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Abstract
Most sporadic endometrial cancers (ECs) can be histologically classified as endometrioid, serous,
or clear cell. Each histotype has a distinct natural history, clinical behavior, and genetic etiology.
Endometrioid ECs have an overall favorable prognosis. They are typified by high frequency
genomic alterations affecting PIK3CA, PIK3R1, PTEN, KRAS, FGFR2, ARID1A (BAF250a),
and CTNNB1 (β-catenin), as well as epigenetic silencing of MLH1 resulting in microsatellite
instability. Serous and clear cell ECs are clinically aggressive tumors that are rare at presentation
but account for a disproportionate fraction of all endometrial cancer deaths. Serous ECs tend to be
aneuploid and are typified by frequent genomic alterations affecting TP53 (p53), PPP2R1A,
HER-2/ERBB2, PIK3CA, and PTEN; additionally, they display dysregulation of E-cadherin, p16,
cyclin E, and BAF250a. The genetic etiology of clear cell ECs resembles that of serous ECs, but it
remains relatively poorly defined. A detailed discussion of the characteristic patterns of genomic
alterations that distinguish the three major histotypes of endometrial cancer is reviewed herein.
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Introduction
Endometrial cancer (EC) is the sixth most commonly diagnosed cancer among women
worldwide, causing ~74,000 deaths in 2008.1 Most ECs are sporadic but 2%–5% are
familial. Familial EC is linked to germline mutations in the mismatch repair genes MLH1,
MSH2, MSH6, or PMS2, and to certain germline deletions in EPCAM, in families with
Lynch syndrome (reviewed by Meyer et al),2 or to germline mutations in PTEN associated
with Cowden Syndrome.2–4

ECs can be classified into a number of distinct histological subtypes. Endometrioid, serous,
and clear cell ECs represent the three major histological subtypes, each with a distinct
natural history, genetic etiology, and associated clinical outcome.5,6 Other rare histological
subtypes of EC include carcinosarcomas, also known as malignant mixed Müllerian tumors,
mucinous carcinomas, squamous cell carcinomas, and transitional cell carcinomas.7,8 In the
clinical setting, endometrial tumors can be comprised of a single histology or an admixture
of two or more distinct histotypes, in which each component represents at least 10% of the
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tumor volume (reviewed by Acharya et al).7 In cases of mixed histology, clinical treatment
is generally based on the most aggressive component (reviewed by Acharya et al).7 This
review will focus on endometrioid, serous, and clear cell ECs because, collectively, they
comprise the majority of endometrial carcinomas.

Endometrioid ECs (EECs) represent the most common histological subtype at presentation.
They are estrogen-dependent tumors that may be preceded by hyperplasia, atypical
hyperplasia, and endometrial intraepithelial neoplasia, a premalignant outgrowth from
hormonally-induced, benign endometrial hyperplasia.9–11 Epidemiological risk factors
leading to unopposed estrogen exposure including obesity, nulliparity, early age at
menarche, late age at menopause, and unopposed estrogen therapy in post-menopausal
women, are established risk factors for EEC (reviewed by Mahboubi et al).12 Most EECs are
low-grade (G1 or G2) tumors that are diagnosed at an early stage, before extra-uterine
spread.6 Consequently, surgical intervention is curative in many cases, and contributes to an
overall favorable prognosis for EEC, as evidenced by a 5-year relative survival rate of
~90%.6 However, the prognosis is markedly less favorable for advanced stage disease and
high-grade (G3) EECs.5,6,13

Serous and clear cell ECs are high-grade, estrogen-independent tumors that generally arise
from the atrophic endometrium in postmenopausal women, although there are examples of
serous EC in a non-atrophic background.14 They have no known epidemiological risk
factors other than increasing age. Serous ECs can be preceded by precancerous cells that
exhibit a “p53 signature,” endometrial glandular dysplasia (EmGD), and endometrial intra-
epithelial carcinoma (EIC).15–22 Serous EC is frequently diagnosed at an advanced stage and
has a significantly poorer prognosis than EEC, with an overall 5-year relative survival rate
of only 44%.6 Clear cell EmGD has been suggested to precede clear cell EC.23 The overall
5-year relative survival rate for clear cell ECs is 65%, intermediate to serous and EECs.6

Together, serous and clear cell tumors represent only ~13% of diagnosed tumors, but they
contribute disproportionately to mortality and account for more than half of all deaths from
EC.13,24 Even when corrected for stage, patients with serous and clear cell EC have a much
worse prognosis than those with EEC, pointing to differences in the underlying biology of
these subtypes.13

Historically, most genetic studies have focused on EEC. There have been few systematic
studies of serous EC, and even fewer on clear cell EC. Thus, the genetic etiology of the most
clinically aggressive subtypes remains relatively poorly defined. Nonetheless, it is clear that
there are important genetic distinctions between the three subtypes, both from mutational
analyses and gene expression profiling.25 In this review, we will highlight the somatic
genetic alterations that distinguish sporadic endometrioid and non-endometrioid (serous and
clear cell) tumors.

