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ABSTRACT

The goal of protein family classification is to group proteins into families so that proteins
within the same family have common function or are related by ancestry. While supervised
classification algorithms are available for this purpose, most of these approaches focus on
assigning unclassified proteins to known families but do not allow for progressive con-
struction of new families from proteins that cannot be assigned. Although unsupervised
clustering algorithms are also available, they do not make use of information from known
families. By computing similarities between proteins based on pairwise sequence compari-
sons, we develop supervised classification algorithms that achieve improved accuracy over
previous approaches while allowing for construction of new families. We show that our
algorithm has higher accuracy rate and lower mis-classification rate when compared to
algorithms that are based on the use of multiple sequence alignments and hidden Markov
models, and our algorithm performs well even on families with very few proteins and on
families with low sequence similarity. A software program implementing the algorithm
(SClassify) is available online (http://faculty.cse.tamu.edu/shsze/sclassify).
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1. INTRODUCTION

Depending on the definition of a family, proteins within gene families (or protein families) are

usually homologous and have similar structure of conserved functional domains. The classification of

proteins to families is an intrinsic part of comparative and evolutionary genomics. With the rapid increase in the

amount of genomic data, the need for sensitive protein family classification methods continues to increase.

One strategy for protein family classification is through the use of unsupervised clustering algorithms,

which take as input a large set of proteins, and perform all-against-all comparisons of sequence similarity

using BLAST (Altschul et al., 1990), the Smith-Waterman local alignment algorithm (Smith and Water-

man, 1981), or some other pairwise comparison algorithm. The pairwise scores are then used as a basis to

apply a variety of clustering algorithms such as single linkage clustering. Other unsupervised approaches

include the Markov clustering strategy (Enright et al., 2002), the density-based ordering method (Chen
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et al., 2006), and clustering algorithms based on the use of graph-theoretic properties (Kim and Lee, 2006).

Unsupervised methods are useful for clustering a set of proteins, but they have two shortcomings: they do

not assign proteins to existing families that can be found in databases such as Pfam (Bateman et al., 2000)

and InterPro (Apweiler et al., 2000), and they do not make use of properties of known families, such as

inter- and intra-family sequence diversity, to aid in the formation of new families.

Supervised classification algorithms can overcome some of these shortcomings. These methods include

algorithms based on the use of profile hidden Markov models (Eddy, 1998), algorithms based on proba-

bilistic suffix trees (Bejerano and Yona, 2001), algorithms based on the use of discriminative strategies

such as support vector machines ( Jaakkola et al., 2000; Liao and Noble, 2003), and algorithms based on

sparse Markov transducers (Eskin et al., 2003). While most of these supervised techniques focus on the

assignment of unclassified proteins to known families, they do not allow for progressive construction of

new families from proteins that cannot be assigned.

We develop supervised classification algorithms that overcome the problems of existing supervised and

unsupervised algorithms and achieve improved accuracy. By utilizing sequence similarity from pairwise

comparisons, we show that our algorithm has higher accuracy rate and lower mis-classification rate when

compared to algorithms that are based on the use of multiple sequence alignments and hidden Markov

models. Our approach can assign proteins to existing families in databases and, by taking into account

similarities between the unclassified proteins, can assign them to new families.

2. METHODS

2.1. Classifying proteins to existing families

We first consider the problem of assigning an unclassified protein to known families. We assume that each

protein belongs to at most one family, which consists of either individual protein domains or single domain

proteins. The goal is to determine whether the unclassified protein belongs to one of the existing families. We

consider the following algorithm: compute an e-value score from the given unclassified protein to each protein

within the existing families by using a pairwise sequence comparison algorithm such as BLAST (Altschul

et al., 1990) or the Smith-Waterman local alignment algorithm SSEARCH (Smith and Waterman, 1981), and

assign the unclassified protein to the family with the highest average minus log e-value, where the average is

taken over proteins in the family that have e-value below a cutoff (for the detailed algorithm see Fig. 1).

