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Rapid Calculation of Protein pKa Values Using Rosetta
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†Department of Chemical and Biomolecular Engineering and ‡Program in Molecular Biophysics, The Johns Hopkins University,
Baltimore, Maryland
ABSTRACT We developed a Rosetta-based Monte Carlo method to calculate the pKa values of protein residues that
commonly exhibit variable protonation states (Asp, Glu, Lys, His, and Tyr). We tested the technique by calculating pKa values
for 264 residues from 34 proteins. The standard Rosetta score function, which is independent of any environmental conditions,
failed to capture pKa shifts. After incorporating a Coulomb electrostatic potential and optimizing the solvation reference energies
for pKa calculations, we employed a method that allowed side-chain flexibility and achieved a root mean-square deviation
(RMSD) of 0.83 from experimental values (0.68 after discounting 11 predictions with an error over 2 pH units). Additional
degrees of side-chain conformational freedom for the proximal residues facilitated the capture of charge-charge interactions
in a few cases, resulting in an overall RMSD of 0.85 pH units. The addition of backbone flexibility increased the overall
RMSD to 0.93 pH units but improved relative pKa predictions for proximal catalytic residues. The method also captures large
pKa shifts of lysine and some glutamate point mutations in staphylococcal nuclease. Thus, a simple and fast method based
on the Rosetta score function and limited conformational sampling produces pKa values that will be useful when rapid estimation
is essential, such as in docking, design, and folding.
INTRODUCTION
Biological processes are profoundly influenced by the pH
of their local cellular environment. For example, protein
folding, enzyme catalysis, and protein-protein interactions
are all pH dependent (1–3). Variations in pH can affect
protein-protein binding energies by as much as 50% (4),
and variable amino acid protonation states due to pH can
result in significantly different complex conformations
during small-molecule docking calculations (5). Rosetta,
a highly successful biomolecular modeling and design
package, does not have any dependency on pH. In this
work, we added a pH dependency to Rosetta and calibrated
relevant parts of the energy function based on our ability to
calculate residue pKa values.

The ability to evaluate residue pKa values rapidly and
accurately will help investigators design better drugs and
more robust industrial enzymes that are stable and active
over a range of pH values. The calculation of pKa values
can identify the strengths and deficiencies of the energy
function, particularly with regard to the electrostatic compo-
nents (6). Also, the availability of a large number of exper-
imentally determined pKa values allows benchmarking of
energy functions to capture the effects of pH (7). We are
especially interested in improving Rosetta’s ability to dock
protein or small-molecule ligands to proteins, which is
currently limited in the case of binding sites that contain
charged atoms, because Rosetta’s algorithms do not account
for alternate residue charge states.

Existing computational pKa prediction algorithms can be
broadly classified into four major branches and hybrid
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approaches. The first branch solves or approximates the
Poisson-Boltzmann equation using grid-based continuum
electrostatic models (8–13) with diverse dielectric constants
(typically in the range of four to 20) to represent the protein
interior. These methods have sometimes been found to
overestimate the effects of charge-charge interactions (14),
and often require several minutes to hours to estimate the
pKa value for a single residue. The second branch employs
all-atom molecular dynamics (MD) simulations (15–20)
using either explicit (AMBER/CHARMM force fields) or
implicit solvent models (generalized Born potential). The
third branch comprises quantum mechanics/molecular
mechanics (QM/MM)-based methods, which treat the part
of protein containing the titratable residue using ab initio
QM and the rest of the protein environment using MM
(21,22). The fourth branch uses a variety of empirical
approaches, some of which employ geometric-based dielec-
tric constants and empirical approximations for solvation,
electrostatic, and hydrogen-bonding models (23–28). Each
of these branches offers a distinct set of advantages, with
the empirical approaches generally being computationally
less expensive and the more-rigorous approaches benefiting
from fundamental explanations of the underlying physical
interactions. Studies have typically reported a prediction
root mean-square deviation (RMSD) of <1 pH unit from
experimental pKa values.
Although the diversity in the array of current pKa predic-

tion algorithms is encouraging, developing a method that
can incorporate extensive conformational flexibility while
retaining a relatively small computational resource footprint
remains a significant challenge. Complex phenomena, such
as local conformational changes and coupled ionization
pairs, continue to make computational pKa predictions
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difficult to achieve. Some approaches tackle conformational
flexibility through the use of MD snapshots, explicit side-
chain sampling, or NMR structures (9,11,29–32). However,
capturing conformational flexibility is expensive. Fast com-
putations are needed to enable the use of pKa calculation
methods in protocols such as protein-protein docking and
design, which themselves require generation of a large set
of target conformations.

