Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 14;68(Pt 8):o2441. doi: 10.1107/S1600536812031315

N-(2,4,6-Trimethyl­phen­yl)-1,3-thia­zol-2-amine

Ayesha Babar a, Munawar Ali Munawar a, M Nawaz Tahir b,*, Ather Farooq Khan c, Muhammad Ilyas Tariq d
PMCID: PMC3414355  PMID: 22904888

Abstract

In the title compound, C12H14N2S, the dihedral angle between the 1,3,5-trimethyl­benzene and 1,3-thia­zol-2-amine groups is 73.15 (4)°. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate R 2 2(8) loops.

Related literature  

For background to the biological activities of thia­zoles, see: Wilson et al. (2001). For a related crystal structure, see: Caranoni & Capella (1982).graphic file with name e-68-o2441-scheme1.jpg

Experimental  

Crystal data  

  • C12H14N2S

  • M r = 218.31

  • Monoclinic, Inline graphic

  • a = 14.2766 (6) Å

  • b = 7.0676 (2) Å

  • c = 13.8598 (6) Å

  • β = 118.736 (2)°

  • V = 1226.24 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.32 × 0.22 × 0.18 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.929, T max = 0.959

  • 10086 measured reflections

  • 2717 independent reflections

  • 2196 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.116

  • S = 1.05

  • 2717 reflections

  • 140 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812031315/hb6896sup1.cif

e-68-o2441-sup1.cif (20.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812031315/hb6896Isup2.hkl

e-68-o2441-Isup2.hkl (130.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812031315/hb6896Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.86 2.16 2.944 (2) 151

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana Inter­national, Karachi, Pakistan.

supplementary crystallographic information

Comment

Thiazole and its derivatives exhibit a large number of biological properties, for example antifungal and antibacterial (Wilson et al., 2001) activities. As part of our studies in this area, the title compound (I, Fig. 1) has been synthesized and its crystal structure is now reported.

The crystal structures of 1,3-thiazol-2-amine (Caranoni & Capella, 1982) has been published which is related to (I), (Fig. 1).

In (I), the 1,3,5-trimethylbenzene moiety A (C1–C9) and 1,3-thiazol-2-amine group B (N1/C10/S1/C11/C12/N2) are planar with r.m.s. deviation of 0.0345 Å and 0.0031 Å, respectively. The dihedral angle between A/B is 73.15 (4)°. The molecules are linked into dimers due to H-bondings of N—H···N type with R22(8) (Table 1, Fig. 2) ring motif.

Experimental

A mixture of N-mesitylthiourea (1 equiv, 1.00 g, 4.58 mmol), 2-chloro-1,1-dimethoxyethane (1.5 equiv, 1.04 g, 6.8 mmol) and few drops of concentrated HCl were dissolved in water and methanol mixture (1:1) (100 ml). The reaction mixture was refluxed for 6 h. The reaction mixture was diluted with water (100 ml) and basified to pH 8 with aqeous NaOH. The resulting precipitate was filtered, washed with cold water and recrystallized from chloroform and hexane (3:1) solution as yellow prisms.

Refinement

The H-atoms were positioned geometrically (C—H = 0.93–0.96 Å, N—H = 0.86 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl groups and x = 1.2 for other H atoms.

Figures

Fig. 1.

Fig. 1.

View of the title compound with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The partial packing (PLATON; Spek, 2009) which shows that molecules form dimers with R22(8) loops.