The genetic etiology of endometrioid endometrial cancers
EECs are typified by frequent microsatellite instability (MSI), and somatic alterations within
the PI3K pathway, the MAPK pathway, CTNNB1(β-Catenin), and ARID1A (BAF250a)
(Table 1 and Figure 1).

Microsatellite instability (MSI)
A MSI phenotype is marked by a high frequency of mutations at sites of short nucleotide
repeats (microsatellites) within the genome. MSI is the result of unrepaired errors that arise
during DNA replication. It is detectable in ~20% of unselected endometrial tumors,26–28 and
is more frequent among EECs than non-EECs (NEECs).29,30 In sporadic endometrial
tumors, MSI-positivity reflects an increased mutation rate resulting from somatic alterations
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in DNA mismatch repair genes. Most presumed sporadic, MSI-positive EECs are associated
with epigenetic silencing of MLH1, via promoter hypermethylation.31–34 This occurs early
in EEC progression; MLH1 promoter hypermethylation has been documented in 3% of
complex endometrial hyperplasias, and 33% of atypical hyperplasias.29

A smaller fraction of MSI-positive EECs have somatic mutations in MSH6,30,33 or loss of
MSH2 protein expression.35,36 Somatic mutations in MSH3 have also been described in
sporadic EC but, because they occur within a mononucleotide repeat tract, it has been
suggested that they may be a consequence, rather than a cause, of defective mismatch
repair.37 Likewise, certain MSH6 mutations have recently been proposed to occur
secondarily to MSI.38

MLH1 and other mismatch repair genes are among the so-called “caretaker genes” that
normally function to preserve genomic stability; loss of their function leads to the
accumulation of mutations in other target genes that drive tumorigenesis.39 A number of
target genes have been described in EC, although it is worth noting that most studies do not
state whether the tumors occurred sporadically or in the context of Lynch syndrome. Within
MSI-high EECs, the presence of somatic mutations involving simple nucleotide repeats in
BHD (13%),40 BAX (29%–53%),33,41–43 IGFIIR (14%–21%),33,41 TGFβ-RII (10%–
37%),38,41,44,45 E2F4 (21%),33 MLH3 (21%),42 MSH3 (14%–33%),37,41,42 MHS6 (7%–
36%),33,38,41,42 CDC25C (7%),42 DNAPKcs (34%),46 RAD50 (17%),46 MRE11 (15%–
50%),46,47 ATR (14%–15%),42,46 BRCA1 (15%),46 CtIP (12%),46 CHK1 (7%–28%),41,42

and MCPH1 (12%),46 implicates these genes as targets of MSI and potential drivers of MSI-
positive endometrial tumorigenesis. Many of these genes, including ATR, are involved in
the DNA damage response. MSI-associated truncating mutations in ATR are loss-of-
function mutations that are significantly associated with both disease-free survival and
overall survival in multivariate analyses.48,49

Early-stage EECs with and without MSI exhibit distinct gene expression profiles.50 It has
been suggested that this might be either a direct effect of their differing MSI status, or
alternatively, it might result from differences in the global methylation status of MSI+ and
MSI− tumor subgroups, and therefore be indirectly associated with MSI caused by MLH1
hypermethylation.50

The PI3K pathway
The most frequently altered biochemical pathway in EECs is the PI3K-PTEN-AKT signal
transduction pathway, which regulates numerous cellular processes including proliferation,
growth, and survival.51 In the most comprehensive evaluation of PI3K pathway alterations
in EECs to date, more than 80% of tumors had one or more somatic alterations affecting the
pathway.52 These alterations consist of high frequency mutations in PIK3R1 (p85α),
PIK3CA (p110α), and PTEN; PIK3CA amplification (7%–33% of EECs); PTEN promoter
methylation or loss of PTEN expression; as well as rare mutations in AKT1 (2%) and
PIK3R2 (p85β) (5%).52–64 In EEC, an additional level of dysregulation of mTOR is
achieved by loss of expression of TSC2 and LKB1, which have been documented in 13%
and 21% of EECs, respectively.65

The interplay between the various PI3K pathway alterations in EECs is complex. PIK3R1
and PIK3CA mutations are generally mutually exclusive, suggesting functional
redundancy.52,58 In contrast, PTEN mutations frequently coexist, and can functionally
cooperate, with PIK3R1 and PIK3CA mutations.52,54,58 Although PTEN is an important
regulator of the PI3K-AKT pathway, it also has PI3K-independent functions. For example,
PTEN plays an important role in the maintenance of genomic integrity.66 Recent work
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revealed that PTEN-deficient EC cell lines are sensitive to PARP inhibitors, pointing to a
potential Achille’s heel for targeted therapy in EC.67

Endometrial tumors have a tissue specific pattern of PIK3CA mutations, with a significantly
higher frequency of mutations in the ABD and C2 domains of p110α than any other tumor
type that has been comprehensively evaluated.52,57,62 The reason for this tissue specificity is
unclear but it is intriguing that p85α, which binds the ABD and C2 domains of p110α, is
somatically mutated at high frequency in EC but only rarely in other tumors. Together, these
observations suggest that disrupting the p85α-p110α interaction may confer a tissue specific
selective advantage in endometrial tumorigenesis.

PTEN mutation is one of the earliest known events in the genesis of EEC, occurring in
20%–27% of endometrial hyperplasias,68,69 and in 55% of endometrial intraepithelial
neoplasias.70 PTEN mutations are believed to precede mismatch repair defects in the
progression of sporadic EECs.71 In contrast to PTEN, PIK3CA mutations are rare in
complex atypical hyperplasia, and appear to be later events in the progression of EEC.72

The RAS-RAF-MEK-ERK pathway
The RAS family of oncogenes are frequently activated in a variety of human cancers. RAS
proteins mediate signal transduction via both the RAF-MEK-ERK and PI3K-PTEN-AKT
pathways, and thus regulate numerous processes including cell proliferation and cell
survival.73

Somatic mutations in KRAS were first described in EC over two decades ago, and were
subsequently found to be significantly more frequent in EEC than in serous EC.74–80 On
average, KRAS is mutated in 18% of EECs compared with 3% of serous ECs (Figure 1).81

KRAS mutations occur early in the genesis of EECs, having been documented in atypical
endometrial hyperplasia.82–84 However, MSI appears to precede KRAS mutation in the
progression of EEC.82

In EC, KRAS mutations can coexist with mutations in PTEN, PIK3CA, and PIK3R1,
suggesting that KRAS mutations are not functionally redundant with PI3K pathway
mutations.52,57,58,85 This is supported by the results of a recent comprehensive genomics
and proteomics analysis of the RAS-RAF-MEK-ERK and PI3K-PTEN-AKT pathways in
EC in which Cheung et al showed that KRAS mutations were associated with increased
phosphorylation of MEK1/2, ERK1/2, and p38MAPK.52 Oda et al have also shown
functional synergy between mutant KRAS and mutant PIK3CA in the transformation of
HMLE cells.85 Finally, a conditional mouse model of EC in which PTEN was ablated and
KRAS was activated in the reproductive tract, showed an acceleration in the development of
EC as compared to mice with only a single lesion.86

In contrast to KRAS mutations, somatic mutations in codons 11 and 15 of BRAF, the sites
of hotspot mutations in other cancers, are infrequent in EECs,38,87–91 and are mutually
exclusive with KRAS mutations and hypermethylation of RASSF1A.89 The overall BRAF
mutation frequency in ECs is 1%.81 Only one study noted a high frequency (21%) of BRAF
mutations in EC.92 It has been suggested that this high frequency of mutations might reflect
ethnic differences between study populations,91 although this has not yet been verified.

RASSF1A is a multifunctional tumor suppressor that has been implicated in the regulation
of numerous cellular processes and pathways, including the RAS signal transduction
pathway.93 Hypermethylation of the RASSF1A promoter is frequent in EECs (62%–74%)
and correlates with reduced expression of RASSF1A.94–96 RASSF1A promoter methylation
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has been documented in histologically normal tissue adjacent to EEC, and in complex
hyperplasia with and without atypia.95,97

In EECs, methylation of the RASSF1A promoter is significantly associated with advanced
stage disease.94 RASSF1A promoter hypermethylation is significantly more frequent in
microsatellite unstable tumors than in microsatellite stable tumors, leading to the proposal
that this reflects an underlying methylator phenotype that targets the MLH1 mismatch repair
gene and other genes, including RASSF1A.89 RASSF1A methylation is also more frequent
in tumors lacking a KRAS mutation than in tumors with mutant KRAS (38% vs 14%),
although the difference did not achieve statistical significance.89

Several other genes that modulate the activity of the RAS-RAF-MAPK pathway are also
subjected to aberrant methylation in EECs. These include RASSF2A, HDAB2IP, BLU,
SPROUTY-2, and RSP6KA6 (RSK4).94,98,99

FGFR2
Somatic mutations in the FGFR2 receptor tyrosine kinase have been described in 12% of
EECs.52,100,101 FGFR2 mutations are mutually exclusive with KRAS mutations, indicating
functional redundancy, whereas most (77%) FGFR2-mutant ECs are PTEN-mutant.102 In
EC, the vast majority of FGFR2 mutations are missense mutations within the extracellular,
transmembrane, and kinase domains of the protein. Codon 252 (S252) forms a prominent
mutation hotspot within a region of the extracellular domain that mediates ligand binding.101

The S252W mutant is oncogenic and accounts for ~41% of all mutations reported in EC to
date.81,100 EC cell lines that harbor the FGFR2-S252W mutant appear to be dependent upon
expression of the mutant protein for their survival.100,102 Importantly, EC cell lines with an
activating mutation in FGFR2 are more sensitive to killing by PD173074, a pan-FGFR
inhibitor, than FGFR2-wildtype EC cell lines, thus pointing to mutant FGFR2 as a potential
therapeutic target.100,102

CTNNB1(β-Catenin)
CTNNB1 encodes β-catenin, an integral member of the canonical WNT signaling pathway.
Somatic mutations in CTNNB1 and stabilization of β-catenin are common features of
EEC.103,104 CTNNB1 mutations occur in up to 45% of EECs; they have not been found in
NEECs, but only a small number of tumors have been evaluated (Table 1). Similarly,
nuclear expression of β-catenin has been observed in 31%–47% of EECs, compared with
0%–3% of NEECs.104 A significant correlation between β-catenin accumulation and
CTNNB1 mutations has been noted (P < 0.0001).105 Dysregulation of CTNNB1/β-catenin
occurs early in the pathogenesis of EEC; it has been observed in atypical hyperplasias, in the
squamous component of complex endometrial hyperplasia with atypia, and in endometrial
intraepithelial neoplasia.106–110

ARID1A (BAF250a)
ARID1A is a recently described tumor suppressor gene that encodes BAF250a, a component
of the SWI/SNF chromatin-remodeling complex.111 Dysregulation of ARID1A and
BAF250a has been implicated in a large fraction of EECs. Loss of BAF250a expression has
been observed by immunohistochemistry (IHC) in 26%–29% of low-grade (G1 or G2)
EECs, and in 39% of high-grade (G3) EECs.112,113 Consistent with this observation,
somatic mutations in ARID1A were detected among 40% of low-grade EECs; 50% of
mutated tumors showed loss of BAF250a expression.113
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The genetic etiology of serous and clear cell ECs
In contrast to EECs, serous ECs are often aneuploid,114–120 and are typified by frequent
stabilization or mutation of p53, overexpression of cyclin E and ERBB2, p16 dysregulation,
mutations in PPP2R1A, and a moderate frequency of alterations within the PI3K pathway
(Table 1 and Figure 1).

TP53 (p53)
The most frequently altered cancer gene in serous EC is the TP53 tumor suppressor gene. In
early landmark studies, 80%–86% of serous tumors showed positive immunostaining for
p53, and 53%–90% of tumors had somatic TP53 mutations.80,121–125 TP53/p53 aberrations
occur very early in the genesis of serous EC. They are present in morphologically benign
endometrial glands or epithelium adjacent to serous EC, the so-called “p53 signature”, as
well as in EmGD, and EIC.18,22,122,124 In 50% of uteri with coexisting “p53 signatures,”
EmGD, EIC, and serous EC, identical p53 mutations were observed in all four entities.22 An
increasing frequency of TP53 mutations has also been noted between the normal
endometrium (0%), EmGD (43%), EIC (72%), and serous-EC (96%).18 These observations,
coupled with detailed pathologic descriptions of “p53 signatures,” EmGD, and EIC, present
a new model for the evolution of serous EC. This model posits a transition from the normal
resting epithelium, to latent precancerous “p53 signatures,” to precancerous EmGD, to EIC,
and finally to serous EC.18,22

In contrast to serous ECs, EECs have a significantly lower overall incidence of p53
positivity (3%–52%) and TP53 mutation (12%–23%).80,92,123,124,126–129 The incidence of
TP53 mutations is greater in high-grade (G3) EECs than in low-grade EECs (43% of G3,
8% of G2, 0% of G1).80 However the incidence of p53 positivity and TP53 mutation in
high-grade EECs is still subject to interpretation, as some of the reported high-grade EEC
cases may actually be serous EC, due to the occasional histological ambiguity between these
two subtypes.130 The frequency of TP53 mutations in clear cell EC has not been well
defined although one study noted mutations in 9% of tumors.131

PPP2R1A
The PP2A serine-threonine phosphatase is a trimeric holoenzyme composed of a catalytic
subunit (PP2Ac; subunit C), a scaffolding subunit (PR65; subunit A) and one of a number of
variable regulatory (B) subunits (reviewed by Eichhorn et al).132 The scaffolding subunits
are encoded by PPP2R1A (PR65α) or PPP2R1B (PR65β). They contain 15 HEAT
(Huntington/elongation/A-subunit/TOR) motifs; HEAT motifs 2–7 mediate binding to the
regulatory subunits, whereas HEAT motifs 11–15 mediate binding to the catalytic subunit of
the holoenzyme.

Somatic mutations in PPP2R1A (PR65α) occur at very high frequency (17%–41%) in
serous EC.133–135 In contrast, PPP2R1A is infrequently (5%–7%) mutated in EECs.133–135

It remains to be determined whether PPP2R1A is mutated in pure clear cell ECs; only five
primary tumors of this subtype have been sequenced and no mutations were detected.133,134

Resequencing of PPP2R1A in ECs has thus far been confined to exons 5 and 6, based on
earlier observations that PPP2R1A mutations in ovarian cancer localized exclusively within
these two exons.135 Interestingly, the distribution of PPP2R1A mutations within exons 5 and
6 differs between endometrial and ovarian cancers. The majority (72%, 18 of 25 mutations)
of mutations in ovarian cancer involve codons 182 and 183 whereas the majority of
mutations in EC (77%, 30 of 39) involve codons 179, 256, and 257. The significance of this
tissue-specific difference is currently unclear but has been suggested to possibly reflect
different underlying mechanisms of mutagenesis, or perhaps tissue-specific functional
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effects.135 Only a small number of mutations in PPP2R1A have been described in EECs, but
it is noteworthy that they were more frequent in codons 182/183 than in codons
256/257.133–135

The mechanism whereby PPP2R1A mutations contribute to tumorigenesis is currently
unclear. The clustering of mutations to the 5th and 7th HEAT motifs of PR65α which
interface with the regulatory subunits of PP2A, has led to speculation that the mutant
scaffolding proteins might have an impaired interaction with the regulatory subunits, thus
resulting in altered substrate recognition and/or altered phosphatase activity.133,135 Because
the majority of PPP2R1A mutations are heterozygous, and PP2A has been ascribed tumor
suppressor properties (reviewed by Eichhorn et al),132 it has been proposed that mutant
PPP2R1A might function either as a haploinsufficient tumor suppressor gene, or by exerting
a dominant negative effect on the protein encoded by retained wild type allele.135

HER-2/ERBB2
Protein overexpression and genomic amplification of the HER-2/ERBB2 receptor tyrosine
kinase are significantly more frequent among serous ECs than among EECs.136–138 In
serous EC, overexpression of HER-2/ERBB2 by IHC has been noted in 17%–80% of
cases.119,136,137,139–147 HER-2/ERBB2 amplification, determined by FISH, has been noted
in 17%–68% of serous tumors that overexpress the protein,141,148 and in 17%–42% of
serous tumors overall.136,138,143,148 A number of factors have been suggested to account for
the inter-study variability in the frequency of HER-2/ERBB2 overexpression, including the
small number of samples in some studies, differences in study populations, and variability in
IHC, including inconsistencies in scoring HER-2/ERBB2 positivity.141

Several studies have observed correlations between HER-2/ERBB2 status and
clinicopathological characteristics of serous ECs. HER-2/ERBB2-overexpressing serous
ECs were associated with significantly shorter survival times (overall, 2-year, and 5-year)
than HER-2/ERBB2-negative serous ECs, suggesting that HER-2/ERBB2 overexpression
may be of prognostic value.136,141,142,145 Higher frequencies of HER-2/ERBB2
overexpression and amplification have been noted in serous ECs from African Americans
compared with Caucasians, although the basis for this difference remains
unexplained.140,149 Finally, two studies noted that patients with HER-2/ERBB2-positive
serous ECs were more likely to have had a personal history of breast cancer than those who
were HER-2/ERBB2-negative.141,144 The role of HER-2/ERBB2 perturbations in clear cell
EC remains poorly defined due to the limited number of tumors analyzed.

The PI3K pathway
Somatic alterations in the PI3K pathway are significantly less frequent in serous EC than
EEC. Nonetheless, the combined frequency of PI3K pathway alterations in serous EC is
appreciable (39%), resulting from mutations in PTEN (13%), PIK3CA (35%), and PIK3R1
(8%).57,58,150,151 Compared to serous ECs, clear cell ECs do not show a statistically
significant difference in the mutation frequency of PTEN (5%), PIK3CA (30%), and
PIK3R1 (20%), although only a small number of clear cell tumors have been analyzed.57,58

Overall, 35% of clear cell ECs had a PI3K pathway mutation in one series.58

The spectrum of PIK3R1 mutations in NEECs differs somewhat from that of EECs.58 Most
PIK3R1 mutants found in NEECs are truncation mutations, which preferentially co-occur
with PIK3CA mutations and are currently of unknown functional significance. This is in
contrast to PIK3R1 mutations in EECs, which tend to be small in-frame deletions that are
mutually exclusive with PIK3CA mutations and, in some cases, have an impaired ability to
inhibit AKT activation.52,58
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ARID1A (BAF250a)
Loss of BAF250a expression has recently been reported in 18% of serous ECs and in 26%
of clear cell ECs.112 The frequency of BAF250a loss is significantly lower in serous ECs
than in high-grade endometrioid carcinomas (P < 0.001).112 No mutations in ARID1A have
been reported in either serous or clear cell ECs but only a limited number of these tumors
have been sequenced.113 Given the strong correlation between mutations in ARID1A and
loss of BAF250a expression in other tumors,113 it seems likely that ARID1A mutations are
also present within NEECs.

CCNE (cyclin E)
High levels of cyclin E, measured by IHC staining, have been reported in 51%–80% of
poorly differentiated ECs, compared with 31%–45% of well- to moderately-differentiated
ECs; in some studies, this difference attained statistical significance.152–154 Cyclin E
overexpression is also statistically significantly more frequent among NEECs than EECs
(54.5% vs 27.5%; P = 0.035).154

There are at least two underlying molecular mechanisms that account for high levels of
cyclin E in EC. The first mechanism is amplification of CCNE, which is present in 16% of
ECs overall, and in 30% of ECs that over express cyclin E.154 The second mechanism is
loss-of-function mutations within the FBXW7/CDC4/hAGO tumor suppressor gene.154,155

FBXW7 encodes the substrate recognition component of an SCF-ubiquitin ligase complex
that targets cyclin E for ubiquitin-mediated proteosomal degradation.156,157 Somatic
mutations within FBXW7 have been reported at variable frequency among endometrial
carcinomas. Two studies found FBXW7 mutations only rarely (~3%) in endometrial
carcinomas, though neither specified the histology of tumors analyzed for mutations.100,154

In contrast, Suehiro et al identified a high frequency of FBXW7 mutations in EECs
(46.8%).158 Spruck et al reported a moderate frequency (16%) of FBXW7 mutations in
endometrial tumors that had elevated levels of cyclin E or phosphorylated cyclin E, although
the tumor histotype was not specified.155 Thus, the frequency of FBXW7 mutations in
NEECs remains to be elucidated.

CDKN2A (p16)
The CDKN2A/p16 tumor suppressor is a negative regulator of G1/S cell cycle progression.
Recent studies on large tumor panels have revealed that serous ECs nearly uniformly show
strong diffuse staining of p16, indicative of high expression.159–162 This is in stark contrast
to the weak focal staining of endometrioid tumors of all grades. Though the prognostic
significance and molecular basis for p16 overexpression has yet to be determined, it has
been suggested that p16 expression may serve as a potent biomarker that might be useful in
the molecular classification of ECs, particularly for high-grade tumors.161–163 In addition,
CDKN2A is mutated in 10%–28% of EECs compared with 44% of NEECs, although the
latter observation is based on a small sample size.163–165

Claudins and other cellular adhesion proteins
In 2005, Santin et al noted differential expression of numerous genes by microarray analysis
between primary short-term cultures of serous ECs and normal endometrial cells, including
several genes that regulate cell adhesion.166 Among these genes, claudins-3 and -4, which
encode cell adhesion proteins present at tight junctions, were upregulated in serous EC. RT-
PCR confirmed the upregulation of claudin-3 (8-fold) and claudin-4 (12-fold) in serous
cultures compared with normal endometrial cell cultures. Immunohistochemistry for
claudin-4 on corresponding primary tumor specimens, as well as a small number of
additional serous tumors, revealed stronger staining for claudin-4 in serous EC compared
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with normal endometrial cells. In a subsequent study of a large number of endometrial
tumors, Konecny et al showed that positive immunohistochemical staining for claudins-3
and -4 is significantly more frequent among serous (78% and 56%) and clear cell (61% and
44%) ECs than among EECs (38% and 9%).167 In multivariate analyses, claudin expression
was not a significant independent prognostic indicator. In contrast, Sobel et al failed to find
an association between claudin-3 and -4 levels and histotype of EC in a small series of
tumors.168 One possible reason for the variability between studies might be the differences
in sample sizes. The observation that claudins-3 and -4 are upregulated in serous EC holds
promise for the development of targeted therapy, since Clostridium perfringens enterotoxin
(CPE) targets claudins-3 and -4 and causes cytolysis upon binding.169