The fast and efficient Rosetta framework can thus be used
for rapid estimation of pKa values that can be useful for
further calculations in structure prediction and design.
Rosetta’s physics-based all-atom energy function (with
terms for van der Waals, solvation, hydrogen bonding,
etc.) is pairwise-additive and has used successfully in a
wide range of applications (33–41). Nevertheless, Rosetta’s
energy function does not include any explicit dependence on
environmental conditions such as temperature, salt, and pH.
Instead, investigators have assembled the energy function
by combining physical and statistical potentials, and cali-
brating by the ability to identify native-like structures and
sequences (33,42–44) and to predict free-energy changes
upon mutation (45,46). Therefore, in this work, we begin
to incorporate environmental dependence into the Rosetta
energy function by using pKa shifts to calibrate the Rosetta
score function’s dependence on environmental pH.

In the remainder of this article, we describe a fast and
simple physics-based method, termed Rosetta-pH, to esti-
mate the pKa values of five types of residues with varied
protonation states (Asp, Glu, His, Tyr, and Lys). After show-
ing that the standard Rosetta energy function cannot alone
predict pKa shifts, we add electrostatic terms and modify
the solvation potential to create an improved score func-
tion. We then explore varying levels of conformational
flexibility and test the performance of the method on a set
of large pKa shifts used in recent blind predictions (47).
METHODS

In Rosetta pKa calculations, the pH is titrated from 1 to 14 withMonte Carlo

(MC) sampling of protonated and deprotonated side chains with c-angles

sampled from a backbone-dependent rotamer library (48), irrespective of

the protonation state. We used an expanded rotamer library that includes

additional rotamers that are one and two standard deviations away from

the base rotamers, because we noted slight improvements in pKa prediction

accuracy with extra side-chain sampling (data not shown). Each rotamer

configuration is accepted or rejected using the Metropolis criterion and

the Rosetta score function. The conformational degeneracy in the proton-

ated variants of Asp and Glu (with H atoms on either of the terminal Od

and O
ε
atoms, respectively) is explicitly incorporated by accommodating

both possible protonated versions for the residues during sampling. The

c-angles for protons in the protonated variants are sampled at their canon-

ical angles (�60, 60, 180) and 520�. For neutral His, both possible tauto-

mers (with proton on either Nd1 or Nε2 atoms) are sampled.

The protonation states of the lowest-energy conformers sampled during

the side-chain conformational search were recorded during every pH step

of the calculation (Fig. S1 in the Supporting Material shows the flowchart

for the algorithm). An initial titration was carried out in intervals of 1 pH

unit, starting with pH ¼ 1 until a change in protonation state was observed,
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and subsequently a finer sampling interval of 0.1 pH unit was employed in

the appropriate coarse interval. The pKa was identified as the pH value at

which the lowest-energy conformer of the residue shifted from the proton-

ated to the deprotonated state. In the case of NMR structures, the entire

ensemble of available structural models was used, and the mean of the

calculated pKa values over the structural dataset was used as a representative

pKa for the residue.

The Supporting Material includes a complete description of the experi-

mental pKa dataset, the Rosetta score function, and the command-line

syntax for performing pKa predictions with Rosetta.
RESULTS AND DISCUSSION

Preliminary pKa predictions

The standard all-atom Rosetta score function comprises
several terms, including a Lennard-Jones potential, an
implicit solvation potential, and an orientation-dependent
hydrogen-bonding term.However, none ofRosetta’s standard
score terms depend on the pH of the environment. Conse-
quently, Rosetta assumes constant, standard side-chain
protonation states for the ionizable amino acids irrespective
of pH: Asp and Glu are assumed to be deprotonated, His
and Tyr are assumed to be neutral, and Lys and Arg are
assumed to be protonated. To resolve this issue, we created
ameans to treat thevariable protonation states of amino acids.
Protonation potential

