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Abstract
Dropout is common in longitudinal clinical trials and when the probability of dropout depends on
unobserved outcomes even after conditioning on available data, it is considered missing not at
random and therefore nonignorable. To address this problem, mixture models can be used to
account for the relationship between a longitudinal outcome and dropout. We propose a Natural
Spline Varying-coefficient mixture model (NSV), which is a straightforward extension of the
parametric Conditional Linear Model (CLM). We assume that the outcome follows a varying-
coefficient model conditional on a continuous dropout distribution. Natural cubic B-splines are
used to allow the regression coefficients to semiparametrically depend on dropout and inference is
therefore more robust. Additionally, this method is computationally stable and relatively simple to
implement. We conduct simulation studies to evaluate performance and compare methodologies in
settings where the longitudinal trajectories are linear and dropout time is observed for all
individuals. Performance is assessed under conditions where model assumptions are both met and
violated. In addition, we compare the NSV to the CLM and a standard random-effects model using
an HIV/AIDS clinical trial with probable nonignorable dropout. The simulation studies suggest
that the NSV is an improvement over the CLM when dropout has a nonlinear dependence on the
outcome.
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1. Introduction
Dropout in longitudinal clinical trials occurs for reasons that may be related to the outcome
of interest. For example, in HIV/AIDS studies patients may experience drug-related
toxicities or develop viral resistance to therapy. These reasons can be related to an outcome,
such as CD4+ T cell count, a measure of immunologic health. When the reason for dropout
is associated with the unmeasured values of the outcome of interest, missing data are said to
be missing not at random (MNAR) and are therefore nonignorable [1,2]. Traditional
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methods, such as mixed- or random-effects models (REM) [3], ignore the dropout
mechanism. The analysis method must account for the outcome-dropout relationship as
ignoring MNAR data can lead to biased results [1,2]. A thorough review is provided by
Hogan, Roy and Korkontzelou, 2004 [4].

Mixture models assume that the trajectory of the outcome is a function of dropout time. For
example, individuals who drop out earlier may have steeper declines over time. We consider
mixture models in applicable settings where the longitudinal trajectories are roughly linear
over time, the time of dropout is observed for all individuals and observations are mistimed
such that dropout can be considered continuous. These approaches further assume that
intermittent missing data are missing at random, there is variability in the slope among
subjects and subjects who complete the study behave as if they dropped out immediately
after that point in time. Wu and Bailey’s conditional linear model (CLM) is an established
mixture model method that assumes the regression coefficients are polynomial (parametric)
functions of dropout time [5]. These parametric models often result in a poor fit of the
relationship between dropout time and the individual trajectories. Hogan, Lin and Herman
(2004) [6] propose a semi-parametric varying-coefficient mixture model with a roughness
penalty that estimates the smoothing parameter as an extra variance component [7,8]. While
flexible, this method is not trivial to implement, can suffer from convergence problems and
requires multiple groups be fit separately for numerical stability. We propose a numerically
stable Natural Spline Varying-coefficient (NSV) mixture model approach which uses natural
cubic B-spline basis functions in the fixed effects. The NSV was developed to provide a
flexible method for modeling the outcome-dropout relationship and to avoid potential bias
resulting from an incorrectly specified parametric dropout mechanism. This method is a
straightforward extension of the CLM and uses standard statistical software.

The details of the CLM and NSV methods are presented in Sections 2.3 and 2.4,
respectively. A simulation study which assesses model performance when assumptions are
met and violated is detailed in Section 3 and a clinical trial application using an HIV/AIDS
dataset is described in Section 4. Conclusions follow in Section 5.

2. Methods
2.1. Conditional model

Mixture models account for the dropout mechanism by factoring the joint outcome-dropout
distribution into the dropout-time distribution, f(u), and the distribution of the outcome
given dropout, f(y|u). The resulting complete data distribution, f(y), is ∫f(y|u)dF(u). We

assume m subjects with ni observations measured over time,  and assuming
the curves vary with dropout time, we anticipate significant individual variation (intercepts
and slopes). The conditional model of the N × 1 outcome vector, Y, given dropout times u
can be written as the mixed-effects dropout-varying coefficient model:

(1)

where * represents an elementwise product of the vectors. The dropout-varying intercept (k

= 0) and slope (k = 1) are , where βik = Iiβk(ui) and Ii is an ni × 1 vector
of 1’s. Z is the design matrix associated with the random effects b ~ N(0, D) and is
independent from the residual error, ε ~ N(0, R).

2.2. Marginal estimates
For each group, h = {1, …, s}, we estimate the marginal coefficients (intercept and slope).

We define  as the rh unique ordered dropout times for the hth group and Ĩhi
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to be an rh × 1 dropout time indicator vector for uhi, the ith patient’s dropout time in the hth
group. The hth group’s marginal coefficients are

(2)

Here, F ̂(u) is the empirical cdf of u and  is the rh × 1 vector of smooth function

values. Additionally, , where mh is the number of subjects in the hth group.

2.3. Conditional linear model
The CLM [5] was developed to compare slopes across treatment groups.

For the hth group and the ith subject, with Zi = [1, ti],

(3)

Wu and Bailey [5] constrained Jh0 = 0, resulting in a constant (not dropout-varying)
intercept, such that βh0(u-hi) = θh00 for all subjects. The ith subject’s dropout-varying slope

is . This model can easily be written in the form of Eq. (1). Although
relatively simple to implement, simple polynomial functions may lack the flexibility
necessary to adequately fit the dropout mechanism. Additionally, if the parametric
specification for the dropout mechanism is incorrect, the results will be biased [6,9].

2.4. Natural spline varying-coefficient model
Ideally, a mixture model method would be data driven and not require a parametric
specification. Therefore, we propose a semiparametric Natural Spline Varying-coefficient
(NSV) approach. This method relies on natural cubic B-spline basis functions to model the
dropout mechanism. Standard B-spline basis functions are flexible, nearly orthogonal,
numerically stable, easy to compute and possess local support [10–12]. The linear constraint
beyond the boundary knots provided by natural cubic B-splines (as opposed to standard B-
splines) improve model behavior if data are sparse near the boundaries. The conditional
NSV model is

(4)

where ũhijk = B̃(uh, Jhk)[i, j+1] for k = 0,1. For j > 0, B̃(uh, Jhk) is the matrix of basis
functions with Jhk degrees of freedom (df) and B̃(uh, Jhk)[,1] is 1. Respectively, the ith
subject’s dropout-varying intercept and slope are

(5)
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(6)

We define βhk(uhi) = Iiβhik. We can then re-write the subject-specific model as

(7)

Stacking these models results in a mixed-model for the full data (Eq. (1)). The B-spline
knots (df − 1) are based on the hth set of dropout times and the df determine model
flexibility and the number of parameters. This semiparametric method differs from the CLM
by using natural cubic B-spline transformations of dropout time rather than polynomial
transformations and additionally allows for a dropout-varying intercept.

Subjects with early dropout times contribute fewer observations and estimates of their
trajectories are less stable. To increase stability, we take advantage of the linearity of the
natural cubic B-splines below the lower boundary, which we now denote as dLh. Above, dLh
was assumed to be the first drop-out time (u1h

0). An offset can be incorporated, shifting the
lower boundary (dLh > u1h

0) such that the coefficients in this region, u ∈ [u1h
0, dLh], will

change linearly as a function of drop-out time and provide stability. Eq. (5) now utilizes the
following basis functions: for l = {0,1} and j > 0, B̃(uh, Jhl, dLh), is the matrix of basis
functions with lower boundary dLh.

3. Simulation study
We assess model performance using simulation studies similar to those described in Hogan,
Lin and Herman (2004) [6]. The NSV and CLM rely on the assumption that the βk(u) are
continuous and smooth as a function of dropout time. The simulation studies included three
functional forms for the dropout mechanism. Form (i) is continuous and smooth, meeting the
NSV assumptions. Form (ii) is continuous but not smooth, initially increasing then forming
a plateau. Lastly, form (iii) violates both smoothness and continuity and is generated from a
step function, which may be difficult for the models to capture. We also considered how
within-subject variability impacts model performance by simulating two variance settings.

We assume the following form for the data:

for m subjects with ni observations for the ith subject, where (a0i, a1i)T ~ N (0, D), εij ~ N(0,
σ2) and β0(u) = 0. Dropout is created from a beta-binomial where p~Beta(1.5,1.5) and
U~Bin(15, p). Dropout times are u = U/15 ∈ [0,1], resulting in 16 timepoints spaced equally
from 0 to 1.

The forms of the dropout mechanism, β1(u), are: (i) −exp(αu), (ii) −exp(αu)I(u < t*)
−exp(αt*)I(u ≥ t*) and (iii) α1I(u < t*) + α2I(u ≥ t*). We set α = −4 for forms (i) and (ii), define
t* = 2/3 and for form (iii), α1 = 0 and α2 = 1. Fig. 1 displays the dropout-specific slopes for
each model. The within-subject variance, σ2, is 0.067 and 0.2 for the small and large
settings, respectively.

For each form/variance combination, 1000 datasets with 400 subjects each were created and
the elements of D are as follows: d11 = 0.4, d22 = 0.01 and d12 = −0.01.

Forster et al. Page 4

Contemp Clin Trials. Author manuscript; available in PMC 2013 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We fit an NSV, CLM and REM to each dropout-form/variance combination. For each
simulated dataset, AIC was used to determine the number of B-spline knots. We considered
a maximum of 6 df for each dropout-varying effect and set the left boundary offset, dL, to
0.20 (corresponding to 4 observations). Likelihood ratio tests were used to select the best
CLM, with a cubic polynomial in the full model (J1 = 3).

We graphically assess performance by plotting the means of the β̂1(ui) for the NSV and
CLM models against the true slope, β1(ui), at each dropout time (Fig. 2). These graphs
demonstrate that the NSV fits the β1(ui) for forms which meet and violate model
assumptions. In form (iii), the step function, the NSV demonstrates surprising performance
given the assumption violations. A cubic polynomial predominates in the CLM for form
(iii), resulting in a poor fit in the region of the early dropout times. For all forms and dropout
times, the NSV performs better or comparable to the CLM.

We next quantify performance of the marginal model for the slopes by calculating the mean

squared error (MSE) of the marginal slope, . For the jth dataset, MSE is , where

 is the true marginal slope. The MSE geometric means and 95% confidence intervals are
displayed in Table 1. For all form/variance combinations, the NSV MSE is the smallest,
supporting the results shown in Fig. 2. Table 2 displays the mean estimated marginal slope
for each method. Again, the NSV demonstrates superior performance as compared to the
CLM. As anticipated, the REM is outperformed by both mixture models. In summary, the
NSV method is computationally tractable, numerically stable and provides reliable estimates
under a variety of dropout mechanisms.

4. Application
4.1. HIV clinical trial

We analyzed data from a double-blind, randomized HIV/AIDS clinical trial that evaluated
treatment with mono-therapy lamivudine (3TC) or zidovudine (AZT); or dual-therapy
including either a low or high dose of 3TC (AZT+3TC low and AZT+3TC high) [13]. Three
hundred sixty-six subjects, with CD4+ T cell count between 200 and 500 cells per cubic
millimeter, were randomized to the four treatment groups and followed for up to 100 weeks.
Eron et al. (1995) described the data through week 52, and based on HIV-1 RNA (viral
load), demonstrate that dual-therapy was superior. Our outcome of interest, CD4+ T cell
count, was measured every 4 weeks through week 52 and every 8 weeks thereafter. We
defined our two treatment groups as mono-therapy (AZT and 3TC arms; n = 180) and dual-
therapy (AZT+3TC low and AZT+3TC high arms; n = 186). The mono-therapy and dual-
therapy groups had a median (range) of 14 (1, 20) and 13 (1, 20) observations per subject,
respectively, with corresponding median last visits of 53 (0, 100) and 52 (0, 100) weeks. For
each subject, dropout time was defined as the last visit plus one day. Thus, all subjects had
an observed dropout time.

We began the investigation of the dependence of individual rates of change on time of
dropout by plotting the ordinary least squares (OLS) slopes by dropout time for the two
groups (Fig. 3). While the dropout mechanism was unclear for the mono-therapy group,
subjects with a positive slope (increasing CD4+ T cell counts) tended to drop out early in the
dual-therapy group as indicated by the greater number of points above 0 over the first 30 to
40 weeks. Adherence to drug can result in both treatment-related toxicities and better
outcomes (positive CD4+ T cell slope). Therefore it is biologically plausible that subjects
who are adhering to treatment in the dual-therapy arm have positive slopes and are also
likely to drop out early due to toxicities.
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4.2. Dropout models
4.2.1. NSV—CD4+ T cell count was modeled as a function of treatment group and time
with group-specific dropout-varying B-spline bases for the intercepts and slopes in the fixed
effects and a random subject-specific intercept and slope. Considering the full model with
maximum df, likelihood ratio tests justified including a parameter for the covariance of the
subject-specific random effects and confirmed the presence of significant individual slope
variation. We allowed each group’s dropout-varying intercept, βh0(uh), and slope, βh1(uh), to
have its own flexibility (Jhk). Based on the median number of observations per subject (13–
14) and to limit the potential for over fitting, we considered a range of 0–6 and 1–6 df for
each intercept and slope, respectively. For stable slope estimation, we set a lower boundary
offset for each group’s dropout-varying intercept and slope to week 12 plus one day
(corresponding to 4 observations). We located the B-spline knots at the quantiles of uh >
dLh, the hth group’s set of unique dropout times greater than the lower boundary [7,10]. As
we are interested in estimation, Akaike’s Information Criterion (AIC) determined the final
model [12,14]. The natural cubic B-spline basis functions were produced using the ns()
function in R and the models were fit using the lmer() function [15]. The best AIC model
included 3 (1) df for the dropout-varying mono-therapy intercept (slope) and 1 (3) df for the
dropout-varying dual-therapy intercept (slope).

4.2.2. CLM—CD4+ T cell count was modeled as a function of treatment group and time,
with group-specific dropout-varying slopes and a random subject-specific intercept and
slope. As previously described, the CLM assumes a dropout-varying slope with a constant
intercept (with respect to dropout). Thus, we began with a cubic polynomial to model the
dropout-varying slope where Jh0 = 0 and Jh1 = 3. Likelihood ratio tests confirmed significant
individual slope variation and justified including a parameter for the covariance of the
subject-specific random effects. The final model included a linear dropout-varying slope for
both treatment groups (CLM1). We fit a second CLM (CLM2), allowing for a dropout-
varying intercept for each group and we began with Jh0 = 3 and Jh1 = 3. The final model
included a linear dropout-varying mono-therapy intercept and a constant dual-therapy
intercept. The dropout-varying slope for both groups was linear, as with CLM1. The models
were fit using both SAS Proc Mixed [16] and the R lmer() function [15].

4.3. Dropout-varying estimates
The dropout-varying slopes for 12-week increments are displayed in Table 3. Figs. 4 and 5
display the dropout-specific curves for the NSV and CLM1 respectively. The dropout-
specific curves for the CLM2 are similar to those of the CLM1 and are therefore not shown.
The NSV mono-therapy intercept was lowest for early dropout times and increased
markedly after week 72, indicating that subjects who began the study with higher CD4+ T
cell count (less immunocompromised) stayed on study longer. The same effect, but
diminished, was present in a gradual linear (1df) increase of the NSV dual-therapy dropout-
varying intercept. The NSV mono-therapy dropout-varying slope was similar for the NSV
and CLMs, both were negative for all dropout times and approach zero with increasing
follow-up. For the NSV dual-therapy group, the rate of change in CD4+ T cell count was
positive through dropout week 48, though the slope flattened substantially over this time.
This suggests that subjects who initially dropped out were in the effective treatment period
and over time viral resistance may be occurring. A plausible explanation is that compliance
is associated with both improved response (positive slope) and treatment-related toxicities,
the latter resulting in dropout. The CLM1 and CLM2 dual-therapy dropout-varying slope
estimates are also positive, though substantially flatter through week 40 than the NSV.