The original study that uncovered upregulation of claudins-3 and -4 in serous EC, compared
with normal endometrium, also noted upregulation of several other genes that encode cell
adhesion proteins, including L1CAM (L1 cellular adhesion molecule), and EpCAM
(Epithelial Cell Adhesion Molecule).166 The observation of L1CAM upregulation was
consistent with an earlier report that immunohistochemical expression of L1CAM was more
frequent among serous ECs than EECs (75% vs 16%), although the number of serous tumors
evaluated was small.170 The upregulation of EpCAM expression in serous EC has also been
verified immunohistochemically; in one study, EpCAM staining was shown to be
significantly higher in serous ECs than in normal endometrium.171 Serous EC cell lines that
were positive for EpCAM were sensitive to MT201 (adecatumumab), a human monoclonal
antibody against EpCAM, suggesting that high EpCAM levels may represent a druggable
target for serous ECs.171 As discussed below, E-cadherin, another cell adhesion molecule,
has a well-established role in serous EC.

E-cadherin
The CDH1 tumor suppressor gene encodes E-cadherin, a calcium-dependent cell adhesion
molecule. Loss of E-cadherin expression is a characteristic feature of the epithelial to
mesenchymal transition.172 Negative or reduced expression of E-cadherin has been
described in ECs, and is significantly more frequent among serous and clear cell endo-
metrial tumors than among EECs [83% vs 53%; P = 0.002],173 [62% vs 5%; P < 0.001],174

[87.1% vs 50%; P = 0.001],175 [75% vs 43%; P = 0.04].176 In stage I–III EC, multivariate
Cox regression analysis showed that high E-cadherin expression was associated with
decreased overall mortality, and was statistically significantly associated with decreases in
EC mortality, disease progression, and extra pelvic recurrence.177 In a recent multicenter
Phase II trial (GOG-119) that examined prognostic factors in stage IV or recurrent ECs, high
expression of E-cadherin was associated with longer median survival, and reduced risks of
disease progression and death.178

The molecular mechanisms accounting for reduced E-cadherin expression in EC are not
fully elucidated. Somatic mutations in CDH1 are rare in EC.179 Loss of heterozygosity
encompassing the gene has been reported at higher frequency in NEECs than EECs (57% vs
22.5%).176 CDH1 promoter hypermethylation is also common among ECs (21%–40%) but
does not always correlate with reduced protein expression.176,180,181

Other mechanisms that may contribute to decreased E-cadherin expression in EC include
dysregulation of certain transcriptional repressors of E-cadherin. Transcriptional repressors
of E-cadherin include SNAI1 (Snail), SNAI2 (Slug), ZEB1, HMGA2, and TWIST.182 In
stage IC EECs, each of these repressors is significantly overexpressed at the mRNA level,
compared with normal endometrium, with a tendency towards associated lower E-cadherin
levels, although this was not statistically significant.182 Other studies have reported a
statistically significant inverse correlation between Snail and E-cadherin expression in
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metastatic EECs.183 Similarly, an inverse correlation between ZEB1 expression and E-
cadherin expression has been noted in EC cell lines.184

Therapeutic targets for EC
Uncovering the genetic etiology of EC has provided not only new insights into the biology
of the disease, but has also revealed molecular alterations that may be exploited for targeted
therapy (Table 2).

The frequent mutational disruption of the PI3K-PTEN-AKT axis in EEC prompted clinical
trials of drugs that target this pathway. Among these agents are the mTOR inhibitors
temsirolimus (CC1-779), everolimus (RAD001), and ridaforolimus (AP23573).
Encouraging results of a Phase II trial of temsirolimus in chemotherapy-naïve and
chemotherapy-treated patients, with recurrent or metastatic EC, have recently been
reported.185 In the chemotherapy-naïve group, 14% of evaluable patients had a partial
response and 69% had stable disease (mean duration 9.7 months; range 2.1 to 14.6 months).
In the chemotherapy-treated group, partial responses were achieved in 4% of patients, while
48% of patients had stable disease (mean duration 3.8 months; range 2.4 to 23.2 months).
Interestingly, the PTEN mutational status of archival tumor tissue was not predictive of
response but, as noted in the study, this may not reflect the mutational status of the recurrent
tumor.185 A Phase II trial of everolimus in previously treated, progressive, or recurrent EEC
also reported encouraging results.186 Although there were no cases of complete or partial
response, 43% of evaluable patients had stable disease at the time of first evaluation (8
weeks); the confirmed clinical benefit rate was 21% at 20 weeks. No significant molecular
correlates of response were detected.187 The interim results of a Phase II trial of
ridaforolimus (AP23573) as a single agent in advanced EC patients with disease
progression, revealed that 33% of evaluable patients had clinical benefit response, including
two partial responses, one of which was serous EC.188 Importantly, preclinical studies have
shown that inhibition of mTOR can lead to activation of MAPK, while pharmacological
inhibition of MAPK enhances the anti-tumor effect of rapamycin, both in vitro and in
vivo.189 These observations have led to clinical trials using combinatorial approaches to
target both the PI3K and MEK pathways in EC and other cancers.