First, we added a protonation potential based on the proba-
bility of protonation of individual amino acid residues at a
given pH. We used a simplified version of the potential
described by Onufriev et al. (49) that has been used in pKa

estimations (11,12) and prediction of binding affinities
(50). The probability of protonation ðfprotÞ of an amino acid is

fprot ¼ 1

10pH�IpKa þ 1
;

and the protonation potential ðEpHÞ is
EpH ¼
(

�kBT ln fprot if protonated

�kBT ln
�
1� fprot

�
if deprotonated ;

where pH is defined by the environment, and IpKa is the

unperturbed intrinsic pKa value of the model compound in
solution (4.0 for Asp, 4.4 for Glu, 6.3 for His, 10.0 for Tyr,
and 10.4 for Lys). kBT was assigned a value of 0.59 kcal/mol,
corresponding to a temperature of 298 K. The free-energy
gap of protonation between protonated and deprotonated
variants of a residue, DEpH, is 2:3kBTðpH� IpKaÞ. The Sup-
portingMaterial includes a derivation of pKa values from the
scores of the protonated and deprotonated variants.
Updating residue atom types

Second, to accumulate nonstandard charge-state amino acid
variants, we updated the residue atom types to reflect the
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changes in the protonation state (see Table S1). For
example, in the case of protonated Asp, the definition of
terminal Od atom was modified from a carboxyl oxygen
(OOC) in the standard residue to a hydroxyl oxygen (OH)
in the protonated variant. The atom types determine the
solvation and van der Waals parameters, and the ability to
donate or accept hydrogen bonds.
pKa predictions fail using the standard Rosetta
score function

We initially evaluated the pKa values for the assembled
dataset of 264 residues using the protonation potential and
the standard Rosetta score function. We calculated the pKa

values by using a single backbone conformation for x-ray
crystal structures and averaging over the ensemble of
models for NMR structures. The predicted pKa values
plotted against experimental pKa values in Fig. 1 a are flat,
that is, the calculated pKa values demonstrate negligible
shifts from the reference values. Only a few residues, such
as H43 from Streptomyces subtilisin inhibitor (3SSI), show
shifts (with the pKa shifting to 2.0 from the reference value
of 6.3). Most shifts can be attributed to steric hindrance from
the neighboring residues, which renders the protonated vari-
ants highly unfavorable. The RMSD of predicted pKa values
relative to experimental pKa values is 1.0 pH units. In
comparison, the null model, in which all pKa values are
assumed to be unshifted from the reference intrinsic pKa

values, produces an RMSD of 0.94 pH units.
These results are not surprising, considering that Roset-

ta’s standard score function does not include a term for
Coulomb electrostatics. Instead, Rosetta relies on a combi-
nation of an implicit solvation potential to capture the
Born energy of ion burial (51), a statistical residue pair
term to account for ion-ion pair interactions (52) and an
orientation-dependent, hydrogen-bonding term (53) that
rewards salt bridges. For the nonstandard residue proton-
ation variants, the solvation and hydrogen-bonding scores
are affected by the changed atom types. However, the
residue pair-energy term (Epair) is based on the probability
of proximity of two amino acids in the PDB (normalized
0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Experimental pKa

C
al

cu
la

te
d 

pK
a

++

+

++

Asp
Glu
His
Tyr
Lys

Rosetta standard score function
RMSD 1.0 (0.88 w/o outliers)

0 2 4 6

0
2

4
6

8
10

12
14

Experiment

C
al

cu
la

te
d 

pK
a

++

+

Rosetta−pH score functi
RMSD 0.83 (0.68 w/o ou

a b
by the frequencies of residue-residue pairs in a given burial
environment). Because the protonation states of residues in
PDB crystal structures are not known, the pair statistics do
not differentiate the protonated from the deprotonated
forms.
Optimization of the Rosetta-pH score function
for pKa prediction

The shortcomings of the standard Rosetta energy function
led us to modify it in two ways. First, to explicitly evaluate
electrostatic effects, we added a simple form of a Coulomb
electrostatic potential with a distance-dependent dielectric
for gradual shielding at increasing interatomic distances
(54). It includes a cap at short range and a shift to become
zero at a long-range cutoff. The energy between atoms i
and j is

Eij
elec ¼

8>>>>>><
>>>>>>:

322qiqj

�
1

εminrmin

� 1

εmaxrmax

�
rij%rmin

322qiqj

�
1

εrij
� 1

εmaxrmax

�
rmin<rij<rmax

0 rijRrmax

;

where q1 and q2 are atomic charges, rij is the distance between
atoms i and j, and ε is the dielectric constant, which is esti-
mated as ε¼ 10r. The short- and long-range cutoff distances,
rmin and rmax, are 1.5 Å and 5.5 Å, respectively, with εmin ¼
10rmin and εmax ¼ 10rmax. The partial charges (qi) for the
side-chain atoms in standard amino acid variants and
nonstandard protonation states were obtained from
CHARMM27 (55). For deprotonated Tyr, the parameters
were obtained from the quantum chemical calculations by
Rabenstein et al. (56). The total Coulomb energy, Eelec, is
evaluated by summing Eij

elec over all pairs of atoms in the
protein.

Our second modification to the Rosetta score function
arose from the solvation term. Rosetta uses the Lazaridis-
Karplus implicit model for solvation (51), where the score
for an atom i is evaluated as
8 10 12 14
al pKa

++
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FIGURE 1 (a and b) Correlation between pre-

dicted and experimental pKa values calculated

using the standard Rosetta score function (a)

without an explicit electrostatic potential and (b)

with a distance-dependent Coulomb potential and

calibrated solvation reference energies. In panel

a, the prediction plots are flat (no shifts from the

intrinsic pKa values, denoted by þ symbols)

whereas in b, 78% of the pKa predictions are within

1 pH unit from the experimental values (dashed

lines) and only 4% of the predictions have

errors > 2 pH units. Absolute pKa values are

plotted for clarity; see Fig. S2 for DpKa correlation

plots. Note that the RMSD values based on pKa and

DpKa values are equivalent.
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TABLE 1 pKa prediction RMSD by residue type and prediction

method

Number of

c angles

Null

model

Standard

Rosetta

Rosetta-pH score function

Site

repack

Neighbor

repack

Ensemble

average

Asp 2 0.96 1.1 0.81 0.87 0.83

Glu 3 0.83 0.88 0.92 0.88 0.92

His 2 1.0 1.2 0.82 0.86 1.0

Tyr 2 1.2 0.96 0.77 0.84 1.2

Lys 4 0.59 0.65 0.67 0.62 0.71

All – 0.94 1.0 0.83 0.85 0.93
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Ei
solv ¼ DGref

i �
X
jsi

f
�
rij
�
Vj;

where rij is the distance between atoms i and j, Vj is the
volume of neighbor atom j, DGref

i is reference solvation
energy based on a fully solvated atom, and f ðrijÞ is the solva-
tion free-energy density estimated by the Gaussian exclu-
sion function (see Lazaridis and Karplus (51) for details).
The total solvation energy for a residue, Esolv, is evaluated
by summing Ei

solv over all its atoms.
To test the effects of solvation on the side-chain proton-

ation state, we plotted the difference in solvation energies
between the protonated and deprotonated variants (DEsolv)
against the degree of burial from solvent for all residues
from the pKa prediction dataset (Fig. S3). Negligible differ-
ences were observed in solvation scores between protonated
and deprotonated variants in residues exposed to the solvent
(<15 neighboring atoms), indicating equal preference for
either variant. Solvation scores in Rosetta are zero for atoms
exposed to solvent, because the Lazaridis-Karplus reference
energy ðDGref

i Þ has been displaced by a separate reference
score (aaref) derived using sequence recovery over a dataset
of proteins (42). However, for solvent-exposed residues,
considering alternate protonation states, the potential should
favor the charged variant. Therefore, we derived reference
scores for the five nonstandard protonation variants using
a linear regression that minimizes the predicted pKa RMSD
over a subset of randomly selected 200 pKa values (~3/4 of
the total dataset). For example, for Asp the pKa predictions
are optimal if the reference score for the protonated state
shifts up by 0.59 score units relative to the deprotonated
variant. Table S2 details the resulting reference scores.
Testing the effects of varying degrees of protein
flexibility

