
specifically increased in its abundance, yet the presence of
this peptide did not correlate with the outcome of therapy
[40]. Similar analysis of the serum proteome of patients
infused with docetaxel revealed two peptides (m/z = 7790
and 9285 Da), which changed their abundances in response
to the treatment. These peptides were identified as kininogen
and apolipoprotein A2, respectively [41]. Such taxane-
induced changes were detected in samples collected just
few days (or hours) after the exposure to the drug, and
apparently reflected short-tem effects of the treatment. There
are also studies that addressed long-term effects related
to the treatment of breast cancer patients. In one small-
scale study 16 paired serum samples collected from breast
cancer patients before the treatment and posttreatment (6–
12 months after surgery and at least one month after the
end of adjuvant therapy) were analyzed using SELDI-ToF; the
treatment scheme was heterogenous in this group and based
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on surgery alone, or surgery supplemented with neoadju-
vant chemotherapy or adjuvant chemo/radiotherapy. It was
found that three peptides (m/z = 2276, 4892, and 6194 Da)
increased their abundance in serum collected posttreat-
ment. Noteworthy, both pretreatment and posttreatment
samples retained specific features of mass profiles that
differentiated them from serum samples collected from
healthy donors [106]. We have performed MALDI-based
comparative analysis of the low-molecular-weight fraction of
serum proteome in a larger group (70 person) of patients
diagnosed at early stages of breast cancer and treated
with surgery either independently or in combination with
adjuvant radio/chemotherapy; samples collected before the
start of therapy, after the surgical resection of tumors and
one year after the end of therapy were compared. We
found that surgical resection of tumors did not have an
immediate effect on serum proteome profiles. On the other
hand, significant long-term effects were observed one year
after the end of basic treatment. Moreover, the significant
differences were found primarily in the subgroup of patients
treated with adjuvant therapy, but not in the subgroup
subjected only to surgery. This suggests that the observed
changes reflect overall responses of the patients’ organisms
to the toxic effects of adjuvant radio/chemotherapy. In
line with this hypothesis we detected two serum peptides
(registered m/z values 2184 and 5403 Da) whose changes
correlated significantly with the type of treatment employed
(their abundances decreased after adjuvant therapy, but
increased in patients treated only with surgery) [42]. There
is an intriguing possibility whether therapy-related changes
in serum proteome correlated with clinical outcome. An
SELDI-based study performed in patients treated with
neoadjuvant radiochemotherapy of rectal cancer revealed
that specific features of serum proteome profiles observed in
the course of the treatment discriminated patients with good
and poor histological response to the therapy [107].

There are also a few works focusing on changes in
serum proteome composition induced specifically by expo-
sure of cancer patients to ionizing radiation. SELDI-based
proteome profiling was applied in comparative analysis of
serum samples collected before and during or directly after
radiotherapy of cancer patients. Analyzed group consisted
of 68 patients treated with radiation due to 18 different
malignancies, who received total doses in a range of 1.5 to
86.4 Gy (median 48.6 Gy), with the time interval between
consecutive blood samples in a range of 1 to 55 days (median
35 days; second sample was usually collected in the latter part
of the treatment). In spite of a very heterogenous material
the authors identified differences between preexposure and
postexposure samples. Registered serum proteome profiles
were used to build multicomponent classifiers that differen-
tiated unexposed and exposed samples, as well as samples
collected from patients exposed to higher and lower doses
of radiation [108]. We performed MALDI-based analysis
of the low-molecular-weight fraction of serum proteome
of patients treated with radical radiotherapy alone due to
larynx cancer (total doses ranging from 51 to 72 Gy). Three
consecutive blood samples were collected from each of 46
patients: before the start, 2 weeks after the start, and 1-2

months after the end of radiotherapy. Significant differences
were not found between serum samples collected before the
start and during radiotherapy. In marked contrast, how-
ever, numerous spectral components showed significantly
changed abundances in samples collected after the end of
radiotherapy. This report showed for the first time that
radiation-related changes in abundance of serum peptides
could be detected several weeks after the irradiation. In
addition, the abundance of certain serum peptides was
associated with a dose of radiation received by patients. This
indicated that features of serum proteome could be a useful
retrospective marker of exposure to ionizing radiation and
that multi-component serum peptide signatures determined
by MS could have applicability in radiation dosimetry [35].

All these data indicate collectively high potential applica-
bility of MS-based serum proteome profiling in monitoring
the response of cancer patients to chemo- and radiotherapy.
Changes in abundance of particular low-molecular-weight
components of blood proteome observed in the course of
anticancer therapy could reflect several different processes,
including direct toxic effects of the treatment, healing of toxic
reactions, and effects related to removal of a tumor. Not
surprisingly among serum proteins that changed their abun-
dance during the treatment several were identified as acute-
phase proteins. This confirmed that processes reflecting the
general reaction of patient’s organism to the malignancy and
its treatment were major targets of MS-based profiling of the
low-molecular-weight fraction of serum proteome.

6. Conclusions

In spite of tens of published studies the real potential of
MALDI/SELDI-based serum proteome profiling in clinical
diagnostics is not clearly defined so far. Even though these
studies have showed that multipeptide signatures selected in
numerical tests have some potential value for classification
and differentiation of cancer, none of proposed serum
peptide signatures has been approved for routine diagnostics.
Lack of standardization of methodological details, both
experimental and computational, is an important problem in
MS-based blood proteome profiling. It appears that guide-
lines for standardization of these multiparametric analyses
should be generally accepted in the field and that identified
marker candidates need to be confirmed in multicenter bias-
free prospective validation studies.
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