4.3.1. Marginal estimates—For the NSV and CLM1, the estimated marginal curves are
displayed in Figs. 4 and 5; and for all methods, the estimated marginal slopes and group
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differences are displayed in Table 4, with bootstrap 95% confidence intervals where
appropriate [17]. Estimates from a random effects model (REM) are included for
comparison. For the estimate of interest, the slope difference, all methods suggest that the
dual therapy arm is superior. CD4+ T Cell count consistently declined in the mono-therapy
group and increased in the dual-therapy group regardless of the method of estimation. For
the dual-therapy group, the NSV final model included a nonlinear dropout-varying slope.
The resulting marginal slope was the most positive among the model estimates, reflecting
the slopes of the dropouts prior to week 40. In contrast, the CLM1 and CLM2 final models
were linear, diminishing the impact of these earlier dropouts on the marginal slope. Finally,
the REM marginal estimate was closest to zero due to the increased data contribution of
subjects with the longest follow-up. For mono-therapy, both the NSV and CLMs were linear
in the dropout-varying slopes. The impact of the linear dropout-varying intercept on the
marginal estimate in the CLM2 is negligible. Again, the REM estimate was most similar to
the slopes of the subjects with the most data.

4.4. Sensitivity analyses
Both the NSV and CLM assume that changes in CD4+ T cell count after treatment initiation
is linear, which is consistent with knowledge of treatment effects at the time of this study.
Since this study, it has been established that changes in CD4+ T cell count may be nonlinear
after treatment initiation. Sensitivity analyses were conducted. Given data through time u,
we estimate the dropout specific slope for time u and assume the same slope for times t > u.
Although the change in the slope is nonidentifiable, we evaluate the impact of a specific
change in the slope, δ(u), for times t > u. Ideally, analyses will be robust to reasonable
changes in δ(u). We conservatively chose changes in the slope to be more consistent with
the null hypothesis. We set δ(u) = 0.5 for the first analysis and for the second, we assume all
subjects’ slopes flatten to zero for times t > u. The average estimate across all subjects was
then calculated for each week (Fig. 6). This allows evaluation of the impact on between
group differences in the outcome at specified times. Fig. 6 suggests that for both
assumptions, the dual-therapy arm is superior at one year and at study completion.

5. Conclusions
We propose a straightforward varying-coefficient model using natural cubic B-spline basis
functions (NSV) to semipara-metrically model the outcome-dropout relationship in
longitudinal clinical trials where nonignorable dropout is probable. We compare this method
as an alternative to an existing mixture model, the parametric CLM [5]. Simulation studies
suggest the NSV is an improvement over the CLM when the dropout mechanism is
nonlinear.