Since sequences within the same family can have low similarity, we only consider proteins within a

family that are of sufficiently high similarity to the unclassified protein during the computation of average

scores. This avoids the problem of getting consistently low average scores, and thus not being able to assign

any new proteins to these families. Note that the unclassified protein is assigned to at most one family that

has the highest average score; thus, the e-value cutoff itself is not the only factor that decides the family

assignment. When the unclassified protein is not sufficiently similar to any of the existing families, it is not

assigned to any family. The worst case time complexity of the algorithm is O(fs), where f is the total

number of proteins within the existing families, and s is the time to perform one pairwise comparison. The

memory requirement of the algorithm is proportional to the total size of the existing families.

2.2. Constructing new families from unclassified proteins

We consider the problem when a set of more than one unclassified protein is given, and the goal is either

to assign each unclassified protein to an existing family or to construct new families if necessary. We treat

FIG. 1. Algorithm SClassify

when one unclassified protein is

given.
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each unclassified protein initially as a family by itself, and iteratively merge a family that contains unclas-

sified proteins either into an existing family or with another family that contains unclassified proteins. During

each iteration, we make sure that the average minus log e-value between the two merged families is the

highest among all pairs of families considered, where the average is taken over pairs of proteins that have

e-value below a cutoff. The algorithm terminates when no pairs of proteins have e-value below the cutoff

within all pairs of families considered, and thus it is no longer possible to merge, with the families that have

not been merged into existing families becoming new families (for the detailed algorithm see Fig. 2).

The algorithm takes advantage of similarity between unclassified proteins but will not merge existing

families together; thus, there is no need to perform pairwise comparisons between proteins in existing

families. There are u(f + u) pairwise comparisons to perform, where f is the total number of proteins within

the existing families, and u is the number of unclassified proteins. There are a total of O(u) iterations, with

O(u(n + u)) average scores to compare within each iteration, and O(n + u) average scores to update after

each merge, where n is the total number of existing families. Since each update takes constant time, the

worst case time complexity of the algorithm is O(u(f + u)s + u2(n + u)), where s is the time to perform one

pairwise comparison. The memory requirement of the algorithm is proportional to the number of scores that

need to be stored, which is u(f + u).

3. RESULTS

3.1. Data sets

We apply our algorithm to a few large-scale data sets, including curated families from the Pfam database

(Bateman et al., 2000), protein families from the SCOP database (Murzin et al., 1995), full length pro-

karyotic sequences from the ProtClustDB database (Klimke et al., 2009), and curated proteins from the

Swiss-Prot subset of the UniProt database (Apweiler et al., 2004). To compare the performance of our

algorithm to slower algorithms, we use families within individual species from Pfam, including Arabi-

dopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, Escherichia coli, Homo sapiens, Mus

musculus, and Saccharomyces cerevisiae, with the proteins that are within each species forming a data set.

While the sequences from Pfam and SCOP are short sequences that correspond to protein domains, the

sequences from ProtClustDB and UniProt are full length sequences that correspond to entire proteins

(Table 1). We remove individual proteins that do not belong to any family within each of the data sets,

while allowing proteins from different species to be within the same family in the data sets that contain

multiple species. Except for UniProt, each remaining protein domain or full length sequence belongs to one

family. We remove the very small percentage of proteins (less than 1%) that belong to more than one

family from UniProt.

3.2. Choice of parameters

We evaluate the accuracy of our algorithm by employing the 10-fold cross validation procedure over

different e-value cutoffs. We randomly subdivide a given set of proteins into ten subsets, and take each

FIG. 2. Algorithm SClassify when

a set of more than one unclassified

protein is given.
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subset as a testing data set while using the remaining nine subsets as a training data set. For each testing

data set, we take each protein as an unclassified protein and apply our algorithm for classifying one protein

against families that include proteins in the training data set. We define the accuracy rate to be the fraction

of proteins that are classified to the correct family.

Since it is not likely that the 10-fold cross validation procedure groups many complete families into

individual subsets, we further evaluate the mis-classification of our algorithm by removing proteins from

one entire family at a time, and taking each protein as an unclassified protein while applying our algorithm

for classifying one protein against all the other families. We define the mis-classification rate to be the

fraction of proteins that are incorrectly classified to some other family. Since this procedure retains the

largest number of already classified families during each test, it corresponds to the most difficult scenario

that one can use for evaluating mis-classification. This procedure complements the above 10-fold cross

validation procedure by evaluating the reliability of our algorithm on unclassified proteins that should not

belong to any existing families.

Figure 3 shows the performance of our algorithm SClassify over different e-value cutoffs by using

SSEARCH and BLAST to compute pairwise scores. There is a large performance difference between data

sets that contain sequences corresponding to protein domains, including Pfam and SCOP, and data sets that

contain full length sequences, including ProtClustDB and UniProt. To simultaneously achieve high ac-

curacy rate and low mis-classification rate, a high e-value cutoff is needed for data sets that contain

Table 1. Data Sets for Performance Evaluation

Data set Family Protein avg_pro avg_len

Pfam 9318 2286710 245.4 151.1

A. thaliana 1962 36387 18.6 114.7

C. elegans 1164 15971 13.7 137.4

D. melanogaster 1294 13664 10.6 128.6

E. coli 404 2177 5.4 159.7

H. sapiens 1596 23051 14.4 102.2

M. musculus 1516 21891 14.4 110.8

S. cerevisiae 814 4526 5.6 157.2

SCOP 2234 15045 6.7 169.8

ProtClustDB 6521 356615 54.7 348.1

UniProt 8213 448469 54.6 343.7

For each set, family is the number of families, protein is the total number of proteins in all families, avg_pro is the

average number of proteins within a family, and avg_len is the average length of proteins in amino acids.

FIG. 3. Accuracy rate and mis-classification rate of SClassify over different SSEARCH e-value cutoffs and over

different BLAST e-value cutoffs. SSEARCH and BLAST are used respectively to compute pairwise scores. Solid lines

represent accuracy rates, while dotted lines represent mis-classification rates. More tests are performed for e-value

cutoffs between 1 and 1e–5.
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sequences corresponding to protein domains, and a low e-value cutoff is needed for data sets that contain

full length sequences to avoid mis-classification.

When SSEARCH is used to compute pairwise scores, we choose an e-value cutoff of 0.1 for data sets

that contain sequences corresponding to protein domains, including Pfam and SCOP, which achieves an

accuracy rate of at least 89% and a mis-classification rate of at most 9%. We choose a SSEARCH e-value

cutoff of 1e–30 for data sets that contain full length sequences, including ProtClustDB and UniProt, which

achieves an accuracy rate of at least 90% and a mis-classification rate of at most 13%. For these choices, the

minimum accuracy rate is about the same as one minus the maximum mis-classification rate.

We use a similar strategy to obtain appropriate e-value cutoffs for BLAST, except that we consider a

BLAST e-value to be above the cutoff if no hits are obtained between a protein pair. We choose a BLAST

e-value cutoff of 0.1 for data sets that contain sequences corresponding to protein domains, including Pfam

and SCOP, which achieves an accuracy rate of at least 85% and a mis-classification rate of at most 6%,

resulting in a decrease of the minimum accuracy rate by 4% when using BLAST instead of SSEARCH.

Such a decrease in performance is expected since SSEARCH computes optimal alignments, while BLAST

employs a heuristic, and the similarity scores from SSEARCH are more accurate than the ones from

BLAST. We choose a BLAST e-value cutoff of 1e–30 for data sets that contain full length sequences,

including ProtClustDB and UniProt, which achieves an accuracy rate of at least 89% and a mis-classification

rate of at most 13%, resulting in a similar minimum accuracy rate and maximum mis-classification rate as

before, although the actual accuracy rate on the ProtClustDB data set decreases by 3% when using BLAST

instead of SSEARCH. A caution is that, although the same e-value cutoffs are chosen for SSEARCH and

BLAST, the SSEARCH e-value and the BLAST e-value use different formulas and are not directly

comparable.

3.3. Comparison with other supervised algorithms

We compare the performance of SClassify to HMMER (Eddy, 1998), which classifies proteins against

existing families according to profile hidden Markov models, to LIBSVM (Fan et al., 2005), which

performs supervised classification based on the use of support vector machines, and to SMT (Eskin et al.,

2003), which is a supervised classification algorithm that uses sparse Markov transducers to train a given

set of known families. We employ the 10-fold cross validation procedure as before, and use the same

training and testing sets in each case.