Flexible target side chain

We employed the new energy function and evaluated pKa

values by sampling the c-angles and protonation states of
the target residue with the remaining protein held rigid.
The method resulted in an RMSD of 0.83 pH units over
the entire dataset (Fig. 1 b). Excluding 11 outliers that
have prediction errors > 2 pH units, the remaining 253 resi-
dues have an RMSD of 0.68. We found that 92% of the
predictions differed by<1.5 pH units from the experimental
values, and more than half of them were accurate to within
0.5 pH units (Table S3).

The overall accuracy of the pKa predictions usually
decreased as the number of residue side-chain degrees of
freedom increased (Table 1). The predictions were more
accurate in the case of Asp, His, and Tyr (two c-angles),
with overall prediction RMSD values of 0.81, 0.82, and
0.77, respectively, compared with 0.92 in the case of Glu
(three c-angles). Although the RMSD for Lys residues
Biophysical Journal 103(3) 587–595
(four c-angles) is 0.67, it is still higher than the null-model
RMSD of 0.59.

To improve the accuracy of predictions and understand
the limitations of the method, we inspected residues with
large pKa errors. In the case of E17 and E26 from calbindin
D9k (4ICB), calculating the pKa values for each residue
separately resulted in pKa predictions of 5.3 and 5.2,
compared with experimental values of 3.6 and 4.1, respec-
tively (57). These two glutamate residues are structurally
proximal (Fig. 2 a) and are involved in strong charge-charge
interaction; hence, the large pKa prediction errors can be
attributed to the unrealistic assumption that the neighboring
Glu residue is deprotonated across the entire range of pH
values during titration. Therefore, the pKa predictions are
upshifted due to the high energetic penalty resulting from
electrostatic repulsion.

We also examined whether the pKa predictions could
identify the correct proton donor among the catalytic resi-
dues in hen egg white lysozyme (2LZT) and Bacillus circu-
lans xylanase (1XNB). The catalytic sites of both lysozyme
and xylanase have a Glu residue with a large upshifted pKa

value that acts as a proton donor, and a proximal carboxylic
acid residue with a lower pKa value that serves as a nucleo-
phile (58,59). The Rosetta-pH method predicted pKa values
of 3.8 and 2.9 for the E35-D52 pair in lysozyme, and 3.0 and
4.1 for the E172-E78 pair in xylanase. The experimental pKa

values for the E35-D52 pair in lysozyme are 6.2 and 3.7,
respectively, and those for the E172-E78 pair in xylanase
are 6.7 and 4.6, respectively. Thus, a ranking of residues
by their calculated pKa values identified the correct proton
donor in the case of lysozyme (pKa

E35 > pKa
D52) but failed

in the case of xylanase. However, the method was unable to
predict the large upward shifts in the pKa values of Glu resi-
dues in either case. The upward shifts were likely absent
because in this formulation, neighbor residues did not
sample alternate protonation states. Thus, charge-charge
interactions of proximal residues capable of adapting vari-
able protonation states were not captured.

Flexible and protonatable neighbor side chains

In an effort to improve the treatment of local charge-charge
interactions, we added conformational sampling of standard
and alternate-charge-state side-chain rotamers of all the



FIGURE 2 Conformational flexibility. (a) Interacting neighbor residues E17 and E26 from calbindin D9k (4ICB) are more accurately predicted when

neighbor side-chain flexibility and protonation are allowed. (b) A structural model of RNase H (2RN2) generated using RosettaRelax (blue) compared

with the native structure (cyan). D10 is closer to D70 in the model, resulting in a shift in the predicted pKa value of the D10 from 4.0 using the native structure

to 5.5 using the relaxed model. The experimental pKa value for D10 is 6.1. (c) The structural model of H227 from phospholipase C (1GYM) has no space for

a proton and thus highly favors the default (deprotonated) variant, resulting in a predicted pKa of 2.7.
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residues within 6 Å of the target residue. This approach al-
lowed simultaneous sampling of variable protonation states
for the E17-E26 pair from calbindin D9k (Fig. 2 a) and
improved the predicted pKa values to 3.7 and 4.1, respec-
tively (experimental pKa values are 3.6 and 4.1, respec-
tively). The pKa prediction accuracy for the E17-E26 pair
is encouraging, because it is difficult to determine the
optimal titration order in an ionizable pair when the differ-
ence between the respective residue pKa values is small rela-
tive to the interaction energy involved (60).

However, the method still could not capture the large
upward shift in the pKa values of Glu residues in the cata-
lytic sites of lysozyme and xylanase. The method predicted
pKa values of 3.7 and 2.7 for the E35-D52 pair in lysozyme,
and 2.7 and 4.7 for the E172-E78 pair in xylanase. For xy-
lanase, the method predicted a higher pKa value for E78
relative to E172, thereby incorrectly identifying E78 as
the proton donor and E172 as the nucleophile during catal-
ysis. Thus, in this case, additional side-chain flexibility did
not improve the accuracy of the pKa predictions.

Over the complete dataset, adding neighbor side-chain
sampling decreased the number of outliers from 11 to 7.
However, in a few cases, sampling the extra side-chain
conformations resulted in additional deviations (up to
0.3 pH units). Thus, the RMSD for predicted pKa values
(Fig. 3 a) over the complete dataset increased to 0.85
(0.73 excluding the outliers). The percentage of pKa predic-
tions within an error of 1 pH unit dropped slightly from 78%
to 76%.

Flexible backbone

For a second level of protein flexibility, we extended confor-
mational sampling to the protein backbone. To explore the
effects of a flexible backbone in x-ray crystal structures, it
is first necessary to create an ensemble of backbone struc-
tures. To that end, we generated a conformational ensemble
for each protein using RosettaRelax (33,61). RosettaRelax
uses MC sampling employing small backbone dihedral
angle (4, j) perturbations followed by side-chain packing
and minimization of the score function along the gradient
in torsion space. We generated 50 structural models for
each protein starting from its x-ray crystal structure. To
enable comparisons with rigid backbone methods over the
complete dataset, we also generated ensembles for NMR
structures by choosing NMR Model 1 as the starting struc-
ture. The conformers generated using this protocol form
a dense cluster with most models <1 Å Ca RMSD from
the native structure (62).

For each residue, we evaluated the pKa values separately
using each of the 50 generated backbone models in the
ensemble. As illustrated in Fig. 3 b, the predicted pKa values
for each residue were distributed over a wide range, demon-
strating the sensitivity of pKa predictions to even small
changes in backbone conformation. Using the average pKa

value for each residue over the ensemble resulted in a distri-
bution similar to that observed using a single representative
structure (Fig. 3 c). The RMSD values for Asp, Glu, and Lys
were comparable to those obtained without accounting for
backbone flexibility (0.83, 0.92, and 0.71, respectively,
compared with 0.81, 0.92, and 0.67), but the RMSD values
for His and Tyr were far less accurate (1.0 and 1.2, respec-
tively, compared with 0.82 and 0.77). The average pKa

values had an RMSD of 0.94 pH units over the complete
dataset.

Fig. 2 b shows D10 from ribonuclease H (2RN2) as
a representative example demonstrating the effect of back-
bone variation. A small backbone perturbation in one of
the models generated with the use of backbone relaxation
reduced the distance between D10 and D70, resulting in
an increase in the predicted pKa value from 5.0 with the
crystal structure to 5.5, which is closer to the experimental
pKa value of 6.1. In contrast, in the case of H227 from
Biophysical Journal 103(3) 587–595
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FIGURE 3 (a–c) Correlation between predicted and experimental pKa values using (a) neighbor repacking and (b and c) a structural ensemble of 50 back-

bone conformations. (b) pKa distribution for each generated structure in the ensemble. (c) Average pKa value over the ensemble. The pKa predictions are

highly sensitive to local side-chain and backbone conformational changes.
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phospholipase C (1GYM; Fig. 2 c), whose experimental pKa

value is 6.9, the predicted pKa dropped dramatically from
6.6 with the crystal structure to 2.7 with the backbone
ensemble. The pKa shifted down because the backbone
relaxation created a tightly packed core that fit only the de-
protonated version of His, i.e., because the RosettaRelax
protocol does not use alternate protonation states of residues
in conformational sampling, it used the deprotonated His
and compacted the structure too tightly to fit a hydrogen
atom. Thus, the use of a backbone conformational ensemble
improved the accuracy of some pKa predictions but also re-
sulted in significant downshifts in pKa values for a few resi-
dues with stabilized deprotonated variants.

The increase in conformational degrees of freedom did
not help in recovering the large upward shift in pKa values
of catalytic Glu residues in lysozyme and xylanase.
Although the predicted pKa value of 3.3 for D52 in lyso-
zyme (experimental pKa 3.7) was more accurate than
predictions of 2.9 and 2.7 when sampling the target residue
and neighboring side chains, respectively, the method pre-
dicted a pKa value of 3.6 for E35, compared with the exper-
imental pKa value of 6.2. However, the additional backbone
flexibility allowed the method to identify the correct proton
donor among catalytic residues in xylanase, as the predicted
pKa value of 3.5 for E172 was higher than the predicted pKa

value of 2.2 for E78.
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for SNase mutants with large pKa shifts.
Extreme pKa shifts—the staphylococcal
nuclease set

In our main dataset, the majority of the residues had pKa

shifts of <1.5 pH units, and a few residues shifted up to
3.5 pH units. Members of the Garcı́a-Moreno laboratory
recently acquired experimental data for a large number of
pKa values for mutants at various positions in the highly
stable DþPHS variant of staphylococcal nuclease (SNase).
Some ionizable groups in hydrophobic regions shifted their
pKa values by as much as 5 pH units from their intrinsic pKa

values (63–70). The dataset of pKa values was recently used
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in a large-scale, community-wide blind pKa prediction chal-
lenge, called the pKa Cooperative, for assessment of pub-
lished pKa prediction methods (47).

To test the efficacy of our method for predicting large pKa

shifts, we applied the optimized Rosetta-pH method to the
SNase model system, with conformational flexibility
limited to the target residue. Fig. 4 shows the correlation
between predicted and experimental pKa values represented
relative to their shift from reference pKa values. Encourag-
ingly, the pKa prediction RMSD for the set of Lys residues
was 1.3 compared with a null-model RMSD of 3.4. The
RMSDs for predictions in the case of Glu and Asp residue
sets were 2.1 and 3 pH units respectively (the corresponding
null-model RMSDs were 2.4 and 2.9). Although the large
pKa shift of the K66 mutant was predicted accurately (pre-
dicted pKa ¼ 5.3; experimental pKa ¼ 5.6), the method
was unable to predict the large upshifts in the pKa values
of Asp and Glu mutants at the same position (predicted
pKa ¼ 3.6 and 4.4; experimental pKa ¼ 8.7 and 8.5, respec-
tively). Experimental studies revealed a network of internal
water molecules in the case of E66 mutant (71) and a local
conformational transition in the case of D66 mutant (72),
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and sensitivity of the pKa values to the SNase global stability
(66). These effects are difficult to capture. For other pKa

prediction methods using continuum electrostatics, investi-
gators have resorted to the use of high dielectric constants
(ε z 10) to reproduce the magnitude of the pKa shifts (68).
CONCLUSION

We have developed a novel (to our knowledge) method,
termed Rosetta-pH, that rapidly calculates the pKa values
of a diverse dataset. We find that 78% of the predictions
are within 1 pH unit of the experimental pKa values. The
score function used for predictions includes a simple
distance-based dielectric Coulomb potential that substan-
tially increases the accuracy of pKa predictions compared
with the standard Rosetta score function. Coulomb interac-
tions play a significant role in stabilizing the charged vari-
ants of buried residues to balance the effects of
desolvation (47). However, it is perhaps surprising that em-
ploying a simple Coulomb potential generates pKa predic-
tions with an RMSD of 0.83 pH units using a single
flexible target side chain. In comparison, the latest published
versions of the widely used pKa prediction algorithms
MCCE2 (13) and PROPKA3 (25) report RMSDs of 0.90
and 0.79, respectively, over their corresponding datasets
comprising 305 and 293 residues. (Note that using RMSD
values to guide optimization of pKa calculation algorithms
does not guarantee physically realistic models, and RMSD
values are highly dependent on the pKa datasets used for
calibration (7).) The successful prediction of large pKa shifts
in SNase point mutants also supports the efficacy of the fast
and simple Coulomb electrostatic treatment.

In addition to the score function, pKa prediction is influ-
enced by the extent of conformational sampling. Other
investigators have explored the effects of side-chain
(11,29,32) and backbone (15,16,20) flexibility. For example,
significant improvements in pKa prediction accuracy were
reported by Gunner et al. (73), Witham et al. (31), and
Song (74), who employed Gromacs relaxation, MD snap-
shots, and Rosetta refinement, respectively, to incorporate
backbone effects in MCCE pKa calculations. Similarly, in
Rosetta-pH, additional side-chain flexibility resulted in
more accurate estimation of charge-charge interactions,
and additional backbone flexibility improved relative pKa

predictions in catalytic residues. However, over the
complete dataset, the prediction RMSD values increased
from 0.83 to 0.85, and finally reached 0.94 pH units as we
extended the sampling from a single side chain to multiple
neighboring side chains and finally to the protein backbone
(Table 1). One explanation for the reduced accuracy is
simply the noise in the energy introduced by additional
motions throughout the large protein. A second possible
explanation for the dip is that the diversity of the generated
backbone ensemble inaccurately represents the solution-
state flexibility when alternate protonation states are
possible. For example, during ensemble generation, the Ro-
settaRelax protocol does not dynamically alter residue
protonation states, thus biasing the structures toward stan-
dard protonation variants. Considering variable protonation
states and calibrating RosettaRelax to generate an ensemble
of thermodynamic states that can be used in Boltzmann
weighting for pKa estimations might improve the accuracy
of the pKa predictions.

Our treatment of the pKa calculations is also very simple
in that it defines the pKa as the pH at which the lowest-
energy state changes, instead of calculating the average
over an ensemble of different protonated and deprotonated
states at each pH. A more rigorous thermodynamic treat-
ment would need to capture the titration dynamics by col-
lecting side-chain rotamer frequencies during titration, and
reproduce the titration curves to estimate the pKa values.
Such a treatment could better capture cases in which
multiple structures make important contributions to the ther-
modynamic ensemble, or in which ionization effects are
coupled.

The standard Rosetta standard score function has been
applied very successfully to protein folding, design, and
docking. However, before this work, the score function had
not been developed to handle pKa calculations. pKa predic-
tions are extremely sensitive to electrostatic treatments, so
our hope is that these protocols will aid in improving and
fine-tuning the Rosetta score function. Further studies
employing the pKa protocol can be used to test alternate elec-
trostatic and solvation potentials in Rosetta, such as Poisson-
Boltzmann treatments using matched interface- and
boundary-method-based solvers (75) and semi-explicit
solvation potentials (76). Ultimately, such calculations may
also help introduce other environmental factors, such as
temperature and salt concentration (77,78), into the Rosetta
score function, but work is needed to reconcile the new score
terms with the standard score function that is finely tuned for
structure prediction and design applications.

The major goal of our study was to develop a fast method
for identifying themost favorable protonation state at a given
pH. Whereas a full titration requires ~15–30 CPU seconds
depending on the extent of conformational flexibility,
Rosetta-pH can evaluate the most favorable protonation state
at a given pH in less than a second. The meager computa-
tional requirements make Rosetta-pH sufficiently fast to
dynamically sample, predict, and alter various probable
protonation states on the fly during other calculations.
Combined with the object-oriented design of the Rosetta
modeling suite (79), our method makes it possible to inte-
grate alternate protonation states and pH contexts into other
protocols, such as protein folding, docking, and design.
SUPPORTING MATERIAL

A complete description of the experimental pKa dataset, the Rosetta score

function, the command-line syntax for performing pKa predictions with
Biophysical Journal 103(3) 587–595
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Rosetta, and references (80,81) are available at http://www.biophysj.org/

biophysj/supplemental/S0006-3495(12)00733-3.

Ryan Harrison incorporated the pH effects into earlier versions of Rosetta.
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