The NSV brings a variety of strengths including computationally stability and simultaneous
modeling of multiple groups. It is highly flexible, provides control over the degree of
smoothness for each effect and is relatively simple to implement using standard software.
Use of natural cubic B-splines increases stability beyond the boundaries and allows
incorporation of a lower boundary offset, extending stability to slope estimation for the early
dropouts. Additionally, as the NSV is data driven, it is not necessary to pre-specify the
parametric model for the dropout mechanism. This is particularly useful in trials where the
analytic plan must be established prior to examining the data. The conditional model can
also be evaluated for clinical relevance by plotting the dropout-varying curves, which can
lend credibility to the model and provide the opportunity for critical evaluation of the
dropout mechanism. Plots similar to Fig. 4 can be examined to assess the clinical feasibility
of the dropout model. Lastly, as with all with a mixture model approaches, the missing data
extrapolations are transparent and can be graphically presented (for a review, see Hogan,
Roy and Korkontzelou, 2004) [4].
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There are limitations to the NSV, as with all methods for nonignorable dropout. The mixture
models considered in this paper assume that trajectories are linear over time and extrapolate
based on this assumption beyond the dropout time. This is a strong, untestable assumption.
One must rely on clinical justification and judgment as to whether the assumption is
reasonable [9] and sensitivity analyses should be performed. Future research will include
simulation studies to allow for non-linear trajectories over time, refine the B-spline knot
placement strategy and determine whether a standard NSV model (fixed df) is generally
useful.
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Fig. 1.
Simulation study: dropout-specific slopes. For simulation forms (i), (ii) and (iii), the
dropout-specific slopes are plotted and the value of the slope indicated.
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Fig. 2.
Simulation study: performance of the dropout models. For simulation forms (i), (ii) and (iii),
the mean of the dropout-varying slopes for the NSV (□– □), and CLM (△– △) are plotted
against the true slopes (● – ●). The x-axis is dropout time and the y-axis is the slope value.
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Fig. 3.
HIV clinical trial: OLS slopes. For each treatment group, the OLS slopes are plotted by
dropout time, as obtained from individual-specific models of CD4+ T cell count as a linear
function of time.
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Fig. 4.
HIV clinical trial: NSV dropout-varying and marginal curves. Mono-therapy and dual-
therapy dropout-varying curves are plotted by dropout time with line length indicating
duration of follow-up. The marginal curve is denoted by the solid blackline.
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Fig. 5.
HIV clinical trial: CLM dropout-varying and marginal curves. Mono-therapy and dual-
therapy dropout-varying curves are plotted by dropout time with line length indicating
duration of follow-up. The marginal curve is denoted by the solid blackline.
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Fig. 6.
HIV clinical trial: NSV sensitivity analysis. Marginal estimates are plotted for dual-therapy
(top curves) and mono-therapy (bottom curves) with three different assumptions after
subjects drop out. The solid black lines indicate the final model, which assumes subjects
continue with the same trajectory after dropping out. The dashed lines assume subjects’
slopes flatten by 1/2 and the dotted line assumes subjects’ slopes flatten to zero.
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Table 1

Simulation study: MSE geometric means. Estimates are based on n = 1000 simulations.

Form — variance NSV CLM REM

i-Small 0.0025 (0.0022, 0.0028) 0.0034 (0.0030, 0.0038) 0.029 (0.028, 0.029)

i-Large 0.0047 (0.0041, 0.0054) 0.0051 (0.0044, 0.0058) 0.029 (0.028, 0.030)

ii-Small 0.0023 (0.0020, 0.0026) 0.0031 (0.0027, 0.0035) 0.024 (0.023, 0.024)

ii-Large 0.0054 (0.0047, 0.0061) 0.0061 (0.0054, 0.0069) 0.023 (0.023, 0.024)

iii-Small 0.0023 (0.0020, 0.0026) 0.0096 (0.0086, 0.011) 0.068 (0.067, 0.070)

iii-Large 0.0060 (0.0053, 0.0069) 0.0096 (0.0083, 0.011) 0.0137 (0.135, 0.14)
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Table 2

Simulation study: mean marginal slopes. Estimates are based on n = 1000 simulations.

Form - Variance True Slope NSV CLM REM

i-Small −0.234 −0.201 −0.184 −0.064

i-Large −0.234 −0.192 −0.174 −0.061

ii-Small −0.243 −0.211 −0.196 −0.088

ii-Large −0.243 −0.200 −0.180 −0.086

iii-Small 0.347 0.331 0.472 0.612

iii-Large 0.347 0.333 0.466 0.721
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Table 4

HIV Clinical Trial: Estimated Marginal Slopes.

Model Bootstraps Mono (95% CI) Dual (95% CI) Difference (95% CI)

NSV 1000 −1.25 (−1.69, −0.88) 1.30 (0.43, 2.27) −2.55 (−3.67, −1.64)

CLM1 1000 −1.25 (−1.62, −0.87) 0.29 (−0.14, 0.70) −1.54 (−2.08, −0.95)

CLM2 1000 −1.22 (−1.30, −1.13) 0.29 (0.26, 0.32) −1.51 (−1.60, −1.41)

REM NA −0.89 (−1.17, −0.60) 0.14 (−0.15, 0.43) −1.03 (−1.44, −0.60)
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