Table 5. Results from linear mixed-effects models on rate of forest loss.
A | |||||
Fixed effects: rate of forest loss ∼ mean elevation + time + income per capita + population density(AIC value = 2200) | |||||
Value | Std. Error | DF | t-value | p-value | |
Intercept | 1.0807 | 0.1539 | 340 | 7.0184 | 0.0000 |
Mean elevation | −0.0006 | 0.0001 | 340 | −6.3430 | 0.0000 |
Time | −0.3240 | 0.0974 | 323 | −3.3253 | 0.0010 |
Income per capita | 0.0001 | 0.0000 | 323 | 2.9992 | 0.0029 |
Population density | 0.0011 | 0.0005 | 323 | 2.3181 | 0.0211 |
B | |||||
Fixed effects: rate of forest loss ∼ mean elevation + time + population density (AIC value = 2208) | |||||
Value | Std. Error | DF | t-value | p-value | |
Intercept | 1.2199 | 0.1482 | 340 | 8.2297 | 0.0000 |
Mean elevation | −0.0008 | 0.0001 | 340 | −7.8899 | 0.0000 |
Time | −0.1833 | 0.0865 | 324 | −2.1191 | 0.0348 |
Population density | 0.0017 | 0.0005 | 324 | 3.6614 | 0.0003 |
A) Fixed effects including all the variables. B) Fixed effects excluding income per capita. According to AIC values, the random intercept model was the optimal structure of the random component.