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Host-parasite interactions are complex, compounded by factors that are capable of shifting the balance in either direction. The
host’s age, behaviour, immunological status, and environmental change can affect the association that is beneficial to the host
whereas evasion of the host’s immune response favours the parasite. In fish, some infections that induce mortality are age and
temperature dependent. Environmental change, especially habitat degradation by anthropogenic pollutants and oceanographic
alterations induced by climatic, can influence parasitic-host interaction. The outcome of these associations will hinge on
susceptibility and resistance.

1. Introduction

Interaction between hosts and parasites is a complex rela-
tionship that can favour one or the other depending on a
number of factors. Initially, the parasite attempts to establish
itself in the host while the latter resists the infection via
its defense mechanisms. Consequently, host susceptibility
and resistance will determine whether or not the infec-
tion becomes established. In some fish species, the host’s
age, behaviour, physiological and immunological condition,
proximity to shore, location in the water column, and feeding
habits could affect the relationship while the parasite’s mode
of entry, ability to evade its host’s defense, nutritional
requirements, and living in a site where the immune response
is reduced and mimicking its host’s protein composition
are factors that influence susceptibility and infectivity. There
are also environmental variables such as water temper-
ature, crowding, and habitat changes that could affect
the interaction. Moreover, this interrelationship between
hosts and parasites has evolved some associations resulting
in host specificity, latitudinal gradients, and diversity in
communities and siblings within one species [1–4]. Other
associations can exist in a harmonious compromise whereas
host avoidance of the parasite to prevent an infection or
evasion by the parasite of the host’s immune system can
occur. For example, certain song birds in Hawaii avoid
Plasmodium sp. infections from ground-feeding mosquitoes

by remaining high up in the forest canopy [5]. In contrast,
an African trypanosome, Trypanosoma brucei complex, sheds
its surface coats in response to its host’s antibodies [6].
Some parasites have evolved methods, such as circadian
rhythms, to maximize transmission to uninfected hosts.
Synchrony of peak abundance of microfilaria of Wucheraria
bancrofti and mature gamonts of Plasmodium species in the
peripheral blood of humans, when female mosquitoes are
actively seeking a blood meal at night, increases infectivity
and development in the vector [7]. McCarthy [8] also noted
that a hemoflagellate, T. murmanensis, was more abundant
in blood from the gills of Atlantic cod, Gadus morhua, at
night when the vector, a marine leech, Johanssonia arctica,
fed on its piscine hosts than during daylight. The leech, a
deep-water (>90 meters) species inhabiting the benthic zone
where light is probably negligible, was significantly more
abundant than at shallow depths (30 meters) where some
light penetrates [9]. Some parasites can also avoid their host’s
defence mechanisms. Cysticerci of Taenia solium which infect
the human brain, a site impervious to the immune response,
are protected from destruction by the host. Similarly, ple-
rocercoids of the fish tapeworm, Proteocephalus ambloplitis,
avoid shedding from the intestine of its host by migrating
into parenteral sites as the water temperature declines in
winter, a period when feeding is reduced and worms voided
because of a lack of nutrients, [10]. However, the parasites
reenter the intestine as the water temperature increases in
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spring to mature as adult tapeworms. Some tissue-invading
parasites can become encapsulated by fibrous tissue in
their hosts as a result of the latter’s defence mechanism
and appear as cysts. They might remain viable for lengthy
periods until acquired by new and/or appropriate definitive
hosts. Xenomas of microsporans such as Loma branchialis in
salmonids, species of Sarcocystis in birds and mammals, and
cysticercoids of tapeworms as Taenia saginata in cattle and
Trichinella spiralis in pigs use this strategy to infect new hosts
following ingestion. Encapsulation can also be viewed as a
defence mechanism by the host to curtail tissue damage by
some migrating parasites. Mathematical models have been
proposed to explain some host-parasite interactions [11].
However, Sures [12] discussed host-parasite interactions
based on observations that some intestinal fish parasites
accumulate heavy metals and can be useful as diagnostic
tools to determine bioavailability. The approach, in this
presentation will focus on some factors that influence
fish-parasite interactions including disease aspects, climatic
change, and environmental pollution.

The immune response to foreign proteins in fish is lower
in magnitude compared to mammals. Some of the defense
barriers include mucous in the skin and gills, bile, digestive
enzymes, and immunological barriers, primarily cellular and
antibody responses. Some of these hinge on age of the
host and ambient water temperature. A parasite’s specificity
will also determine if an infection becomes established. For
example, a hemoflagellate, Cryptobia salmositica, is infective
to some salmonid species but Salvelinus namaycush exhibits
innate resistance [13]. Lytic antibodies were responsible for
resistance but these apparently were absent in S. fontinalis
that was susceptible to the infection. Cellular response
is observed when some tissue-invading parasites become
encapsulated. The immune response is temperature depen-
dent as larval anisakine nematodes ingested in late autumn-
winter, when water temperatures range from 0 to 4 EC,
remain free in the tissues of Atlantic cod, Gadus morhua,
whereas in summer, most become encapsulated (Khan,
unpubl. data).

Some environmental factors have a profound effect on
several fish-parasite interactions. Generally, ectoparasites
differ from endoparasites as the defence mechanisms tend
to be reduced externally in fish. The interaction between an
ectoparasitic ciliate, Trichodina murmanica, and its host, the
Atlantic cod, is age and temperature-dependent. Prevalence
and abundance of the parasite on the skin of 1-year
juvenile fish in nature are extremely low and rare in older
fish. However, outbreaks have occurred in fingerling and
1-year fish cultured cod held in over-stocked conditions
during winter when water temperature was 0-1◦C [14].
The infection and mortality declined with increasing water
temperature and were rarely seen during summer at 8–14◦C.
Infection of Atlantic cod with Trypanosoma murmanensis
was also age and temperature dependant as mortality was
greater in younger than older fish [15]. Moreover, the
infection persisted for longer periods (6–8 weeks) at lower
(0–2◦C) than higher (10–12◦C) temperature (Khan, unpubl.
data). It is probable that the host’s immunity is temperature-
dependent or the parasite is adapted to low temperatures as

noted in some subarctic marine leeches [16]. In contrast,
a microsporan, Loma branchialis, appearing as macroscopic
cysts on the gills of fingerling and juvenile cod, caused die-
offs only in summer-autumn when water temperatures were
high [17]. Die-offs have also occurred in commercial-size
cod held in sea pens for market in summer (Barker, unpubl.
data). Xenomas resembling tumours, occurred in all the
internal organs and moribund fish, in an emaciated condi-
tion, succumbed in a matter of weeks. Similar temperature-
related die-offs have occurred in cultured juvenile Arctic
charr, Salvelinus alpinus, only in summer following infection
with a myxozoan, Tetracapsuloides bryosalmonae, held in
earthen ponds [18]. Outbreaks of disease caused by plerocer-
coids of a cestode, Diphyllobothrium dendriticum, occurred
in cultured rainbow trout, S. namaycush, after transfer from
a hatchery to an embayment only in summer [18]. Host
response to the parasites was minimal except for Loma
branchialis as encapsulation of the xenomas did occur but
some ruptured releasing spores that presumably infected
other organs and tissues. Influence of water temperature on
host-parasite interactions has also been reported previously
[19].

Some parasitic crustaceans interacting with their fish
hosts can have a profound impact on their health [20].
The pennellid copepod, Lernaeocera branchialis, anchors its
holdfast into one of the branchial blood vessels causing
anemia and mortality depending on the age of the fish
and the number of infecting parasites [21]. Mortality was
high in juvenile cod about 3 years old but declined with
increasing age [21]. Additionally, fish with multiple numbers
of parasites were also likely to succumb. However, some
fish that shed their parasites previously exhibited complete
recovery. Prevalence and abundance of the infection varied
with location in coastal Newfoundland [22]. Commercial-
size Atlantic cod that were held in sea cages during the
summer also succumbed when water temperatures were high
but declined during winter [23]. Smith et al. [24] reported
that the parasite induced extensive hyperplasia in the gills,
intravascular thrombus formation and moderate cellular
response in the cardiac and branchial tissues. In contrast,
hundreds of larval stages that attach to the gills of the
intermediate host, the lumpfish, Cyclopterus lumpus, cause
no effect [22].

Another gadid fish, the rock cod, Gadus ogac, that inhab-
its inshore embayments off St. Lewis, Labrador (52◦22′N,
55◦41′W), appeared to tolerate multiple numbers of para-
sites without exhibiting debility in contrast to Atlantic cod.
(Khan, unpubl. data). Young fish were infected with a fewer
mean number of parasites than older cod, some with as
many as 7 parasites per older host (Table 1). Prevalence
of the infection was 84% in 1976 and mean abundance
increased with the length of the fish. Although fewer samples
were caught in 1986 (as a result of a population decline
triggered by climatic changes), there was a slight increase
in prevalence but no significant change in mean abundance.
Unlike Atlantic cod, the infected rock cod appeared robust
and the gills pink to red without any indication of an anaemic
condition observed in other gadids [21]. Prevalence of the
infection was considerably lower in Atlantic cod captured
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Table 1: Abundance (x ± s.e.) and prevalence (%) of the copepod,
Lernaeocera branchialis, on the gills of the rock cod, Gadus ogac,
sampled in Labrador in 1976 and 1986.

Year
Fish length
(cm class)

No. infected/
no. examined

x ± s.e. %

1976

21–30 9/17 1.8 ± 0.2 53

31–40 6/12 2.1 ± 0.2 50

41–50 21/21 3.3 ± 0.4 100

51–60 24/24 3.1 ± 0.3 100

1986
31–40 2/3 3.5 ± 0.5 67

41–50 4/4 3.1 ± 0.4 100

51–60 3/3 3.0 ± 0.4 100

inshore by cod trap in both 1976 (4% of 48 fish) and in 1986
(5% of 36 fish). The rock cod is cold-water-adapted fish that
lives inshore beneath the ice in winter and apparently was
not affected by oceanographic changes that occurred from
the mid-1980s off eastern Canada [25].

Marine hematophagous leeches (Hirudinea: Piscicoli-
dae) exhibit an interesting interrelationship with their fish
hosts. Some species of leeches feed on a variety of teleosts
while others tend to be host specific. Johanssonia arctica,
a deep-sea species adapted to subarctic conditions, fed on
several species of teleosts while two species of Malmiana,
M. scorpii and M. brunnea, were found only on short-
horn (Myoxocephalus scorpii) and longhorn sculpins (M.
octodecemspinosus), respectively, in the NW Atlantic Ocean
[26, 27]. Several species of marine leeches attach to the
skin of their hosts to feed on blood but others, such as
Oxytonstoma microstoma and O. sexoculata, adhere to the
gills and on the angles of the oral cavity, respectively [26, 27].
These previously mentioned leeches remain permanently
attached to their hosts, feeding intermittently until maturity,
copulation, and cocoon deposition [26, 27]. Others, such as
J. arctica, Myzobdella lugubris, and Notostomum cyclostomum,
after feeding on fish, detach and reattach to crabs (Crustacea:
Decapoda) for transport and deposition of cocoons [9, 16,
28, 29]. Locating fish hosts for a blood meal is increased
by the foraging activities of the crabs. Other leeches deposit
their cocoons on the egg masses of their piscine hosts or
on rocks frequented by fish [16]. Synchronous hatching of
larval fish and young leeches ensures that the latter can locate
a host for their subsequent blood meals. The quantity of
blood extracted by leeches varies considerably depending
on size and species [9]. Mace and Davis [30] reported slow
growth rate and energy loss in shorthorn sculpins infected
with M. scorpii. Hematophagous leeches can induce ane-
mia, subcutaneous hemorrhage, and inflammation especially
when a heavy infestation occurs [31]. Moreover, leeches can
also transmit blood parasites during hematophagy. J. arctica
is capable of transmitting a trypanosome, T. murmanensis,
a piroplasm, Haemohormidium beckeri, and probably a
hemogregarine, Haemogregarina uncinata [32–34]. Another
genus of hemoflagellates, species of Trypanoplasma (Crypto-
bia) is transmitted by leeches [35]. Trypanoplasma bullocki
has caused mortality in summer flounder, Paralichthys

dentatus, populations in the Middle Atlantic Bight [36].
Consequently, interaction between hematophagous leeches
and fish can result in stress as a result of blood loss and also
in the transmission of pathogenic parasites [32].

Some parasites are known to predispose their hosts
for predation by alteration of their behavior as in some
carnivore-herbivore interactions. In the three-spine stickle-
back, Gasterosteus aculeatus, a larval cestode, the plerocercoid
of Schistocephalus solidus, infects the body cavity and can
impair swimming. It has been reported that infected fish are
more likely to be predated than uninfected sticklebacks [37,
38]. Some fish with distended abdomens have been observed
swimming near the surface in ponds in Newfoundland
(Khan, unpubl. data). Examination of the fish with swollen
abdomens revealed at least two large larvae per host. It is
likely that sea gulls, Larus spp., that frequented these areas,
were feeding on the fish. The Arctic tern (Sterna paradisaea)
is also a definitive host of S. solidus. Nestlings on a small
island near Cow Head (49◦55′N, 57◦53′W), Newfoundland,
were fed sticklebacks by the parental birds, and during one
wet and cool summer, several nestlings were observed in
an emaciated condition. Predation of nestlings by sea gulls
was apparent in the area. Examination of nine freshly dead
birds revealed cestode larvae in the coelomic cavity of six
carcasses (x 3.9 ± 1.2/nestling), all exhibiting evidence of
hemorrhage in the body cavity and an absence of food in
the digestive tract (Khan, unpubl. data). It is likely that the
parasite, lacking nutrients in the digestive tract, migrated
from this site through the coelomic wall, causing the lesions
observed and also predisposed them to predation by foraging
gulls.

An unusual difference in the abundance and prevalence
of parasites was observed in two populations of landlocked
Arctic charr inhabiting different habitats in a pristine deep-
water lake in Gander (48◦58′N, 54◦57′W), Newfoundland
(Khan, unpubl. data). One of these, a pale-colored morph,
pelagic and living in shallower water, fed primarily on mayfly
nymphs, Heptagenia spp. (Ephemeroptera: Heptageniidae)
and other insect larvae were more parasitized than the
dark morph inhabiting a mid-water-benthic zone feeding
on macroinvertebrates and fish such as sticklebacks. DNA
evidence has revealed that the two populations were distinct
and might have been separated a long time previously
probably during the postglacial period [39]. Meristic results
and colouration have revealed that mixing was rare, with
each group occupying different niches. Species diversity,
abundance, and prevalence of the parasitic helminth taxa,
trematodes, cestodes, and nematodes were significantly
greater in the pelagic than in the mid-water-benthic group
(Table 2). These results are reminiscent of a hybrid salmonid,
the splake (Salvelinus fontinalis × S. namaycush), a cross
between a brook trout (S. fontinalis) and lake trout (S.
namaycush), that was bred to avoid lamprey (Petromyzon
marinus) predation by inhabiting mid-water rather that the
benthic area where lake trout frequented [40]. Fewer parasitic
species (23 spp.) were observed in the splake than in the lake
trout (75 spp.) [41]. The Arctic charr is a host to several
species of metazoan parasites [41]. Factors responsible for
the separation of the two Arctic charr populations in Gander
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Table 2: Comparison of the abundance (x ± s.e.) and prevalence (%) of some metazoan parasites found in the digestive tract of two
populations of Arctic charr (n = 25) living near the surface and in the midwater benthic zone of Gander Lake, Newfoundland.

Parasite taxa Parasite species
Fish groups

Surface Midwater/benthic

x ± s.e. % x ± s.e. %

Trematoda
Bunodera lucioperca <0.1 12 — —

Crepidostomum sp. <0.1 8 — —

Cestoidea
Eubothrium salvalini 3.2 ± 0.4 100 <0.1 12

Proteocephalus sp. <0.1 32 — —

Nematoda Pseudocapillaria salvelini 2.1 ± 0.2 100 <0.1 8

Acanthocephala Echinorhynchus lateralis <0.1 20 — —

Lake remain enigmatic but they suggest an example of
parasite paucity resulting from habitat selection.

Oceanographic changes caused by a series of adverse
climatic events have also had an impact on host-parasite
interactions especially on the abundance and prevalence of
metazoan parasites in the digestive tract of Atlantic cod
occurring off the coast of Labrador, Canada [42]. Changes in
the climate caused water temperatures to decrease resulting
in a decline of ocean fish and sea birds [25]. Prior to this
time, the abundance of an acanthocephalan parasite, E. gadi,
was high but, following a chain of cascading events during
the mid-1980s, it decreased to extremely low levels [43].
Outmigration of the main food source, the capelin, Mallotus
villosus, and also the paratenic host of the infection in older
Atlantic cod, was the underlying cause [43]. Decline of the
abundance of E. gadi should favour its fish host as the
spines on the proboscis of some acanthocephalans are known
to cause lesions in the intestinal wall and ultimately affect
growth [44]. However, the abundance of cod in the area
continues to be low as a result of a sparcity of capelin [45].

Fish parasites can also be useful as bioindicators of
habitat degradation caused by anthropogenic contaminants
especially when sensitive species are sampled as sentinels.
These bioindicators include abundance, prevalence, and
species diversity. These variables might increase or decrease
following long-term exposure. Effluent, discharged by two
pulp and paper mills in Newfoundland, caused both external
and internal lesions, disrupted gonadal development, and
altered length-class distribution in all age groups of winter
flounder, a sediment-inhabiting flatfish species [46, 47]. In
both inlets, the fish were infected with large numbers of
metacercaria of a digenetic trematode, Cryptocotyle lingua,
on the body, head, and fins compared to reference samples.
Low levels of lymphocytes in the heavily parasitised fish were
most likely indicative of a compromised immune system
[48]. Abundance of C. lingua was also high in nursery areas of
the flounder where untreated municipal effluent, containing
sewage- and crank-case petroleum waste, was discharged
(Khan, unpubl. data). It appears that an abundance of
food for fish and sea gulls (Larus spp.), definitive hosts
of the parasite, attracted them to these areas. Additionally,
macroscopic xenomas of another parasite, a microsporan,
Glugea stephani, occurred in the internal organs including
the heart, liver, spleen, kidneys, intestine, and gonads in
samples taken near the mill whereas they were restricted

to the wall of the digestive tract of reference samples [49].
Lower than normal lymphocyte levels associated with host
resistance probably provided an opportunity for the parasite
to metastasise following release of spores from ruptured
xenomas to infect other sites. Another study reported
reduced numbers of digeneans and myxozoans but increased
numbers of acanthocephalans in roach (Rutilus rutilus) and
perch (Perca fluviatilis) in a lake receiving effluent from
a pulp mill when compared to samples from two less
polluted oligotrophic lakes [50]. Changes in the density of
the intermediate hosts, toxic effect on the ectoparasites, and
impairment of the immune response were suggested as the
underlying causes.

Both field and laboratory studies have revealed that some
parasites of winter flounder respond differently at various
concentrations to discharges from a pulp and paper mill [47,
51, 52]. Gradient sampling of winter flounder inhabiting a
fjord where pulp and paper mill effluent had been discharged
for several decades revealed that two selected helminths,
a digenean, S. furciger, and an acanthocephalan, E. gadi,
increased in abundance down current from the outfall [47].
External and internal lesions, low body condition, and
organosomatic indices, but elevated levels of detoxifying
enzymes in the liver, were also noted in the affected fish
[53]. Winter flounder captured from a pristine site were
exposed to sediment collected at the four sites down current
from the discharge. The results provided evidence to support
the field study that enteric parasites were more abundant
in flounder taken from the farthest location than others
originating from the proximity of the paper mill [52].
Histopathological changes confirmed that the fish were
exposed to toxic chemicals. These results suggest that host-
parasite interactions can be affected after chronic exposure
to anthropogenic discharges.

The balance between host and parasite interactions
was also affected in sculpins and winter flounder living
in coastal habitats where untreated domestic sewage and
polychlorinated biphenyls (PCBs) were disposed. Untreated
domestic sewage was responsible for an increase in the
abundance of Trichodina spp. and Gyrodactylus pleuronecti
on the secondary gill lamellae of shorthorn sculpins sampled
in an embayment located in eastern Newfoundland. The
trichodinids were more abundant (x, 3.6±0.4; n = 16) where
the sewage was discharged than at one (x, 4.1 ± 1.3; n =
14) or 5 km (x, 2 ± 0.3, n = 23) offshore (Khan unpubl.
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data). Khan and Hooper [54] noted that abundance and
prevalence of ectoparasitic ciliates and enteric helminths
increased with distance from the point of discharge of
thermal effluent in winter flounder. However, myxozoans in
the gall bladder were more prevalent at the discharge location
than down current. Sculpins sampled at a site where PCBs
had been discharged exhibited also a greater abundance of
trichodinids on the gills and myxozoans in the gall bladder
of the sculpin, M. scorpius, than at the reference site,
while enteric helminthes and ectoparasitic leeches were fewer
than in latter fish [55]. Moreover, 14 species of parasites
occurred in the PCB-affected sculpins in contrast to 11 in
the reference samples [55]. External and toxicopathic lesions
in several tissues, significantly lower body condition and
organ somatic indices as well as lower hemoglobin and
lymphocyte levels, were noted in the PCB-contaminated fish
when compared to reference fish. Lack of parasite diversity
was likely associated with the brackish water conditions that
affected the transmission of some sensitive parasite species in
the reference samples.

Studies on winter flounder exposed to petroleum aro-
matic hydrocarbons (PAHs), both in the field and in the
laboratory in a dose-response trial, revealed a similar result
[56]. Ectoparasites such as trichodinid ciliates and a mono-
genean increased to a peak but declined as the concentration
increased while enteric helminthes declined progressively.
Similar results were observed when species of sculpins
(Myoxocephalus spp.) were exposed to PAHs. Trichodinid
ciliates and monogeneans infecting the gills of sculpins and
Atlantic cod, respectively, also increased in abundance or
prevalence following chronic exposure to PAHs ([57, 58]
and references therein). Additionally, exposure to PAHs and
a concurrent infection with the hemoflagellate, T. murma-
nensis, caused greater mortality and a greater abundance of
parasites in both Atlantic cod and winter flounder than in
fish infected only with the parasite or exposed only to PAHs
[59]. In contrast, endoparasitic helminthes declined after
exposure, with the PAHs probably simulating antihelminthic
drug action and/or changes in host physiology [56, 60]. How-
ever, ectoparasitic abundance hinged on the concentration of
the pollutant as it declined after a peak with increasing levels
of the PAHs [56]. Fewer species and their abundance of both
groups of parasites were also observed in sculpins exposed to
PCBs at an impacted military dockyard than at a reference
site as noted previously [55]. Increase of ectoparasites was
probably associated with a decline of the host’s immune
response, hyperplasia in the secondary gill lamellae, excessive
epidermal mucus secretion, and exfoliation that attracted
opportunistic bacteria which served as additional food for
them. Changes in host physiology, toxicity of the contami-
nants to the larval and adult stages of the helminths as well
as to their intermediate hosts, especially in the field, might
have been responsible for their decline. Sanchez-Ramirez
et al. [61] also reported that a monogenean Cichlidogyrus
sclerosus increased in abundance after exposure of Nile
tilapia (Oreochromis niloticus) to sediment contaminated
with PAHs, PCBs, and heavy metals in a static system for
15 days. The sediment induced immunosuppression and
caused histological anomalies in the gills and spleen. Future

studies on fish parasites as bioindicators should include
additional information on the fish’s body condition, organ
somatic indices, histopathological effects, and also hepatic
detoxifying enzymes [51].

Acid precipitation has also affected host-parasite inter-
actions in fish. Parasite richness in eels (Anguilla rostrata),
including monogeneans and digeneans, was greater in less
acidified locations than in more acidic sites in Nova Scotia
[62]. Other parasites including acanthocephalans and cope-
pods did not appear to be affected.

In summary, observations on host-parasite interactions
are complex, at times difficult to interpret on account of a
number of variables that can shift the balance one way or the
other. Factors such as host’s age, behaviour, immunological
competence, and environmental change can play a role in
the association. Alternatively, establishment and evasion by
the parasite of the host’s responses appear to be significant
factors. Consequently, the outcome in this interaction will
hinge on host susceptibility and resistance and the parasite’s
ability to infect its host. It is suggested that future studies,
investigating host-parasite interactions in habitats degraded
by anthropogenic contaminants, should consider sampling
multiple sites, especially along a gradient, and include more
than one bioindicator and sensitive fish species.
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