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Abstract

We show that the Confusion Entropy, a measure of performance in multiclass problems has a strong (monotone) relation
with the multiclass generalization of a classical metric, the Matthews Correlation Coefficient. Analytical results are provided
for the limit cases of general no-information (n-face dice rolling) of the binary classification. Computational evidence
supports the claim in the general case.
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Introduction

Comparing classifiers’ performance is one of the most critical

tasks in machine learning. Comparison can be carried out either

by means of statistical tests [1,2] or by adopting a performance

measure as an indicator to derive similarities and differences, in

particular as a function of the number of classes, class imbalance,

and behaviour on randomized labels [3].

The definition of performance measures in the context of

multiclass classification is still an open research topic as recently

reviewed [4,5]. One challenging aspect is the extension of such

measures from binary to multiclass tasks [6]. Graphical compar-

ison approaches have been introduced [7], but a generic analytic

treatment of the problem is still unavailable.

One relevant case study regards the attempt of extending the

Area Under the Curve (AUC) measure, which is one of the most

widely used measures for binary classifiers but it has no automatic

extension to the multiclass case. The AUC is associated to the

Receiver Operating Characteristic (ROC) curve [8,9] and thus

proposed formulations were based on a multiclass ROC approx-

imation [10–13]. A second class of extensions is defined by the

Volume Under the Surface (VUS) approach, which is obtained by

considering the generalized ROC as a surface whose volume has

to be computed by exact integration or polynomial approximation

[14–16]. As a baseline, the average of the AUCs on the pairwise

binary problems derived from the multi-class problems has also

been proposed [17].

Other measures are more naturally extended, such as the

accuracy (ACC, i.e. the fraction of correctly predicted samples), the

Global Performance Index [18,19], and the Matthews Correlation

Coefficient (MCC). We will focus our attention to the last function

[20], which in the binary case is also known as the w-coefficient,

i.e., the square root of the average x2 statistic
ffiffiffiffiffiffiffiffiffiffi
x2=n

p
on n observed

samples for the 2|2 contingency table of the classification

problem.

For binary tasks, MCC has attracted the attention of the

machine learning community as a method that summarizes into a

single value the confusion matrix [21]. Its use as a reference

performance measure on unbalanced data sets is now common in

other fields such as bioinformatics. Remarkably, MCC was chosen

as accuracy index in the US FDA-led initiative MAQC-II for

comparing about 13 000 different models, with the aim of

reaching a consensus on the best practices for development and

validation of predictive models based on microarray gene

expression and genotyping data [22]. A generalization of MCC

to the multiclass case was defined in [23], also used for comparing

network topologies [24,25].

A second family of measures that have a natural definition for

multiclass confusion matrices are the functions derived from the

concept of (information) Entropy, first introduced in [26]. In the

classification framework, measures in the entropy family range

from the simpler confusion matrix entropy [27] to more complex

functions as the Transmitter Information [28] and the Relative

Classifier Information (RCI) [29]. Wei and colleagues recently

introduced a novel multiclass measure under the name of

Confusion Entropy (CEN) [30,31]. They compared CEN to both

RCI and accuracy, obtaining better discriminative power and

precision in terms of two statistical indicators called degree of

consistency and degree of discriminancy [32].

In our study, we investigate the intriguing similarity existing

between CEN and MCC. In particular, we experimentally show

that the two measures are strongly correlated, and that their

relation is globally monotone and locally almost linear. Moreover,

we provide a brief outline of the mathematical links between CEN

and MCC with detailed examples in limit cases. Discriminancy

and consistency ratios are discussed as comparative factors,

together with functions of the number of classes, class imbalance,

and behaviour on randomized labels.
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Methods

Given a classification problem on S samples S~fsi : 1ƒiƒSg
and N classes f1, . . . ,Ng, define the two functions

tc,pc : S?f1, . . . ,Ng indicating for each sample s its true class

tc(s) and its predicted class pc(s), respectively. The corresponding

confusion matrix is the square matrix C[M(N|N,N) whose ij-th

entry Cij is the number of elements of true class i that have been

assigned to class j by the classifier:

Cij~Dfs[S : tc(s)~i and pc(s)~jgD:

The most natural performance measure is the accuracy, defined as

the ratio of the correctly classified samples over all the samples:

ACC~

XN

k~1

Ckk

S
~

XN

k~1

Ckk

XN

i,j~1

Cij

:

Confusion Entropy (CEN)
In information theory, the entropy H associated to a random

variable X is the expected value of the self-information

I(X )~{ log p(X ):

H(X )~E(I(X ))~
X
x[X

p(x)I(x)~{
X
x[X

p(x) logb (p(x))~
X
x[X

hb(x),

where p(x) is the probability mass function of X , with

hb(x)~{p(x) logb (p(x))~0 for p(x)~0, motivated by the limit

lim
x?0

x log(x)~0.

The Confusion Entropy measure CEN for a confusion matrix C

is defined in [30] as:

CEN~
XN

j~1

PjCENj

~
XN

j~1

Pj

XN

k~1
k=j

h2 N{1ð Þ P
j
jk

� �
zh2 N{1ð Þ P

j
kj

� �
,

ð1Þ

where Pj , P
j
ij , Pi

ij are defined as follows:

Pj is the confusion probability of class j: Pj~

XN

k~1

Cjk zCkj

� �

2

XN

k,l~1

Ckl

P
j
ij is the probability of classifying the samples of class i to class j

for i=j subject to class j:

P
j
ij~

CijXN

k~1

Cjk zCkj

� �

Pi
ij is the probability of classifying the samples of class i to class j

subject to class i:

Pi
ij~

CijXN

k~1

Cik zCki

� � for i=j and Pi
ii~0:

For Nw2, this measure ranges between 0 (perfect classification)

and 1 for the complete misclassification case

Cij~(1{dij)F~
0 for i~j

F for i=j and F[N

�
,

while in the binary case CEN can be greater than 1, as shown

below.

Matthews Correlation Coefficient (MCC)
The definition of the MCC in the multiclass case was originally

reported in [23]. We recall here the main concepts. Let

X ,Y[M(S|N,F2) be two matrices where Xsn~1 if the sample

s is predicted to be of class n (pc(s)~n) and Xsn~0 otherwise, and

Ysn~1 if sample s belongs to class n (tc(s)~n) and 0 otherwise.

Using Kronecker’s delta function, the definition becomes:

X~ dpc(s),n

� �
sn

Y~ dtc(s),n

� �
sn
:

Note that S~
XN

k,l~1

Ckl , where Ckk~Dfs[S : Xsk~Ysk~1gD~

XS

s~1

XskYsk, and, for k=l, Ckl~Dfs[S : Xsk~1 and Ysl~1gD.

The covariance function between X and Y can be written as

follows:

cov(X ,Y ) ~
XN

k~1

wk cov(Xk,Yk)

~
1

N

XS

s~1

XN

k~1

(Xsk{X k)(Ysk{Y k)

where wk~
1

N
and X k and Y k are the means of the k{th

columns defined respectively as X k~
1

S

XS

s~1

Xsk~
1

S

XN

l~1

Ckl and

Y k~
1

S

XS

s~1

Ysk~
1

S

XN

l~1

Clk.

Finally the Matthews Correlation Coefficient MCC can be

written as:

MCC ~
cov(X ,Y )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cov(X ,X ):cov(Y ,Y )
p

~

XN

k,l,m~1

CkkCml{ClkCkmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

k~1

XN

l~1

Clk

 ! XN

f ,g~1f=k

Cgf

0
B@

1
CA

2
64

3
75

vuuuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

k~1

XN

l~1

Ckl

 ! XN

f ,g~1f=k

Cfg

0
B@

1
CA

2
64

3
75

vuuuut
ð2Þ

MCC lives in the range ½{1,1�, where 1 is perfect classification.

The value {1 is asymptotically reached in the extreme

misclassification case of a confusion matrix C with all zeros but

(2)

A Comparison of MCC and CEN Error Measures
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Figure 1. Examples of CEN and MCC for different confusion matrices.
doi:10.1371/journal.pone.0041882.g001
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in two symmetric entries C�ii,�jj , C�jj,�ii. MCC is equal to 0 when C is all

zeros but for one column (all samples have been classified to be of

a class k), or when all entries are equal Cij~F[N.

Relationships between CEN and MCC
As discussed before, CEN and MCC live in different ranges,

whose extreme values are differently reached. In Box 1 of Fig. 1,

numerical examples are shown for K~4 in different situations: (a)

complete classification, (b) complete misclassification, (c) all

samples classified as belonging to one class, (d) misclassification

case in a very unbalanced situation.

It is worth noting that CEN is more discriminant than MCC in

specific situations, although the property is not always welcomed.

For instance, in Fig. 1, Box 1(c), MCC~0 while CEN&0:337.

Furthermore, as shown in Box 2, MCC~0 for constant matrix

Cij~F[N for each i,j, regardless of the number of classes N, while

it is easy to show that CEN~ 1{
1

N

� 	
log2N{2 2N, i.e., CEN is a

function of N. Note that both measures are invariant for scalar

multiplication of the whole confusion matrix, so we always set

F~1 in Box 2.

For small sample sizes, we can show that CEN has higher

discriminant power than MCC, i.e., different confusion matrices

can have same MCC and different CEN. This can be

quantitatively assessed by using the degree of discriminancy

criterion [32]: for two measures f and g on a domain Y, let

P~f(a,b)[Y|Y : f (a)wf (b),g(a)~g(b)g and Q~f(a,b)[Y|

Y : f (a)~f (b),g(a)wg(b)g; then the degree of discriminancy for

f over g is DPD=DQD. For instance, as in [30], we consider a 3-class

case with 2,4,3 samples respectively: we evaluate all the possible

confusion matrices ranging from the perfect classification case

2 0 0

0 4 0

0 0 3

0
B@

1
CA

to the complete misclassification case. In this case the degree of

discriminancy of CEN over MCC is about 6. Similar results hold

for all the 12 small sample size cases on three classes listed in Tab.

6 of [30], ranging from 9 to 19 samples.

We proceed now to show an intriguing relationship between

MCC and CEN. First consider the confusion matrix B of

dimension N where Bji~Fz(T{F )dij , i.e., all entries have

value F but in the diagonal whose values are all T , for T , F two

integers. In this case,

MCC ~
T2z(N{2)TF{(N{1)F2

½Tz(N{1)F �2
,

CEN ~
(N{1)F

Tz(N{1)F
log2N{2

2½Tz(N{1)F �
F

,

and thus

CEN~(1{MCC) 1z log2N{2

Tz(N{1)F

(N{1)F

� 	
1{

1

N

� 	
:

This identity can be relaxed to the following generalization, which

slightly underestimates CEN:

CEN ^
1

k
:(1{MCC) 1z log2N{2

PN
i,j~1

Cij

PN
i,j~1 i=j

Cij

0
BBB@

1
CCCA

1{
1

N

� 	

~
1

k
:(1{MCC) 1{ log2N{2 (1{ACC)½ � 1{

1

N

� 	
ð3Þ

where both sides are zero when MCC~ACC~1, and

k&1:012: 1z
0:18924

log(N)
{

0:06694

log2 (N)

� 	
. For simplicity’s sake, we

call ‘‘transformed MMC’’ (tMCC) the right member of Eq. 3.

A numerical simulation shows that the tMCC approximation in

Eq. 3 holds in a more general and practical setting (Fig. 2). In the

simulation, 200 000 confusion matrices Mi (dimension range: 3 to

30) were generated. For each class j, the number of correctly

classified elements (i.e., the j-th diagonal element) was uniformly

randomly chosen between 1 and 1000. Then the off-diagonal

entries were generated as random integers between 1 and

t1000ris, where the parameter ri was extracted from the uniform

distribution in the range ½0:01,1�, corresponding to small-moderate

misclassification. For such data, the Pearson correlation between

tMCC and k:CEN is about 0.994.

In order to compare measures, we consider also the degree of

consistency indicator [32]: for two measures f and g on a domain

Y, let R~f(a,b)[Y|Y : f (a)wf (b),g(a)wg(b)g and V~f(a,b)
[Y|Y : f (a)wf (b),g(a)vg(b)g; then the degree of consistency c

of f and g is c(f ,g) = DRD=(DRDzDV D). On the given data,

c(tMCC,k:CEN)&1{10{7, while the degree of discriminancy

is undefined since no ties occur. In summary, the relation between

tMMC and k:CEN is close to linear on this data, with an average

ratio of 1.000508 (CI: 1:000328{1:000711, 95% bootstrap

Student).

Comparison on the ZA family. The behaviour of the

Confusion Entropy is instead rather diverse from MCC and ACC

for the family of ZA matrices, where all entries are equal but for a

non-diagonal one. Because of the multiplicative invariance, all

entries can be set to one but for the leftmost lower corner:

(ZA)ij~1zd(i,j),(N,1)(A{1) for A§1 a positive integer. As shown

in Fig. 1, Box 3, when A grows bigger, more and more samples are

misclassified, i.e., the accuracy ACC(ZA)~N=(N2zA{1) de-

creases to zero for increasing A.

The MCC measure of this confusion matrix is

MCC(ZA)~{
A{1

(N{1)(N2z2A{2)
,

which is a function monotonically decreasing for increasing values

of A, with limit {
1

2(N{1)
for A??.

On the other hand, the Confusion Entropy for the same family

of matrices is

CEN(ZA) ~
1

N2zA{1
(N{2)(N{1) log2N{2 (2N)½

z(2NzA{3) log2N{2 (2NzA{1){A log2N{2 (A)�,

A Comparison of MCC and CEN Error Measures
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which is still a decreasing function of increasing A, but

asymptotically moving towards zero, i.e., to the minimal entropy

case. In Box 3 of Fig. 1 we present three numerical examples for

A~10,100,1000.