For SClassify, we use the variant for classifying one protein. For HMMER, we construct a profile hidden

Markov model for each family in the training set from a multiple sequence alignment obtained by ClustalW

(Thompson et al., 1994). These alignments are constructed either from a subset of distinct sequences in

each family with BLAST e-values above a cutoff, or from all sequences in each family. For each family, a

subset of distinct sequences is obtained by starting from an empty subset and iteratively adding a sequence

that has the largest possible minimum BLAST e-value against sequences in the current subset as long as

this largest minimum is above the cutoff. For the Pfam database, we also use the profile hidden Markov

model that was created for each curated family from a subset of curated seed sequences in Bateman et al.

(2000). For a given e-value cutoff, we assign an unclassified protein to the family with the lowest e-value if

such a family exists, otherwise the unclassified protein is not assigned to any family. For LIBSVM, we

follow a similar strategy as in Liao and Noble (2003), and define a feature vector for a protein based on the

set of minus log e-values from BLAST to each training protein, while allowing missing values that

correspond to pairwise scores above the BLAST e-value cutoff 1. Each attribute of the feature vector is

normalized by using the same scaling factor for the training and testing data, and the radial basis kernel is

used. Various gamma and cost parameters are tested, and the result with the best performance is selected

for each data set. For SMT, we use the classifier variant that allows wild cards in the sequence motifs, and

assign an unclassified protein to the family with the highest average log probability of the proteins within

the family without using a cutoff.

Figure 4 shows two boundary cases for HMMER in which the BLAST e-value cutoff to obtain a subset

of distinct sequences in each family is set to a very high value 0.1, and in which all sequences in each

family are used to obtain a multiple alignment. While the minimum mis-classification rate of HMMER is

achieved in the first case, the accuracy rate is low. While the maximum accuracy rate of HMMER

is achieved in the second case, the mis-classification rate is high. The performance of using other BLAST

e-value cutoffs to obtain a subset of distinct sequences in each family is intermediate between the two. For
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Pfam, using the profile hidden Markov model that was created for each curated family from a subset

of curated seed sequences in Bateman et al. (2000) simultaneously achieves high accuracy rate and low

mis-classification rate. However, the accuracy rate of HMMER is significantly lower than the accuracy rate

of SClassify at a fixed mis-classification rate, while the mis-classification rate of HMMER is significantly

higher than the mis-classification rate of SClassify at a fixed accuracy rate (compare to Fig. 3). A caution is

that the HMMER e-value is not directly comparable to the SSEARCH or BLAST e-values.

Table 2 shows that SClassify has better accuracy than LIBSVM and much better accuracy than SMT on

individual species from Pfam and on SCOP. When compared to our previous results, SClassify performs

better on families that contain multiple species from Pfam, which may be due to the increased amount of

information from the much larger number of proteins in multiple species.

3.4. Comparison with unsupervised algorithms

We compare the performance of SClassify to unsupervised clustering algorithms MCL (Enright et al.,

2002), which uses the Markov cluster algorithm to classify a given set of proteins into families, and to

BLASTClust (Altschul et al., 1990), which groups a given set of proteins into clusters based on computing

pairwise scores from BLAST. In order to make the results from SClassify comparable to the clusters

FIG. 4. Accuracy rate and mis-classification rate of HMMER over different e-value cutoffs. Light bars and solid lines

represent accuracy rates, while dark bars and dotted lines represent mis-classification rates. Bars denote performance on

Pfam by applying HMMER on the profile hidden Markov model that was created for each curated family from a subset

of curated seed sequences in Bateman et al. (2000). Lines denote performance by applying HMMER on the profile

hidden Markov model that is constructed for each family in the training set from a multiple sequence alignment

obtained by ClustalW. These alignments are constructed either from a subset of distinct sequences in each family with

BLAST e-values above 0.1 (a BLAST e-value is considered to be above the cutoff if no hits are obtained) or from all

sequences in each family. More tests are performed for e-value cutoffs between 1 and 1e–5.

Table 2. Accuracy Rate Comparison of SClassify, LIBSVM, and SMT

on Individual Species from Pfam and on SCOP

Data set SClassify (SSEARCH) SClassify (BLAST) LIBSVM SMT

Pfam

A. thaliana 0.96 0.90 0.82 0.11

C. elegans 0.91 0.80 0.71 0.46

D. melanogaster 0.90 0.77 0.68 0.28

E. coli 0.90 0.82 0.61 0.40

H. sapiens 0.92 0.84 0.74 0.22

M. musculus 0.92 0.83 0.76 0.18

S. cerevisiae 0.81 0.72 0.52 0.38

SCOP 0.89 0.85 0.63 0.00

For SClassify, either SSEARCH or BLAST is used to compute pairwise scores.
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obtained from these unsupervised algorithms, we perform the 10-fold cross validation procedure as before

and merge the family assignments of each protein from SClassify to obtain a set of clusters, with each

protein that is not assigned to any existing family being in a new family by itself. This procedure roughly

models the subdivision of a given set of proteins into clusters of proteins.

We evaluate the performance of each algorithm by checking whether each pair of proteins are correctly

classified either to the same family or to different families. For each set of true clusters that are predefined

in the original data set and each set of predicted clusters that are obtained from each algorithm, we compute

the statistics TP, FP, and FN, which are the number of protein pairs that are within the same true cluster and

within the same predicted cluster, the number of proteins pairs that are within the same predicted cluster but

in different true clusters, and the number of protein pairs that are within the same true cluster but in

different predicted clusters, respectively. From these statistics, we compute the precision PC = TP/(TP +
FP), the recall RC = TP/(TP + FN), and the F-measure = 2 · (PC · RC)/(PC + RC). Note that the F-

measure from SClassify roughly corresponds to the accuracy rate in our previous tests but not the mis-

classification rate, and is highly correlated to the accuracy rate.

For SClassify, we use the variant for classifying one protein while using BLAST to compute pairwise

scores. For MCL, we use the minus log e-value from BLAST as the edge weight, and test various inflation

values while selecting the result with the best F-measure for each data set. For BLASTClust, we test various

similarity thresholds and minimum length coverages while selecting the result with the best F-measure for

each data set.

Figure 5 shows that, while MCL and BLASTClust are able to obtain high precision or high recall for

some data sets, this is often at the expense of low recall or low precision respectively, and the overall F-

measure is not high. By using information from known families, SClassify is able to obtain very good

performance with respect to both precision and recall, which results in consistently high F-measure across

all data sets.

3.5. Classifying a set of proteins

To evaluate the performance of SClassify when a set of unclassified proteins is given, we perform the 10-

fold cross validation procedure as before. Instead of taking each protein within the testing data set as an

unclassified protein individually, given a set size u, we subdivide the testing data set into subsets U that are

roughly of the same size u and as evenly as possible. We apply the SClassify variant for classifying a set of

proteins on each subset U independently against families that include proteins in the training data set. We

compare the performance of this algorithm to the alternative strategy of applying the original algorithm for

classifying one protein on each protein sequentially within each subset U according to a random order, in

which each newly classified protein in U is retained in its assigned family before the next one in U is

FIG. 5. Performance comparison

of SClassify with unsupervised

clustering algorithms MCL and

BLASTClust. BLAST is used to

compute pairwise scores. For each

data set, PC is the precision, RC is

the recall, and the lines denote the

F-measure.
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classified. To determine whether there are significant improvements in performance between these algo-

rithms, we evaluate their accuracy rates over increasing values of u.

We further evaluate the mis-classification by removing proteins from one entire family at a time and

setting U to be the removed family. Since it is possible that proteins in U are classified to different families,

we take the largest new family that contains proteins in U to be the correct family for U after classification.

Figure 6 shows that significantly better accuracy rates can be obtained when u becomes large enough,

which are especially evident on UniProt. Significantly lower mis-classification rates are also obtained,

which are evident on SCOP and ProtClustDB.

4. DISCUSSION

We have developed an algorithm SClassify that allows both accurate classification of proteins to

existing families and progressive construction of new families. We have shown that there is a tradeoff

between achieving high accuracy rate and low mis-classification rate. While we have used the default

parameters in BLAST that limit the output to the top 250 alignments, removing this constraint in-

creases the accuracy rate and the mis-classification rate simultaneously, and does not necessarily give

better results.

To investigate whether SClassify performs well on families with very few proteins and on families with

low sequence similarity, we subdivide our results on the variant for classifying one protein into categories

by grouping together all families that contain the same number of proteins and grouping together all

families with average sequence identity between proteins within a specified range, where the sequence

identity is obtained by dividing the number of exact matches by the average length of two aligned proteins.

The performance of our algorithm remains high on families with very few proteins or on families with low

sequence identity (Fig. 7).

To evaluate the running time of SClassify on each data set, we apply SClassify against all existing

protein families in each data set by using the variant for classifying a set of proteins. Although the worst

case time complexity of SClassify is not linear, Figure 8 shows that the running time is roughly linear after

the number of proteins to be classified becomes large enough and the computational overhead becomes

relatively low. When BLAST is used to compute pairwise scores, it takes less than a day on one processor

for the largest case with 32,768 proteins to classify. When the time to compute pairwise scores is excluded,

SClassify is very fast and takes at most an hour in all the tests. If SSEARCH is used instead of BLAST, the

total time to compute SSEARCH optimal alignments dominates, and the running time increases by about a

factor of ten. The memory requirement is less than two gigabytes in all the tests with at most 32,768

proteins to classify.

FIG. 6. Accuracy rate and mis-classification rate comparison of different variants of SClassify when a set of un-

classified proteins is given. BLAST is used to compute pairwise scores. Given a set U of unclassified proteins, Seq

denotes the original algorithm for classifying one protein on each protein sequentially in U according to a random order,

while Set denotes the algorithm for classifying the proteins in U simultaneously by taking into account similarities

between unclassified proteins.
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We have shown that for the purpose of protein family classification, it may not be necessary to consider

more complicated models such as multiple sequence alignments and hidden Markov models, as it is

possible to obtain better performance from the use of pairwise sequence comparisons alone. Since pairwise

alignments may conflict with each other within a family, such multiple sequence representations will still

be needed to define a consistent model for a family. These representations are especially important for

determining conserved or critical residue positions within a family. In order to handle multiple domain

proteins, domain prediction algorithms such as ADDA (Heger and Holm, 2003) can be used to determine

domain boundaries before SClassify is applied.

To illustrate the use of SClassify in real life applications, we consider all 688,172 computationally

predicted domains in Pfam, and apply SClassify to these domains against all existing curated families in

Pfam (containing a total of over two million proteins, see Table 1), by using BLAST to compute pairwise

scores. It takes about 60 processor-days to obtain all the BLAST scores, and about two weeks on one

processor when the variant for classifying a set of proteins is used after all the BLAST scores are obtained.

When the variant for classifying a set of proteins is used on all the predicted domains, about 31% of these

domains are assigned to some curated family. When the variant for classifying one protein is used se-

quentially according to a random order of predicted domains, about 27% of these domains are assigned to

some curated family. These results are in contrast to the smaller number of predicted domains that are

assigned (about 20%) when HMMER is applied with an e-value cutoff of 0.1 while using the profile hidden

FIG. 8. Running time of SClassify on one processor while including and excluding the time to compute pairwise

scores by BLAST. In each case, the average running time is given.

FIG. 7. Accuracy rate and mis-classification rate of SClassify within categories. Two categories are obtained by

grouping together all families that contain the same number of proteins (each point denotes the performance on proteins

within such families), and grouping together all families with average sequence identity between proteins within a

specified range (each point denotes the performance on proteins within such families with average sequence identity

within the range from l to r, where l is the label to the left of the point on the x-axis and r is the label to the right of the

point on the x-axis). BLAST is used to compute pairwise scores. Solid lines represent accuracy rates, while dotted lines

represent mis-classification rates. Missing points correspond to no proteins being assigned to the category.
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Markov model that was created for each curated family from a subset of curated seed sequences in Bateman

et al. (2000). A caution is that the domain boundaries in the predictions may not be accurate and the

assignments from different algorithms can be quite different from each other.

For the remaining domains that are not assigned to a curated family, both variants of SClassify are able to

create new families. In both cases, about 63% of these new families contain only one domain. For the

remaining new families that contain more than one domain, about 90% of them are completely contained

within a computationally generated family in Pfam that contains these predicted domains. These results

indicate that the new families generated by SClassify are largely consistent with the families generated by

Pfam, except that a large number of them are split into smaller families by SClassify due to insufficient

sequence similarities.

While most existing protein family classification algorithms are based on sequence similarity infor-

mation from alignments, alignment-free approaches are also available (Ma and Chan, 2008). One future

direction is to investigate whether it is possible to use these techniques to improve accuracy.
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