Crystal data

C12H14N2S F(000) = 464
Mr = 218.31 Dx = 1.183 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2196 reflections
a = 14.2766 (6) Å θ = 1.6–27.3°
b = 7.0676 (2) Å µ = 0.23 mm1
c = 13.8598 (6) Å T = 296 K
β = 118.736 (2)° Prism, yellow
V = 1226.24 (9) Å3 0.32 × 0.22 × 0.18 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 2717 independent reflections
Radiation source: fine-focus sealed tube 2196 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
Detector resolution: 7.80 pixels mm-1 θmax = 27.3°, θmin = 1.6°
ω scans h = −18→18
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −8→9
Tmin = 0.929, Tmax = 0.959 l = −17→17
10086 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0574P)2 + 0.3377P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
2717 reflections Δρmax = 0.30 e Å3
140 parameters Δρmin = −0.24 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.049 (4)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.28549 (3) 0.60626 (7) 0.20694 (3) 0.0510 (2)
N1 0.37642 (11) 0.6678 (2) 0.42680 (11) 0.0489 (4)
N2 0.46689 (11) 0.4830 (2) 0.35713 (11) 0.0457 (4)
C1 0.28129 (12) 0.7598 (2) 0.41025 (12) 0.0417 (5)
C2 0.25718 (15) 0.9401 (3) 0.36248 (14) 0.0503 (5)
C3 0.16150 (17) 1.0218 (3) 0.34372 (15) 0.0619 (7)
C4 0.09327 (16) 0.9380 (3) 0.37534 (15) 0.0640 (7)
C5 0.12224 (14) 0.7638 (3) 0.42681 (14) 0.0579 (6)
C6 0.21467 (13) 0.6720 (2) 0.44421 (12) 0.0464 (5)
C7 0.24324 (19) 0.4809 (3) 0.49949 (19) 0.0689 (8)
C8 0.3330 (2) 1.0470 (3) 0.3358 (2) 0.0774 (9)
C9 −0.0095 (2) 1.0332 (5) 0.3547 (2) 0.1073 (13)
C10 0.38520 (12) 0.5850 (2) 0.34340 (12) 0.0385 (4)
C11 0.36100 (15) 0.4680 (3) 0.16835 (14) 0.0522 (6)
C12 0.45154 (15) 0.4168 (3) 0.25688 (14) 0.0499 (6)
H1 0.43021 0.66451 0.49200 0.0586*
H3 0.14255 1.13832 0.30825 0.0742*
H5 0.07821 0.70656 0.45048 0.0694*
H7A 0.18460 0.43399 0.50812 0.1034*
H7B 0.30533 0.49271 0.57044 0.1034*
H7C 0.25797 0.39442 0.45505 0.1034*
H8A 0.31727 1.17980 0.33141 0.1162*
H8B 0.32495 1.00412 0.26651 0.1162*
H8C 0.40502 1.02536 0.39246 0.1162*
H9A −0.05817 1.03567 0.27711 0.1608*
H9B 0.00533 1.16026 0.38250 0.1608*
H9C −0.04105 0.96399 0.39150 0.1608*
H11 0.34159 0.43378 0.09636 0.0626*
H12 0.50176 0.34047 0.25128 0.0599*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0449 (3) 0.0634 (3) 0.0357 (2) 0.0060 (2) 0.0122 (2) 0.0011 (2)
N1 0.0442 (7) 0.0644 (9) 0.0332 (6) 0.0155 (7) 0.0148 (5) 0.0007 (6)
N2 0.0449 (7) 0.0542 (8) 0.0398 (7) 0.0100 (6) 0.0217 (6) 0.0047 (6)
C1 0.0410 (8) 0.0480 (9) 0.0323 (7) 0.0071 (7) 0.0147 (6) −0.0023 (6)
C2 0.0594 (10) 0.0491 (9) 0.0441 (9) 0.0067 (8) 0.0263 (8) 0.0009 (7)
C3 0.0747 (13) 0.0597 (11) 0.0479 (10) 0.0267 (10) 0.0268 (9) 0.0082 (8)
C4 0.0539 (10) 0.0921 (15) 0.0403 (9) 0.0287 (10) 0.0182 (8) 0.0018 (9)
C5 0.0448 (9) 0.0857 (14) 0.0432 (9) 0.0020 (9) 0.0212 (7) −0.0026 (9)
C6 0.0481 (9) 0.0532 (9) 0.0347 (7) 0.0004 (7) 0.0174 (7) −0.0039 (7)
C7 0.0830 (14) 0.0585 (12) 0.0719 (13) −0.0024 (10) 0.0425 (12) 0.0080 (10)
C8 0.0980 (17) 0.0590 (12) 0.0915 (17) −0.0005 (12) 0.0585 (15) 0.0086 (11)
C9 0.0779 (16) 0.166 (3) 0.0768 (16) 0.0672 (19) 0.0362 (13) 0.0210 (17)
C10 0.0377 (7) 0.0420 (8) 0.0340 (7) 0.0021 (6) 0.0158 (6) 0.0044 (6)
C11 0.0656 (11) 0.0535 (10) 0.0407 (8) −0.0042 (8) 0.0282 (8) −0.0051 (7)
C12 0.0594 (10) 0.0505 (10) 0.0500 (9) 0.0078 (8) 0.0344 (8) 0.0015 (7)

Geometric parameters (Å, º)

S1—C10 1.7428 (15) C6—C7 1.509 (3)
S1—C11 1.720 (2) C11—C12 1.335 (3)
N1—C1 1.421 (2) C3—H3 0.9300
N1—C10 1.354 (2) C5—H5 0.9300
N2—C10 1.305 (2) C7—H7A 0.9600
N2—C12 1.380 (2) C7—H7B 0.9600
N1—H1 0.8600 C7—H7C 0.9600
C1—C6 1.393 (3) C8—H8A 0.9600
C1—C2 1.401 (2) C8—H8B 0.9600
C2—C3 1.388 (3) C8—H8C 0.9600
C2—C8 1.505 (4) C9—H9A 0.9600
C3—C4 1.379 (3) C9—H9B 0.9600
C4—C5 1.383 (3) C9—H9C 0.9600
C4—C9 1.511 (4) C11—H11 0.9300
C5—C6 1.384 (3) C12—H12 0.9300
C10—S1—C11 88.94 (8) C4—C3—H3 119.00
C1—N1—C10 122.23 (14) C4—C5—H5 119.00
C10—N2—C12 110.02 (15) C6—C5—H5 119.00
C1—N1—H1 119.00 C6—C7—H7A 109.00
C10—N1—H1 119.00 C6—C7—H7B 109.00
N1—C1—C2 119.41 (17) C6—C7—H7C 109.00
N1—C1—C6 119.75 (13) H7A—C7—H7B 109.00
C2—C1—C6 120.82 (17) H7A—C7—H7C 109.00
C1—C2—C3 117.6 (2) H7B—C7—H7C 109.00
C3—C2—C8 120.31 (19) C2—C8—H8A 109.00
C1—C2—C8 122.1 (2) C2—C8—H8B 109.00
C2—C3—C4 122.9 (2) C2—C8—H8C 109.00
C3—C4—C9 121.2 (2) H8A—C8—H8B 109.00
C3—C4—C5 117.7 (2) H8A—C8—H8C 109.00
C5—C4—C9 121.1 (2) H8B—C8—H8C 110.00
C4—C5—C6 122.1 (2) C4—C9—H9A 110.00
C1—C6—C5 118.75 (15) C4—C9—H9B 110.00
C5—C6—C7 120.70 (19) C4—C9—H9C 109.00
C1—C6—C7 120.55 (18) H9A—C9—H9B 110.00
S1—C10—N2 114.35 (12) H9A—C9—H9C 109.00
S1—C10—N1 121.78 (13) H9B—C9—H9C 109.00
N1—C10—N2 123.87 (14) S1—C11—H11 125.00
S1—C11—C12 110.05 (14) C12—C11—H11 125.00
N2—C12—C11 116.6 (2) N2—C12—H12 122.00
C2—C3—H3 119.00 C11—C12—H12 122.00
C11—S1—C10—N1 −179.66 (15) N1—C1—C6—C5 −179.71 (14)
C11—S1—C10—N2 −0.05 (14) N1—C1—C6—C7 0.6 (2)
C10—S1—C11—C12 0.38 (17) C2—C1—C6—C5 2.0 (2)
C10—N1—C1—C2 −76.7 (2) C2—C1—C6—C7 −177.69 (16)
C10—N1—C1—C6 104.96 (18) C1—C2—C3—C4 3.6 (3)
C1—N1—C10—S1 6.9 (2) C8—C2—C3—C4 −174.12 (19)
C1—N1—C10—N2 −172.72 (16) C2—C3—C4—C5 −0.8 (3)
C12—N2—C10—S1 −0.29 (19) C2—C3—C4—C9 179.1 (2)
C12—N2—C10—N1 179.31 (17) C3—C4—C5—C6 −1.7 (3)
C10—N2—C12—C11 0.6 (3) C9—C4—C5—C6 178.44 (18)
N1—C1—C2—C3 177.48 (15) C4—C5—C6—C1 1.1 (3)
N1—C1—C2—C8 −4.8 (2) C4—C5—C6—C7 −179.29 (18)
C6—C1—C2—C3 −4.2 (2) S1—C11—C12—N2 −0.7 (3)
C6—C1—C2—C8 173.51 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···N2i 0.86 2.16 2.944 (2) 151

Symmetry code: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6896).

References

  1. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Caranoni, C. & Capella, L. (1982). J. Appl. Cryst. 15, 106–107.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Wilson, K. J., Utig, C. R., Subhasinghe, N., Hoffman, J. B., Rudolph, N. J., Soll, R., Molloy, C. J., Bone, R., Green, D. & Randall, J. (2001). Bioorg. Med. Chem. Lett. 11, 915–918. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812031315/hb6896sup1.cif

e-68-o2441-sup1.cif (20.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812031315/hb6896Isup2.hkl

e-68-o2441-Isup2.hkl (130.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812031315/hb6896Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES