Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jul 28;68(Pt 8):o2587. doi: 10.1107/S1600536812033119

2,3,6,7-Tetra­meth­oxy-9,10-anthra­quinone

Akira Ohta a, Kazuki Hattori a, Takeshi Kawase b, Takashi Kobayashi c, Hiroyoshi Naito c, Chitoshi Kitamura b,*
PMCID: PMC3415025  PMID: 22905012

Abstract

Mol­ecules of the title compound, C18H16O6, are almost planar [maximum deviation = 0.096 (4) Å] and reside on crystallographic centres of inversion. They adopt a conformation in which the Cmeth­yl—O bonds are directed along the mol­ecular short axis [C—C—O—C torsion angles of −175.3 (3) and 178.2 (3)°]. In the crystal, mol­ecules adopt a slipped-parallel arrangement with π–π stacking inter­actions along the a axis with an inter­planar distance of 3.392 (4) Å. Weak C—H⋯O inter­actions link the mol­ecules into sheets parallel to (10-2).

Related literature  

For a study of the effects of alk­oxy substituents on the structures and solid-state photophysics, see: Ohta et al. (2012). For the synthesis, see: Boldt (1967). For a related structure, see: Kitamura et al. (2009).graphic file with name e-68-o2587-scheme1.jpg

Experimental  

Crystal data  

  • C18H16O6

  • M r = 328.31

  • Triclinic, Inline graphic

  • a = 4.6607 (4) Å

  • b = 8.4769 (9) Å

  • c = 9.8110 (9) Å

  • α = 94.859 (3)°

  • β = 91.410 (2)°

  • γ = 97.278 (2)°

  • V = 382.87 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 223 K

  • 0.50 × 0.06 × 0.05 mm

Data collection  

  • Rigaku R-AXIS RAPID diffractometer

  • 3738 measured reflections

  • 1725 independent reflections

  • 977 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.234

  • S = 1.16

  • 1725 reflections

  • 111 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1999); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812033119/gg2091sup1.cif

e-68-o2587-sup1.cif (14.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812033119/gg2091Isup2.hkl

e-68-o2587-Isup2.hkl (83.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812033119/gg2091Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O1i 0.97 2.58 3.391 (5) 142
C9—H9B⋯O2ii 0.97 2.54 3.494 (4) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was partly supported by a Grant-in-Aid for Scientific Research (C) (No. 23550161) from JSPS and a Grant-in-Aid for Scientific Research on Innovative Areas (No. 23108720, "pi-Space") from MEXT.

supplementary crystallographic information

Comment

9,10-Anthraquinone is an important molecule in the field of industrial dyes. We have recently been interested in the tuning of the solid-state optical properties by the introduction of substituents. As part of our program aimed at the elucidation of the effects of alkoxy substituents on the optical properties in the solid state (Ohta, et al., 2012), we are in need of the information on the crystal structures of a variety of 2,3,6,7-tetraalkoxy-9,10-anthraquinones in order to clarify the correlation between crystal structures and the solid-state photophysics. Although the title compound is already known (Boldt, 1967), the X-ray structure was not reported to date. We report herein the crystal structure of the title compound (I).

The molecular structure of the title compound (I) is shown in Fig. 1. The molecule possesses a center of inversion, and half of the formula unit is crystallographically independent. The molecule is almost planar with the maximum deviation of 0.096 (4) Å for C8. The displacements of atoms O1, O2, O3, C8 and C9 relative to the plane of the anthraquinone framework are 0.023 (2), -0.002 (2), 0.013 (2), 0.096 (4), and 0.060 (3), respectively. The molecule prefers the conformation in which the Cmethyl—O bonds are directed along the molecular short axis. The torsion angles of C3—C2—O2—C8 and C2—C3—O3—C9 are -175.3 (3) and 178.2 (3)°, respectively. This conformation is similar to the corresponding moiety in 2,3-dimethoxy-5,12-tetracenequinone (Kitamura, et al., 2009). The molecules adopt a slipped-parallel arrangement as shown in Fig. 2. Then molecules are π-stacked along the a axis with an interplanar distance 3.392 (4) Å.

To examine the influence of crystal packing on the solid-state fluorescences, the fluorescence spectrum and the absolute quantum yield of (I) were measured with a Hamamatsu Photonics PMA11 calibrated optical multichannel analyzer with a solid-state blue laser (λex = 377 nm) and a Labsphere IS IS-040-SF integrating sphere, respectively. The crystals showed negligible fluorescence (Φ = 0.002). The fluorescence quenching would be due to the π-stacked structure.

Experimental

The title compound was prepared according to the literature procedure (Boldt, 1967). Single crystals suitable for X-ray analysis were obtained by recrystallization from DMF.

Refinement

All the H atoms were positioned geometrically and refined using a riding model with C—H = 0.94 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H, and C—H = 0.97 Å and Uiso(H) = 1.5Ueq(C) for CH3. The positions of methyl H atoms were optimized rotationally.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound (I), showing the atomic numbering numbering and 30% probability displacement ellipsoids. Symmetry code: (i) -x, -y + 1, -z.

Fig. 2.

Fig. 2.

The packing diagram of (I). Hydrogen atoms are omitted for clarity.

Crystal data

C18H16O6 Z = 1
Mr = 328.31 F(000) = 172
Triclinic, P1 Dx = 1.424 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 4.6607 (4) Å Cell parameters from 1977 reflections
b = 8.4769 (9) Å θ = 3.1–27.5°
c = 9.8110 (9) Å µ = 0.11 mm1
α = 94.859 (3)° T = 223 K
β = 91.410 (2)° Needle, yellow
γ = 97.278 (2)° 0.50 × 0.06 × 0.05 mm
V = 382.87 (6) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer 977 reflections with I > 2σ(I)
Radiation source: fine-focus sealed x-ray tube Rint = 0.027
Graphite monochromator θmax = 27.5°, θmin = 3.1°
Detector resolution: 10 pixels mm-1 h = −6→5
ω scans k = −10→10
3738 measured reflections l = −12→12
1725 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.234 H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.1038P)2 + 0.301P] where P = (Fo2 + 2Fc2)/3
1725 reflections (Δ/σ)max < 0.001
111 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.44 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3162 (6) 0.2759 (3) 0.1180 (3) 0.0304 (7)
H1 0.2882 0.1685 0.082 0.036*
C2 0.5104 (6) 0.3236 (3) 0.2269 (3) 0.0282 (7)
C3 0.5524 (6) 0.4852 (3) 0.2811 (3) 0.0279 (6)
C4 0.3981 (6) 0.5939 (3) 0.2252 (3) 0.0293 (7)
H4 0.425 0.7012 0.2616 0.035*
C5 0.2021 (6) 0.5460 (3) 0.1150 (3) 0.0264 (6)
C6 0.1606 (6) 0.3872 (3) 0.0611 (3) 0.0274 (6)
C7 −0.0418 (6) 0.3343 (3) −0.0564 (3) 0.0286 (6)
O1 −0.0753 (5) 0.1938 (3) −0.1056 (2) 0.0421 (6)
C8 0.6538 (9) 0.0647 (4) 0.2327 (4) 0.0529 (10)
H8A 0.4579 0.0121 0.2389 0.079*
H8B 0.7865 0.0095 0.2828 0.079*
H8C 0.7052 0.0628 0.1374 0.079*
O2 0.6714 (5) 0.2264 (2) 0.2899 (2) 0.0369 (6)
C9 0.8062 (7) 0.6813 (4) 0.4442 (3) 0.0382 (8)
H9A 0.8839 0.7476 0.3745 0.057*
H9B 0.946 0.6892 0.5202 0.057*
H9C 0.6283 0.7173 0.4764 0.057*
O3 0.7479 (5) 0.5185 (2) 0.3876 (2) 0.0345 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0295 (15) 0.0273 (15) 0.0345 (15) 0.0050 (11) −0.0052 (12) 0.0030 (12)
C2 0.0270 (14) 0.0262 (14) 0.0325 (14) 0.0079 (11) −0.0031 (12) 0.0033 (11)
C3 0.0277 (14) 0.0278 (15) 0.0280 (14) 0.0026 (11) −0.0024 (11) 0.0040 (11)
C4 0.0292 (14) 0.0235 (14) 0.0348 (15) 0.0034 (11) −0.0048 (12) 0.0022 (11)
C5 0.0254 (14) 0.0226 (14) 0.0320 (14) 0.0048 (11) 0.0015 (12) 0.0039 (11)
C6 0.0274 (14) 0.0254 (15) 0.0299 (14) 0.0045 (11) 0.0015 (12) 0.0037 (11)
C7 0.0262 (14) 0.0255 (14) 0.0342 (15) 0.0040 (11) −0.0034 (12) 0.0030 (11)
O1 0.0474 (14) 0.0269 (12) 0.0514 (14) 0.0090 (9) −0.0156 (11) −0.0022 (9)
C8 0.062 (2) 0.0276 (17) 0.070 (2) 0.0148 (15) −0.025 (2) −0.0001 (16)
O2 0.0405 (12) 0.0287 (12) 0.0423 (12) 0.0116 (9) −0.0126 (10) 0.0013 (9)
C9 0.0418 (18) 0.0317 (17) 0.0392 (16) 0.0025 (13) −0.0133 (14) −0.0007 (13)
O3 0.0377 (12) 0.0289 (11) 0.0356 (11) 0.0049 (8) −0.0145 (9) −0.0002 (8)

Geometric parameters (Å, º)

C1—C2 1.382 (4) C6—C7 1.474 (4)
C1—C6 1.404 (4) C7—O1 1.236 (3)
C1—H1 0.94 C7—C5i 1.479 (4)
C2—O2 1.359 (3) C8—O2 1.428 (4)
C2—C3 1.414 (4) C8—H8A 0.97
C3—O3 1.356 (3) C8—H8B 0.97
C3—C4 1.379 (4) C8—H8C 0.97
C4—C5 1.397 (4) C9—O3 1.434 (3)
C4—H4 0.94 C9—H9A 0.97
C5—C6 1.392 (4) C9—H9B 0.97
C5—C7i 1.479 (4) C9—H9C 0.97
C2—C1—C6 120.2 (3) O1—C7—C6 121.0 (2)
C2—C1—H1 119.9 O1—C7—C5i 120.7 (2)
C6—C1—H1 119.9 C6—C7—C5i 118.3 (2)
O2—C2—C1 125.2 (3) O2—C8—H8A 109.5
O2—C2—C3 114.9 (2) O2—C8—H8B 109.5
C1—C2—C3 119.9 (2) H8A—C8—H8B 109.5
O3—C3—C4 125.5 (3) O2—C8—H8C 109.5
O3—C3—C2 114.8 (2) H8A—C8—H8C 109.5
C4—C3—C2 119.7 (2) H8B—C8—H8C 109.5
C3—C4—C5 120.5 (3) C2—O2—C8 117.2 (2)
C3—C4—H4 119.7 O3—C9—H9A 109.5
C5—C4—H4 119.7 O3—C9—H9B 109.5
C6—C5—C4 119.9 (3) H9A—C9—H9B 109.5
C6—C5—C7i 120.8 (2) O3—C9—H9C 109.5
C4—C5—C7i 119.3 (2) H9A—C9—H9C 109.5
C5—C6—C1 119.7 (3) H9B—C9—H9C 109.5
C5—C6—C7 120.9 (2) C3—O3—C9 117.4 (2)
C1—C6—C7 119.3 (3)
C6—C1—C2—O2 179.8 (3) C4—C5—C6—C7 −179.1 (3)
C6—C1—C2—C3 0.0 (4) C7i—C5—C6—C7 0.6 (5)
O2—C2—C3—O3 0.2 (4) C2—C1—C6—C5 −0.1 (4)
C1—C2—C3—O3 −180.0 (3) C2—C1—C6—C7 179.0 (3)
O2—C2—C3—C4 −179.5 (3) C5—C6—C7—O1 178.8 (3)
C1—C2—C3—C4 0.3 (4) C1—C6—C7—O1 −0.3 (4)
O3—C3—C4—C5 179.9 (3) C5—C6—C7—C5i −0.6 (5)
C2—C3—C4—C5 −0.4 (4) C1—C6—C7—C5i −179.7 (3)
C3—C4—C5—C6 0.3 (4) C1—C2—O2—C8 4.9 (5)
C3—C4—C5—C7i −179.4 (3) C3—C2—O2—C8 −175.3 (3)
C4—C5—C6—C1 0.0 (4) C4—C3—O3—C9 −2.1 (4)
C7i—C5—C6—C1 179.7 (3) C2—C3—O3—C9 178.2 (3)

Symmetry code: (i) −x, −y+1, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C8—H8A···O1ii 0.97 2.58 3.391 (5) 142
C9—H9B···O2iii 0.97 2.54 3.494 (4) 168

Symmetry codes: (ii) −x, −y, −z; (iii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2091).

References

  1. Boldt, P. (1967). Chem. Ber. 100, 1270–1280.
  2. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Kitamura, C., Akamatsu, N., Yoneda, A. & Kawase, T. (2009). Acta Cryst. E65, o324. [DOI] [PMC free article] [PubMed]
  6. Ohta, A., Hattori, K., Kusumoto, Y., Kawase, T., Kobayashi, T., Naito, H. & Kitamura, C. (2012). Chem. Lett. 41, 674–676.
  7. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  8. Rigaku (1999). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812033119/gg2091sup1.cif

e-68-o2587-sup1.cif (14.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812033119/gg2091Isup2.hkl

e-68-o2587-Isup2.hkl (83.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812033119/gg2091Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES