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Oxidative stress is a toxic state caused by an imbalance between the production and elimination of reactive oxygen species (ROS).
ROS cause oxidative damage to cellular components such as proteins, lipids, and nucleic acids. While the role of ROS in cellular
damage is frequently all that is noted, ROS are also important in redox signalling. The “Redox Hypothesis” has been proposed to
emphasize a dual role of ROS. This hypothesis suggests that the primary effect of changes to the redox state is modified cellular
signalling rather than simply oxidative damage. In extreme cases, alteration of redox signalling can contribute to the toxicity of
ROS, as well as to ageing and age-related diseases. The nematode species Caenorhabditis elegans provides an excellent model for the
study of oxidative stress and redox signalling in animals. We use protein sequences from central redox systems in Homo sapiens,
Drosophila melanogaster, and Saccharomyces cerevisiae to query Genbank for homologous proteins in C. elegans. We then use
maximum likelihood phylogenetic analysis to compare protein families between C. elegans and the other organisms to facilitate
future research into the genetics of redox biology.

1. Introduction

Molecular oxygen is necessary for the survival of most
complex multicellular organisms. The necessity of oxygen
comes from its role in aerobic respiration, a process of
extracting energy from food that is approximately 19 times
more efficient than its anaerobic counterpart. In eukaryotes,
aerobic respiration is carried out in the mitochondria
(descendant of an aerobically respiring bacterium) by a
series of electron transfer reactions that are coupled to the
generation of a proton gradient. This proton gradient is used
to generate the cellular fuel adenosine triphosphate (ATP).
The residual energy of the spent electrons is consumed in
the reduction of molecular oxygen (O2) to water (H2O).
Aerobic respiration cannot occur without this last step, but
the reliance on oxygen as the final electron acceptor poses a
continual threat of oxidative damage to aerobically respiring
organisms.

The threat posed by oxygen comes largely from its
conversion to the free radical superoxide (O2

•−) rather than
water [1]. Superoxide is a highly reactive short-lived ROS.
Detoxification of superoxide and other ROS is performed

by antioxidants, which convert ROS to less reactive mole-
cules. The antioxidant enzyme superoxide dismutase (SOD)
converts superoxide to water and hydrogen peroxide (H2O2),
which is another ROS and a potent oxidising agent (see
Figure 1) [2]. Under normal conditions, antioxidants help
to prevent oxidative damage by using electrons to reduce
ROS, thus inhibiting ROS from oxidising other molecules.
However, an imbalance between ROS production and detox-
ification can result in oxidative stress. Numerous studies have
found that high ROS levels are damaging to DNA, RNA,
proteins, and lipids [3–6]. Additionally, oxidative (ROS)
damage is thought to be one of the major causes of ageing,
according to the free-radical theory of ageing [7]. However,
the free-radical theory seems to conflict with recent findings
regarding the role of ROS in redox signalling, findings that
have unveiled an additional mechanism for oxidative toxicity
besides simply macromolecular damage.

ROS are now known to do more than indiscriminately
damage macromolecules; they function as important sig-
nalling molecules (reviewed by D’Autréaux and Toledano
[8]). For instance, superoxide and H2O2 are part of a second
messenger system involved in controlling subcellular redox
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Figure 1: Simplified pathways of ROS production and antioxidant detoxification in a C. elegans cell. ROS molecules superoxide (O2
•−),

hydrogen peroxide (H2O2), and hydroxyl radical (•OH) are depicted in red. Antioxidants convert ROS to less reactive molecules. The five
different superoxide dismutase enzymes convert superoxide to H2O2 and are depicted in their respective cellular compartments. Catalase,
peroxiredoxin (Prx), and glutathione peroxidase (Gpx) convert H2O2 to H2O and O2. Rapid detoxification of H2O2 is necessary as it can
become oxidised to form the potent free-radical •OH. ROS can be damaging to DNA, RNA, proteins, and lipids, and high ROS levels can
cause oxidative stress. Some antioxidant genes, such as catalase and sod-3, can be upregulated in response to oxidative stress.

states; modulating protein activation and turnover; regulat-
ing gene expression; and mediating extracellular signalling
[9]. For this crucial messaging system to function, the levels
of superoxide/H2O2 must be maintained at concentrations
far below the level of toxicity. Therefore, ROS are unlikely
to cause macromolecular damage under normal in vivo
conditions. Consistent with this idea, recent studies have
found that mitochondria produce superoxide/H2O2 at levels
much lower than those previously estimated [10–12].

Jones [13] recently proposed the “redox hypothesis”
as an alternative to the free-radical theory of ageing that
accommodates recent discoveries in redox signalling. This
hypothesis states that changes to redox state, rather than
oxidative damage, cause aging and age-related diseases. The
redox state of a cell, cellular compartment, or molecular
system is a measure of the availability of chemically reactive
electrons. In the reducing state, such electrons are more
abundant whereas in the oxidising state they are less abun-
dant. With regards to oxidative stress, the redox hypothesis
suggests that an increase in ROS levels can be deleterious if
the resulting oxidative shift in redox state causes a disruption
to redox signalling.

To date much of what has been discovered in redox
biology has resulted from work in E. coli, S. cerevisiae,
mammals, and plants. While unicellular organisms such as
E. coli and S. cerevisiae offer obvious advantages as model
organisms due to their relative simplicity, short generation
times, ease of culturing and maintenance, and so forth,
they cannot be used to study systems/mechanisms unique
to multicellularity in general, and animals in particular.
Although not to the same extent, C. elegans offers similar
advantages to working with the simple unicellular systems
above, with the addition of being a multicellular, metazoan

system allowing for much more of what is discovered
in this organism to be extrapolated to research in other
animals, including humans. This article seeks to scope
out the redox proteins/systems of C. elegans as a resource
for future work on redox signalling and oxidative stress
within this model organism. In addition, this article will
briefly explain the function of each protein family and
how it relates to redox signalling and oxidative stress,
with specific mention of what has been discovered in C.
elegans.

2. Redox State, Redox Signalling, and
Oxidative Stress

2.1. Redox-Sensitive Cysteine Switches. The majority of avail-
able reactive electrons in a biological redox system are found
in cysteines (as in the abundant tripeptide glutathione).
Cysteine is an amino acid with a thiol (sulfur) group that is
easily oxidized. When oxidised, two thiols in close proximity
to one another can bond to form a disulfide. Formation of
disulfides is important in protein folding and maintaining
protein structure, however, a small fraction of thiols have
another function: redox-sensitive switches (see Figure 2)
[14–18]. These redox-sensitive thiol switches are generally
found at the surface or in the active sites of proteins. Change
from a thiol state to a disulfide can alter a protein’s shape and
function. The propensity for a redox-sensitive switch to be in
one state or the other (thiol or disulfide) is dependent on the
redox state of the cellular compartment and/or redox system
to which it belongs. Therefore, the activity and conformation
of a large number of proteins can be altered by changes in
redox state [13].



Journal of Toxicology 3

SH

SH

SH

SH

S

S
SS

S

S

S

S S
S

SS
C C

C C

N

NN

N

e−

e−

S

S

S
SS

S

S

S
S S

S
S

S
S

SS

e−

e−

Figure 2: Cartoon of protein with redox-sensitive thiol switch. Structural disulfides can be seen on the inside of this protein, protected from
redox reactions (those attached to the green and blue segments). A redox-sensitive thiol/disulfide switch is depicted on the protein surface
(attached to the red segment). When reduced the redox-sensitive switch is in its dithiol state, however, when these thiols become oxidised
(i.e., electrons are removed by an oxidant such as ROS) they bond to form a disulfide, altering the structure and/or function of the protein.

2.2. The Redox State as a Signal. Redox signalling relies
on oxidants and reductants that react preferentially with
redox sensitive cysteines. Methionine also contains a redox
active sulfur and is used in redox signalling [19], but
this occurs to a lesser extent and is not discussed in
this article. The most important oxidants that participate
in signalling-related modification of cysteine residues are
hydrogen peroxide (H2O2), a reactive oxygen species, and
nitric oxide (NO), a reactive nitrogen species [20]. The
focus of this article will be H2O2 as the signalling role of
NO has been reviewed extensively [21]. Although a potent
oxidant, the signalling role of H2O2 is primarily limited to
redox-sensitive cysteine and methionine residues [22–24].
The fact that much of the cellular H2O2 is formed via the
dismutation of superoxide (O2

•−) by SOD enzymes means
that the amount of superoxide produced directly contributes
to the levels of H2O2 in a cell or cellular compartment [9].
This gives superoxide an important indirect role in redox
signalling. In animals, superoxide is primarily generated
by NADPH oxidase (NOX) [25], Coenzyme Q10 [9, 26],
and Complex I and III [12] of the mitochondrial electron
transport chain.

The difference in redox states between organelles results
from differences in the ratio between H2O2 and other
thiol oxidants and various disulfide reductants/antioxidants.
Because the redox state can alter protein conformation and
reactivity, it can be used to activate or inactivate protein func-
tion. For example, the redox state of two different cellular
compartments regulates DNA binding of the nuclear factor
erythroid 2-related factor 2 (Nrf-2) transcription factor [27].
Nrf-2 is activated in the cytoplasm by an oxidative signal that
results in translocation to the nucleus. However, in order to
bind to DNA in the nucleus, a redox-sensitive cysteine must

be reduced. This demonstrates specificity in redox signalling
between different cellular compartments, for which the redox
state of the compartment must be appropriate to its role (see
Figure 3) [28].

2.3. Major Redox Systems: Glutathione, Thioredoxin, and
Cysteine. Two central thiol/disulfide couples work in the
reduction of protein disulfides as counterparts to H2O2

and other oxidising agents to control redox state: the
glutathione/glutathione disulfide (GSH/GSSG) couple
(mediated through glutaredoxins) and the active site
dithiol/disulfide of thioredoxins (Trxred/Trxox; see Figure 4)
[29]. Glutathione and thioredoxins each interact with a
different subset of proteins thus forming distinct redox
systems. The redox state of one of these systems may differ
from the other even in the same cellular compartment
[27, 30–34]. As well as glutathione and thioredoxin working
as reducers of protein disulfides, a third thiol/disulfide
couple, cysteine/cystine, has also been proposed by Jones et
al. [32] as a possible oxidiser of protein dithiols used in redox
regulation and signalling. Changes to the ratios of these
three redox couples have been observed in various disease
states, and it is possible that a gradual loss of redox state
homeostasis over time contributes to ageing and age-related
diseases [13].

2.4. Redox State versus Transient Local Redox Signalling. The
redox state of the various redox systems in a cell or cellular
compartment must normally reside within a narrow range,
not only to maintain the constitutive signals resulting from
the homeostatic redox state itself, but also to allow for
meaningful thresholds, where a change in redox state outside
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Figure 3: Redox state of between different cellular compartments. Redox state is a measure of the amount of electrons available for redox
reactions. In the reducing state electrons are donated, whereas in the oxidising state electrons are removed. The mitochondria and nucleus
are reducing (a and b). The endoplasmic reticulum is more oxidising (c).

the typical range of a cellular compartment can be used to
signal a change in metabolism, environment, or stress. In
addition to global signals at the level of an entire organelle,
generation of H2O2 with no measureable effect on overall
redox state of the various redox systems in a cell or cellular
compartment may still have a very real effect on proteins
in close proximity to the site of generation, resulting in
a transient local signal—an idea explored more fully by
Dwivedi and Kemp [35]. An example of modulation of
signalling by transient local changes rather than a global
shift in redox state is altered protein phosphorylation [36]
resulting, for example, from the inactivation of protein
tyrosine phosphatases [37, 38], MAP kinase phosphatases
[39], and PTEN [40]. Within the redox hypothesis paradigm,
much of the toxicity of oxidative stress could result from
an oxidative shift in redox state within one or more cellular
compartments. This shift would likely disrupt transient
redox signalling as well as perturb the regular function of
redox regulated proteins within these compartments. The
end result could still be pathological oxidative damage to
cellular components even though the cause could be indirect.

3. Phylogenetic Analysis

3.1. Thiol/Disulfide Redox Regulators

3.1.1. Thioredoxin and Related Proteins. Thioredoxin (TRX)
was first discovered in Escherichia coli as a hydrogen donor
for ribonucleotide reductase [41, 42]. Since the initial
characterisation, TRX proteins have been recognized as more
general disulfide reductases that are found in all phylogenetic
domains of life. TRX proteins have a distinct structure that
encompasses the active site dithiol known as the “thioredoxin
fold.” This domain is also found in a variety of related
proteins including glutaredoxin, protein disulfide isomerase,
peroxiredoxin, and glutathione S-transferase [43]. Each of
these protein families is discussed in other sections of this
article. The characteristic CGPC active site dithiol motif can
be oxidised to a disulfide to release electrons that are used
to reduce redox-sensitive disulfides within a wide range of
target proteins [44].

TRX proteins were long thought to be primarily involved
in restoration of redox-sensitive disulfides to their reduced
state after being oxidised by ROS. In particular, ROS
scavengers such as peroxiredoxin require the activity of TRX
proteins for their regeneration. However, the role of TRX
as a disulfide reductase is now known to be important
for immune signalling [45], regulating transcription factors
[46], and modulating cellular signalling [47].

Sequence comparisons and phylogenetic analysis
revealed that C. elegans possesses twenty proteins closely
related in sequence and length to TRX proteins in yeast,
humans and fruit flies. Seven of these twenty proteins
contain the characteristic CGPC active site sequence
required for TRX activity. Five of these CGPC containing
proteins, TRX-1, TRX-2, TRX-4, Y45E10.A, and Y55F3AR.2,
are closely related to proteins of known TRX activity in
S. cerevisiae, H. sapiens, and D. melanogaster. Human
cytosolic thioredoxin 1 (TRXN1) has roles in the activation
of transcription factors activator protein-1 (AP-1) [48] and
nuclear factor kappa B (NFκB) [49, 50], as well as in immune
signalling [45, 51]. Although orthology is unclear between
human TRXN1 and C. elegans TRX proteins (Figure 5), both
human TRXN1 and C. elegans TRX-1 are cytoplasmic [52].
TRX-1 is expressed in intestinal cells as well as the ASJ pair of
neurons and modulates adult lifespan extension induced by
dietary restriction [53]. Human mitochondrial TRXN2, for
which there is likely orthology with C. elegans TRX-2, is part
of a mitochondria-dependent superoxide/TRXN2/apoptosis
signal-regulating kinase 1 (ASK-1) apoptosis signalling
pathway [54]. In C. elegans interactions of TRX-1 and
TRX-2 with exonuclease 3 (EXO-3) and C. elegans p53-like
protein (CEP-1), appear to play a role in neural structure
and function as well as ageing [55]. Some of the functions of
TRX are redox independent. For example, TRX-1 modulates
the activity of the insulin-like neuropeptide DAF-28 in
ASJ sensory neurons in the head during C. elegans dauer
formation. This function was retained even after the redox
activity of the protein was disrupted by replacing the two
Cys residues of its active site with two Ser residues [56].
In regard to thioredoxin-like (TRXL) proteins, the close
relationship found between Y45E10.A and Y55F3AR.2
and the thioredoxin-like proteins of humans (TXNL1)
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and D. melanogaster (TXL) suggests possible orthology.
Functions of the TRXL proteins are yet to be determined.

The other two C. elegans homologs containing the
CGPC sequence, TRX-3 and TRX-5, were found as part a
clade containing nucleoredoxin (NXN) and related proteins.
Humans possess a single NXN, which contains a CPPC
active site, and two nucleoredoxin-like proteins (NXNL1
and NXNL2). NXN (reviewed in [57]) has been shown to
function as a redox regulator of gene expression [58] and a
negative regulator of toll-like receptor signalling [59]. It also
sustains Wnt/ß -Catenin signalling [60]. Six out of the nine

C. elegans proteins within the NXN clade contain the CPPC
NXN active site sequence, suggesting a possible expansion
of the NXN subfamily. Proteins within this NXN clade are
also closely related to the 16-Kilodalton class of thioredoxins
described in the parasitic nematode Brugia malayi [61].

3.1.2. Glutathione. Reduced glutathione (GSH) is a
tripeptide consisting of glycine, cysteine and glutamic
acid. GSH synthesis is performed in a two-step ATP-
dependent process. In the rate-limiting first step gamma-
glutamylcysteine synthetase (GCS; see Table 1) synthesises
gamma-glutamylcysteine from L-glutamate and cysteine.
In the second-step glutathione synthetase (GSS; see
Table 2) adds glycine to the C-terminal of gamma-
glutamylcysteine. These enzymes are highly conserved
in eukaryotes (Tables 1 and 2) and even in prokaryotes (not
shown).

Glutathione plays an essential role in antioxidant defence
as a source of electrons for antioxidant enzymes such as
glutaredoxins and peroxidases [63]. The high (millimolar)
concentrations of glutathione in the cell ensure an abun-
dance of electrons for these antioxidant systems and thus
provide a robust buffer against oxidative shifts in redox
state [64]. GSH also serves as a reversible cysteine adduct.
Glutathione S-transferases (GSTs) can form mixed disulfides
between glutathione and redox-sensitive cysteine thiols of
proteins. This activity can be used to regulate protein activity
and under oxidizing conditions can prevent irreversible oxi-
dation of thiols to sulfinic (SO2H) and sulfonic acid (SO3H)
oxoforms [65, 66]. GST can also conjugate glutathione to
xenobiotic compounds as part of a detoxification response
[67] and to a fatty acid in the synthesis of prostaglandin
hormone [68, 69].

The ratio of reduced glutathione to glutathione disulfide
within a cellular compartment, that is, [GSH]2/[GSSG],
determines its redox state. High [GSH]2/[GSSG] ratios such
as those found in the mitochondria, cytoplasm, and nucleus
ensure that the majority of redox-sensitive protein switches
within these compartments are in the reduced (–SH) state
[77]. Maintenance of the proper [GSH]2/[GSSG] ratio
ensures redox homeostasis, whereas changes to this ratio
provide a simple means to adjust the redox state between
compartments as well as within compartments under differ-
ent physiological conditions. For example, changes in redox
state have been found to trigger responses associated with
defence against particular biotic or abiotic stressors [78]. In
plants, changes to the cellular glutathione pool have been
shown to elicit pathogen resistance responses [79, 80]. These
examples demonstrate that global changes to protein activity
and widespread changes to signalling can be achieved quite
readily by simply changing the redox set point within a
cellular compartment.

3.1.3. Glutathione Disulfide Reductase and Thioredoxin Red-
uctase. When oxidised, the reduced (thiol) states of glu-
tathione and TRX enzymes are restored by gluta-thione dis-
uflide reductase (GSR) and TRX reductase (TRXR), respec-
tively, using electrons obtained from NADPH (Figure 4)
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Table 1: Similarity between C.e gamma-glutamylcysteine synthetase and orthologues in H.s., S.c., and D.m.

Species name Protein name Function % identity E value

H.s. GCLC gamma-glutamylcysteine synthetase 350/643 (54%) 0.0

D.m. GCLC gamma-glutamylcysteine synthetase 281/498 (56%) 0.0

S.c. GSH1 gamma-glutamylcysteine synthetase 254/672 (38%) 2e − 138

C.e: C. elegans, H.s: H. sapiens, S.c: S. cerevisiae, D.m: D. melanogaster.

Table 2: Similarity between C.e glutathione synthetase and orthologues in H.s., S.c., and D.m.

Species name Protein name Function % identity E value

H.s. GSS glutathione synthetase 185/470 (39%) 3e − 95

D.m. CG32495 glutathione synthetase 180/491 (37%) 8e − 102

S.c. GSH2 glutathione synthetase 147/494 (30%) 1e − 56

C.e: C. elegans, H.s: H. sapiens, S.c: S. cerevisiae, D.m: D. melanogaster.

[81]. The maximum like-lihood tree of this family forms
three clades (Figure 6). GSR is absent from D. melanogaster
and has been substituted by a novel glutaredoxin-thioredoxin
reductase fusion protein (TRXR-1) [82]. S. cerevisiae possess
proteins with TRXR enzymatic activity, however, these
proteins are evolutionarily unrelated to the animal forms
and are thus not represented on the phylogenetic tree [83].
Interest ingly, TRXR-1 is the only selenocysteine containing
protein in C. elegans, and both TRXR-1 and GSR-1 are
essential for proper moulting [84].

The third clade of this protein family is composed of
dihydrolipoamide dehydrogenase (DLD) orthologs. DLD
is similar in structure to both TRXR and GSR, however,
its functions are quite different. DLD is a component
of various protein complexes located within the mito-
chondrial matrix, including pyruvate dehydrogenase, alpha-
ketoglutarate dehydrogenase, and the branched chain amino
acid-dehydrogenase complexes as well as the glycine cleavage
system. In these complexes DLD is required for regeneration
of oxidised lipoamide from the reduced dihydrolipoamide
cofactor. The pyruvate dehydrogenase and branched chain
amino acid-dehydrogenase complexes (2-Oxo acid dehydro-
genase complexes) are thought to play a role in redox regula-
tion via the reduction of thioredoxins [85]. In addition, the
alpha-ketoglutarate dehydrogenase complex has been found
to be a generator of H2O2 [86, 87].

3.1.4. Glutaredoxin. Glutaredoxin (GLRX) uses electrons
extracted from GSH to reduce redox-sensitive disulfides of a
variety of proteins, thereby modulating enzyme activity [88].
GLRX can also carry out oxidative cysteine glutathionylation
of proteins resulting in protein-glutathione mixed disulfides
[78], and the reverse reaction, deglutathionylation (i.e., the
reduction of the mixed disulfides), restoring the protein to
its unmodified form. GLRX enzymes come in two forms:
a monothiol form that contains a single cysteine in the
active site and a dithiol form that contains two cysteines
in the active site. These two forms differ in function and
can be seen as distinct clades in the phylogenetic tree
(Figure 7). The reduction of protein disulfides as well as the
oxidative formation of protein-glutathione-mixed disulfides

are both catalysed via dithiol mechanisms, whereas reductive
deglutathionylation is performed by a monothiol mechanism
[89].

One of the GLRX clades contains only monothiol
proteins with the CGFS active site sequences, whereas the
other clade contains mostly dithiols with a variety of active
site sequences, as well as a few proteins with a single
cysteine active site. The mammalian GLRX3 (PICOT), likely
ortholog of C. elegans GLRX-3, has been characterised as
an iron-sulfur binding protein possibly regulated by ROS
and reactive nitrogen species [90]. GLRX3 is essential for
embryonic development, postembryonic growth, and heart
function [91]. Human GLRX1 has a number of roles
including the regulation of redox signal transduction and
protein translocation [92], caspase-3 signalling in tumor
necrosis factor-α-induced cell death [93], and angiotensin
II redox signalling via glutathionylation of Ras [94]. C.
elegans GLRX-10 is closely related to human GLRX1, both
of which are nested within a subclade of dithiol GLRX
enzymes, all of which except GLRX2 contain the CPYC
active site sequence. F10D7.3 is somewhat similar to Grx6p
and Grx7p from S. cerevisiae, although the difference in
size and active site makes orthology unlikely. GLRX-21,
GLRX-22, and ZC334.7 were found to group closely with
S. cerevisiae Grx8p, but again differences in size (particularly
the larger size of ZC334.7) and the sequence of their dithiol
active sites makes orthology unlikely. To date very little
work on GLRX proteins has been performed in C. elegans.
Worth mentioning, however, is a paper published in 2010
which found that GLRX-21 functions in the prevention of
selenium-induced oxidative stress [95].

3.1.5. Protein Disulfide Isomerase. The protein disulfide
isomerase (PDI) protein family is composed of a large and
diverse group of enzymes, most of which contain at least
one TRX-like domain with a CxxC active site motif. PDI
enzymes reside in the endoplasmic reticulum (ER) where
their usual function is to catalyse protein folding. The active
site cysteines of PDI are used in thiol-disulfide exchange
between cysteine residues of the substrate proteins. This
PDI thiol-disulfide exchange enables proteins to rapidly



8 Journal of Toxicology

H.s TXNRD2

D
.m

 TRX
R-1 D

.m
 T

R
X

T-
2

C.e 
TRXR-2

S.
c  

G
lr1

p

H.s  GSR

C.e  GSR-1

H
.s 

 T
X

N
R

D
1

H.s  T
XNRD3

C.e TRXR-1

D.m CG7430

C.e 
 D

LD
-1

H
.s  D

LD

S.c  Lpd1p

95

100

100

10
0

10
0

10
0

100
99

82

Figure 6: Maximum likelihood majority-rule bootstrap consensus
tree of thioredoxin reductase (TRXR), glutathione disulfide reduc-
tase (GSR) and dihydrolipoamide dehydrogenase (DLD) proteins.
C. elegans possess two TRXR: mitochondrial TRXR-1 and cytosolic
TRXR-2. In addition C. elegans contain a single glutathione
disulfide reductase (GSR) and the closely related DLD. See Figure 5
for details of how the sequences were identified and processed as
well as how the phylogenetic analysis was carried out.

aquire the correct configuration of structural disulfide bonds
required to achieve their native structure [96]. PDI functions
in four different chemical reactions: (1) the oxidation of
protein disulfides, using GSSG as the electron acceptor; (2)
the reduction of protein disulfides, using GSH or NADPH
as the electron donor; (3) the deglutathionylation of mixed
disulfides; (4) the isomerization (rearrangement) of intra-
molecular disulfides. These functions of PDI proteins require
the more oxidised redox state of the ER [70, 97]. In addition
to passively relying on a more oxidised redox state, it has also
been suggested that some PDI proteins may play a role in
redox regulation [62].

In C. elegans, Karala et al. [98] analysed and compared
the activities of PDI-1, PDI-2, and PDI-3 and found that
all three displayed thiol-disulfide exchange activity, but
that each showed a difference in reactivity towards various
protein substrates. RNAi knockdown of the pdi-2 and pdi-
3 genes results in an unflolded protein response, which
suggests PDI-2 and PDI-3 are indeed required for proper
protein folding [83]. Additionally, Winter et al. [99] studied

PDI-1, PDI-2, and PDI-3 and found that PDI activity is
required for embryonic development and proper formation
of the extracellular matrix.

Comparision of PDI sequences and phylogentic analysis
revealed a number of unnamed proteins with likely othology
to known human PDIs, as well as a few small gene expansion
events both in C. elegans and human. The end result is
19 proteins in both C. elegans and human, but only 8
in D. melanogaster and 4 in S. cerevisiae (see Figure 8).
Human P4HB (PDI/PDIA1), PDIA3 (ERp57), and PDIA4
(ERp72)—the probable orthologs of C. elegans PDI-2 (or
PDI-1), PDI-3, and C14B9.2, respectively—all react readily
with peptide dithiols in vitro to form disulfides [100]. C.
elegans PDI-1 is peculiar in that the N-terminal active sites of
all of its closely related homologs contain the characteristic
PDI sequence CGHC, whereas in C. elegans the glycine
has been replaced by a valine (CVHC). The similarity of
C. elegans PDI-1 to human P4HB in size and sequence
would suggest an orthologs relationship between these two
proteins. However, human P4HB can be found as the beta
subunit of prolyl 4-hydroxylase (P4H), a complex which
hydroxylates proline to hydroxyproline in the production
of collagen [101]. In C. elegans, the beta subunit of the
P4H complex is PDI-2 [102, 103], making PDI-2 the more
likely ortholog of P4HB, despite PDI-2 being ∼100 amino
acids shorter than C. elegans PDI-1 and human P4HB.
Regarding the other PDI homologs, Ko and Chow [104]
found that the DPY-11 protein of C. elegans that is a
possible ortholog of human TMX1, is necessary for body
and sensory organ morphogenesis, which they argue is due
to its role in substrate modification in the hypodermis. In
terms of redox signalling, human P4HB has been found
to work antagonistically with TRXN1 in the regulation of
nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κB)-dependent gene expression: TRXN1 actives
the NF-κB pathway, whereas P4HB expression suppresses
NF-κB activity in a dose-dependent manner [105]. Other
possible PDI orthologous relationships involving C. elegans
include human TMX3, D. melanogaster CG5027, and C.
elegans ZK973.11; human TXNDC12 (ERp18) and C. ele-
gans Y57A101.23; D. melanogaster CG4670 and C. elegans
F47B7.2; human PDIA6 (p5), C. elegans TAG-320 and C.
elegans Y49E10.4 (see Table 3). Although, whether any of
these proteins participate in redox signalling remains to be
investigated.

3.2. Superoxide/H2O2 Generation and Removal

3.2.1. NADPH Oxidase. The NADPH oxidase (NOX) sys-
tem was first described as a system used by mammalian
phagocytes in the production of superoxide as a response
to infection by microorganisms [106]. The core enzyme of
this microbial defence system is NOX2, which—under the
regulation of its p22phox, p47phox, p40phox, p67phox, and
RAC subunits—catalyses the formation of large amounts of
superoxide, which in turn is converted to additional reactive
oxygen species. The resulting high ROS levels results in the
death of invading microbial pathogens. A total of seven NOX
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Figure 7: Maximum likelihood majority-rule bootstrap consensus tree of glutaredoxin (GLRX) proteins. Dark blue signifies the conserved
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homologues exist in mammals, including NOX1 through 5
and the dual oxidases DUOX-1 and DUOX-2. Most of these
homologs generate much lower of levels of ROS than NOX2
and are found in a much wider range of cell types. Lambeth
[25] presents a case for the importance of NOX proteins in
the generation of ROS signals, but this hypothesis has not yet
been rigorously tested.

Most important to a discussion of NOX activity in C.
elegans is the function of DUOX, as the only two NOX hom-
ologs in C. elegans, DUOX-2 and BLI-3, are related to the
DUOX proteins of humans and D. melanogaster (Figure 9).
These proteins contain an additional peroxidase dom-
ain not found in the NOX1 through 5. DUOX serves a dual
role in both the generation of superoxide and cataly-sis of
reactions in the extracellular matrix using H2O2. The sub-
units used to regulate NOX2 are not used in the regulation of

DUOX enzymes. Additionally, blastp searches do not reveal
homology to any of the NOX2 regulating subunits in C.
elegans. It is important to note the DUOX has not been
implicated in ROS signalling, and there is evidence to suggest
that in mammals they instead play a role in the biosynthesis
of thyroid hormones in the extracellular matrix [107]. In
C. elegans, the DUOX homolog BLI-3 functions in tyro-
sine cross-linking in the extracellular matrix [108, 109].
Further research may yet reveal additional mechanisms for
the DUOX homologs in C. elegans.

3.2.2. Superoxide Dismutase. SOD proteins are generally
regarded as antioxidants responsible for eliminating the
ROS superoxide. An alternative view is that these enzymes
generate H2O2 for use in redox signalling [110]. In this
regard, the levels of SOD activity could be important in
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Table 3: Characterised protein disulfide isomerase and their C. elegans orthologs.

PDI homolog Known functions
C. elegans ortholog

(paralogs)

AGR2 Unknown None

AGR3 Unknown None

ERp27 Unknown (C30H6.8, C35B1.5,

DNAjc10 ER-associated protein degradation [70] F47B7.2, Y52E8A.3)

ERp29
Specialist “escort” chaperone [71]
Thyroglobulin processing [72]

None

ERp46
Some P4HB functional redundancy
Protective role against hypoxia [70]

(W01B11.6, Y55F3AR.2)

ERp44
Possible role in late-stage oligomerization reactions
Possible role in late-stage, thiol-dependent, protein
quality-control system or trafficking [70]

C06A6.5, C30H7.2

P4HB
Thiol-disulfide exchange catalysis
Role in protein folding
Beta subunit of P4H complex [70]

PDI-2, PDI-1

PDIA2
Expressed in pancreas and brain [73, 74]
Thiol-disulfide exchange catalysis similar to P4HB
Specific function still unclear

None

PDIA3
Involved in MHC class I folding as part of MHC I
peptide-loading complex [75]
Oxidative folding of glycoproteins

PDI-3

PDIA4

Thiol-disulfide exchange catalysis similar to P4HB
Some PDIA3 redundancy
Can form part of a complex with P4HB, PDIA6, ERdj3,
BiP, CypB, HSP40, GRP94, GRP170, UDP
glucosyltransferase, and SDF2-L1 [76]

C14B9.2

PDIA5 Unknown (F35G2.1, T10H10.2)

PDIA6
Likely catalyze thiol-disulfide exchange similar to P4HB
Likely role in protein folding

TAG-320, Y49E10.4

PDILT Unknown None

TMX1
ER transmembrane PDI
Unknown function

DPY-11

TMX2
ER transmembrane PDI
Unknown function

None

TMX3
ER transmembrane PDI
Protein dithiol-disulfide oxidant

ZK973.11

TMX4
ER transmembrane PDI
Unknown function

None

TXNDC12 Unknown Y57A10A.23

Italic rows are human proteins that share the same C. elegans paralogs.

regulating H2O2 levels. A signalling role for SOD goes well
beyond the popular view that SOD is responsible for the
complete removal of superoxide from cellular compartments
for the sole purpose of preventing oxidative damage.

Much of the recent research on SOD enzymes has focused
on their possible role in the ageing process, in experiments
designed to test the free-radical theory of ageing. In some
cases, decreasing levels of SOD have been shown to shorten
the lifespan of yeast [111–114], fruit flies [115], and mice
[116], but this is not uniformly the case. In fact, an analysis
of the entire sod gene family in C. elegans revealed that
both increasing and decreasing expression of the sod genes
had little effect on lifespan [117]. When sod gene expression

is experimentally increased, lifespan is either unaltered or
decreased [117–120]. A report from Y. Honda and S. Honda
[121] showed that increased expression of sod-1 and sod-
2 extended the lifespan of C. elegans, but that this was
not due to decreased oxidative damage. While results are
inconsistent between species and are not even consistent
between experiments on a single species, it is clear that the
view of SOD as an eliminator of ROS that would otherwise
limit lifespan is much too simplistic.

Two distinct classes of SOD enzymes exist within eukary-
otes: copper/zinc SOD (Cu/Zn SOD), found in the cytosol
or extracellular matrix [122]; manganese SOD (Mn SOD),
found in the mitochondria [123]. Phylogenetic analysis
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Figure 9: Maximum likelihood majority-rule bootstrap consensus
tree of NADPH oxidase (NOX)/dual oxidase (DUOX) proteins.
See Figure 5 for details of how the sequences were identified and
processed as well as how the phylogenetic analysis was carried out.

clearly shows two main clades corresponding to Mn and
Cu/Zn enzymes (Figure 10). Unlike the other three species
in the analysis, each of which has only a single Mn SOD,
there has been a duplication of the gene in C. elegans, sod-
2 and sod-3. The same is true of the human Cu/Zn sod-1,
in that human and the other two species have a single gene
that corresponds to a pair of genes in C. elegans, sod-1 and
sod-5. The last sod gene in C. elegans, sod-4, corresponds to
a single gene in each of human and D. melanogaster. It is an
extracellular Cu/Zn SOD [124], with a possible function is
daf-2 signalling [117].

3.2.3. Glutathione Peroxidase. The glutathione peroxidases
(GPX) were first characterised as a family of proteins that
reduce H2O2 to H2O using GSH as the electron donor [125].
Humans and C. elegans both contain a large number of GPX
proteins (8 and 7, resp.) compared to yeast (3 proteins) and
D. melanogaster (only 2 proteins). Most of these appear to
have arisen independently by gene duplications within the
two taxonomic lineages (Figure 11). While five of the eight
humans GPX contain a selenocysteine in their active site, not
a single selenocysteine is found in any of the C. elegans GPX
homologs.

Despite the relatedness of C. elegans proteins with pro-
teins of known GPX activity, Vanfleteren [126] was unable
to detect any GPX activity in C. elegans tissue. However, the

Cytosolic
Extracellular
Mitochondrial

H.s SOD1

H
.s

 S
O

D
2

H.s SOD3

D.m
 CCS

D
.m

  SO
D

C
.e

  S
O

D
-1

S.c Sod1p

C.e SOD-5

Cu/Zn SOD

C.e SOD-3

C.e 
SO

D-2 D.m SOD-2

C
.e

 S
O

D
-4

S.c Sod2p

M
n SOD

100

59

5984

97
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tree of superoxide dismutase (SOD) proteins. See Figure 5 for
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in vitro assay used in this article only included GSH as a
reducing substrate. Use of GSH appears to be limited to GPX
enzymes that contain selenocysteine; the cysteine-containing
GPX homologs of C. elegans likely use a peroxiredoxin-
like mechanism with thioredoxin as their reducing substrate
[127].
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Numerous studies have implicated GPX proteins in redox
signalling. For example, Faltin et al. [128] found that ROS
signalling used in the early stage shoot organogenesis of
plants is regulated by the GPX homolog PHGPx. In mam-
mals, ROS regulation of lipopolysaccharide (LPS) signalling
is modulated by GPX1 [129], while GPX1 deficiency is
found to enhance proinflammatory cytokine-induced redox
signalling [130]. Conversely, high levels of catalase and GPX
activity have been found to diminish H2O2 signalling in
human alveolar macrophages [131]. The C. elegans protein
F26E4.12, a homolog of human GPX4 and plant PHGPx,
regulates the peptide transporter PEPT-1 [132].

3.2.4. Peroxiredoxin. Peroxiredoxins (PRDX) are found as
homodimers in which the active site cysteines align in
close proximity and form intermolecular dithiols/disulfides.
PRDX disulfides function in the reduction of H2O2 to
H2O for both antioxidant defence and mediation of ROS
signalling [133, 134]. Active site disulfides formed in the
reduction of H2O2 are reduced back to dithiols by the
thioredoxin redox system. PRDX comes in three forms:
“Typical” 2-Cys, “Atypical” 2-Cys, and 1-Cys.

Phylogenetic analysis showed that C. elegans have two
typical 2-Cys PRDX, 1-Cys PRDX, but does not possess an
atypical 2-Cys PRDX homolog (Figure 12). Human PRDX1
and PRDX2, two of the typical 2-Cys PRDX homologs to
C. elegans PRDX-2, might participate in both intra- and
extracellular signalling cascades by regulating levels of H2O2

[23]. The human mitochondrial typical 2-Cys PRDX3, which
is closely related to C. elegans PRDX-3, participates in the
regulation of apoptotic signalling. Little research has been
done on the PRDX proteins of C. elegans. What is known
is that PRDX-2 is necessary for normal growth and egg
production in C. elegans, which Isermann et al. [135] argue is
likely due to its role in peroxide signalling. Interestingly, loss
of PRDX-2 actually increases resistance to some oxidative
stress causing agents but results in a decrease in lifespan
[136].

3.2.5. Catalase. Catalase functions in the decomposition of
H2O2 to H2O and O2. Phylogenetic analysis shows a lineage
specific expansion from one catalase to three in C. elegans
(Figure 13). C. elegans CTL-1 is required for the extended
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adult lifespans of daf-2, age-1, and clk-1 mutants [137]. CTL-
2 is found in the peroxisomes of C. elegans [138] and a lack
of this protein has been found to cause a progeric phenotype
and adversely affect development/egg laying [139]. The ctl-
1 and ctl-2 genes are both negatively regulated by DAF-2-
mediated insulin signalling [140]. As such, DAF-2 signalling
might result in an increase in the levels of H2O2, and thus a
more oxidizing state.

4. Conclusion

Reactive oxygen species are thought to play a role in many
diseases of ageing, including Parkinson’s disease, Alzheimer’s
disease, heart failure, and myocardial infarction. This makes
understanding their dual roles as oxidative stressors and
signalling molecules highly significant. Important to this
understanding is a clear description of the protein families
that contribute to the generation and metabolism of ROS.
Most of the known protein families that participate in redox
biology are discussed in this article, but it is likely that
additional, undescribed families of redox proteins remain
to be discovered. It is striking that of the protein families
that have been compared in this study, most show clear

relationships between sequences, with no extreme examples
of species-specific family expansion. S. cerevisiae frequently,
and D. melanogaster sometimes, had smaller gene families
than the other two species.

In addition to oxidative damage, higher ROS levels
disrupt the regular function of redox regulators and their
downstream effectors. It is, therefore, likely that at least some,
if not many, of the toxic effects associated with oxidative
stress are the result of disruption to redox signalling. Con-
tinued research into the various functions of the C. elegans
redox proteins discussed in this article will help to achieve a
better understanding of redox signalling, oxidative stress, and
the relationship between these two biological phenomena. C.
elegans and H. sapiens exhibited fairly conserved gene family
structure, indicating that C. elegans will provide a medically
relevant model of redox signalling.
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[136] M. Oláhová, S. R. Taylor, S. Khazaipoul et al., “A redox-
sensitive peroxiredoxin that is important for longevity has
tissue- and stress-specific roles in stress resistance,” Proceed-
ings of the National Academy of Sciences of the United States of
America, vol. 105, no. 50, pp. 19839–19844, 2008.

[137] J. Taub, J. F. Lau, C. Ma et al., “A cytosolic catalase is needed to
extend adult lifespan in C. elegans daf-C and clk-1 mutants,”
Nature, vol. 399, no. 6732, pp. 162–166, 1999.

[138] S. H. Togo, M. Maebuchi, S. Yokota, M. Bun-ya, A. Kawahara,
and T. Kamiryo, “Immunological detection of alkaline-
diaminobenzidine-negative peroxisomes of the nematode
Caenorhabditis elegans: purification and unique pH optima
of peroxisomal catalase,” European Journal of Biochemistry,
vol. 267, no. 5, pp. 1307–1312, 2000.

[139] O. I. Petriv and R. A. Rachubinski, “Lack of peroxisomal
catalase causes a progeric phenotype in Caenorhabditis
elegans,” The Journal of Biological Chemistry, vol. 279, no. 19,
pp. 19996–20001, 2004.

[140] C. T. Murphy, S. A. McCarroll, C. I. Bargmann et al., “Genes
that act downstream of DAF-16 to influence the lifespan of
Caenorhabditis elegans,” Nature, vol. 424, no. 6946, pp. 277–
284, 2003.


	Introduction
	Redox State, Redox Signalling, andOxidative Stress
	Redox-Sensitive Cysteine Switches
	The Redox State as a Signal
	Major Redox Systems: Glutathione, Thioredoxin, and Cysteine
	Redox State versus Transient Local Redox Signalling

	Phylogenetic Analysis
	Thiol/Disulfide Redox Regulators
	Thioredoxin and Related Proteins
	Glutathione
	 Glutathione Disulfide Reductase and Thioredoxin Red-uctase
	Glutaredoxin
	Protein Disulfide Isomerase

	Superoxide/H2O2 Generation and Removal
	NADPH Oxidase
	Superoxide Dismutase
	Glutathione Peroxidase
	Peroxiredoxin
	Catalase


	Conclusion
	References