The dice rolling case. Another pathologic case is found in

the case of dice rolling classification on unbalanced classes:

because of the multiplicative invariance of the measures, we can

assume that the confusion matrix for this case has all entries equal

to one but for the last row, whose entries are all A, for A§1. In

this case, the Confusion Entropy is

CEN ~
N{1

2N(NzA{1)
(2NzA{3) log2N{2 (2NzA{1)½

{2A log2N{2 Az(Az1) log2N{2 (NzNAzA{1)�,

a decreasing function for growing A whose limit for A?? is
N{1

2N
log2N{2 (Nz1). As a function of N, this limit is an

increasing function asymptotically growing towards 1=2. It is easy

to see that MCC?0 for A?? in this case. More in general, while

MCC~0 in all those cases where random classification (i.e., no

learning) happens, this is lost in the case of CEN, due to its greater

discriminant power: there is no unique value associated to the

spectrum of random classification problems.

The binary case. In the two-class case (P: positives, N:

negatives), the confusion matrix is
TP FN
FP TN

� 	
, where T and F

stand for true and false respectively. The Matthews Correlation

Coefficient has the familiar definition [20,21]:

MCC~
TP:TN{FP:FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPzFPð Þ TPzFNð Þ TNzFPð Þ TNzFNð Þ
p :

The Confusion Entropy can be written for the binary case as:

CEN~
(FNzFP) log2 ((TPzTNzFPzFN)2{(TP{TN)2)

2(TPzTNzFPzFN)

{
FN log2 FNzFP log2 FP

TPzTNzFPzFN
:

Note that in the case TP~TN~T[N and FP~FN~F[N, we

have

CEN~
F

TzF
log2

2(TzF )

F
,

and thus CENw1 when the ratio T=F is smaller than 1. In other

words, the confusion matrices
T F

F T

� 	
with 0vTvF have

Figure 2. Dotplots of CEN versus MCC. (a) and k:CEN versus tMCC (b) for 200 000 random confusion matrices of different dimensions.
doi:10.1371/journal.pone.0041882.g002

Figure 3. Lines describing CEN and MCC of a confusion matrix
T F

F T

� 	
for increasing ratio

T

F
. Gray vertical lines correspond to the

examples provided in Fig. 1, Box 4.
doi:10.1371/journal.pone.0041882.g003
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CENw1; the bound is attained for T~0, the case of total

misclassification. This suggests that CEN should not be used as a

classifier performance measure in the binary case. A numerical

example is provided in Fig. 1, Box 4, while a plot of CEN and

MCC curves for different ratios of T=F is shown in Fig. 3.

Indeed, differently from the multi-class case, CEN and MCC

are poorly correlated for two classes. We computed MCC and

CEN for all the 4 598 125 possible confusion matrices for a binary

classification task on s samples (2ƒsƒ100). Results are displayed

in Fig. 4, for s~5,10,25,50,75 and the cumulative plot with all

2ƒsƒ100. In this last case, the (absolute) Pearson correlation

between the two metrics is only r&0:63.

Results and Discussion

We compared the Matthews Correlation Coefficient (MCC)

and Confusion Entropy (CEN) as performance measures of a

classifier in multiclass problems. We have shown, both analytically

and empirically, that they have a consistent behaviour in practical

cases. However each of them is better tailored to deal with

different situations, and some care should be taken in presence of

limit cases.

Both MCC and CEN improve over Accuracy (ACC), by far the

simplest and widespread measure in the scientific literature. The

point with ACC is that it poorly copes with unbalanced classes and

it cannot distinguish among different misclassification distribu-

tions.

CEN has been recently proposed to provide an high level of

discrimination even between very similar confusion matrices.

However, we show that this feature is not always welcomed, as in

the case of random dice rolling, for which MCC~0, but a range

of different values is found for CEN. This case is of practical

interest because class labels are often randomized as a sanity check

in complex classification studies, e.g., in medical diagnosis tasks

such as cancer subtyping [33] or image classification problems (e.g.,

handwritten ZIP code identification or image scene classification

examples) [34].

Our analysis also shows that CEN should not be reliably used in

the binary case, as its definition attributes high entropy even in

regimes of high accuracy and it even gets values larger than one.

In the most general case, MCC is a good compromise among

discriminancy, consistency and coherent behaviors with varying

number of classes, unbalanced datasets, and randomization. Given

the strong linear relation between CEN and a logarithmic function

of MCC, they are exchangeable in a majority of practical cases.

Furthermore, the behaviour of MCC remains consistent between

binary and multiclass settings.

Our analysis does not regard threshold classifiers; whenever a

ROC curve can be drawn, generalized versions of the Area Under

the Curve algorithm or other similar measures represent a more

immediate choice [35]. This given, for confusion matrix analysis,

our results indicate that the MCC remains an optimal off-the-shelf

tool in practical tasks, while refined measures such as CEN should

be reserved for specific topic where high discrimination is crucial.
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