The recent identification of activating FGFR2 mutations in a subset of EECs, and
subsequent preclinical studies, have highlighted mutant FGFR2 as a potentially druggable
target. A Phase II clinical trial to access safety, tolerability, and pharmacokinetics of
FP-1039, a soluble fusion protein designed to bind FGFR ligands, for patients with
metastatic or locally advanced EC and a somatic FGFR2S252W or FGFR2P243R mutation, is
currently recruiting patients (NCT01244438). A Phase II study (NCT01379534) evaluating
the efficacy of TKI258 (dovitinib), a multitargeted receptor tyrosine kinase inhibitor, for
treatment of FGFR2-mutated or -wildtype, advanced or metastatic EC, is also recruiting
patients.

Recent preclinical evidence has indicated that PTEN deficiency sensitizes EC cells to PARP
inhibitors.67 Encouragingly, a recent case report of an EC patient with a PTEN-deficient,
presumed BRCA-intact, metastatic endometrioid endometrial tumor reported clinical benefit
following treatment with olaparib, a PARP inhibitor.190 NCI clinical trial #NCT01237067 is
a study for refractory or recurrent women’s cancers, including EC, which is designed to
determine the safety and efficacy of olaparib, a PARP inhibitor, in combination with
carboplatin.

HER-2 amplification and overexpression in NEECs also presents a druggable target.
Individual case reports have documented clinical responses in advanced or recurrent EC
patients following treatment with trastuzumab, an anti-HER-2 monoclonal antibody.191,192

O’Hara and Bell Page 10

Adv Genomics Genet. Author manuscript; available in PMC 2012 August 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



However, a Phase II trial of trastuzumab in a small cohort of recurrent or advanced stage,
HER2-positive EC patients documented stable disease in 40% of evaluable cases, with no
reports of partial or complete response.193

Additional targeted therapies being evaluated for the treatment of EC include
pharmacological inhibitors of VEGF, HIF1a, EphA2, and EGFR, as reviewed in detail
elsewhere.8,194

Conclusion and future prospects
In conclusion, our understanding of the genetic etiology of EECs and serous ECs has
advanced considerably over the past 20 years, and reflects a large body of research on
individual genes, gene families, and pathways, as reviewed herein. As for most cancers, the
rate-limiting step in dissecting the genetic alterations that underlie EC has been the
availability of sufficiently high-resolution genomic technologies.195 However, within the
past 5 years, the development and implementation of so-called next generation sequencing
has resulted in a massive paradigm shift in cancer genomics because it provides the tools to
systematically interrogate cancer genomes, exomes, and transcriptomes, nucleotide by
nucleotide, for somatic alterations in gene sequence, structure, and copy number.195

The Cancer Genome Atlas is currently conducting large-scale, integrated genomic and
epigenomic analyses of low-grade EECs, high-grade EECs, and serous ECs using massively
parallel sequencing and other high resolution genomic and epigenomic approaches. The
resulting catalogs of somatic alterations are eagerly awaited because they will reveal, for the
first time, the most comprehensive view of the genomic, transcriptomic, and epigenomic
landscape of ECs. This will provide a solid foundation for future studies to determine
whether the altered genes are relevant to the biology and clinical management of women
with EC.
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Figure 1.
Mean frequency of somatic mutations in cancer genes in endometrioid and serous ECs. The
data were derived for genes that have been evaluated in at least 40 tumors of each subtype:
FGFR2,52,100,101 KRAS,38,52,53,57,63,77,78,80,87,88,90,92,100,102,105 PIK3CA,52,57

PIK3R1,52,58 PPP2R1A,133–135 PTEN,52,53,56,57,59,60,62,72,102,196–198

TP53.52,60,80,92,122,128,129,131,196
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Table 1

Frequency range of genomic and proteomic aberrations among endometrioid and non-endometrioid
endometrial cancers

Tumor characteristic Frequency (range) References

EECs (%) NEECs (%)

Aneuploidy 10–50 70–95 116,118–120

MSI+ 20–23 15 26–28,30

AKT1 mutation 2–3 13 53,199

ARID1A mutation 40 0 113

BRAF mutation 0–23 11 88,92

CDKN2A mutation 10–30 44* 163–165

CTNNB1 mutation 2–45 0** 52,103,110

FBXW7 mutation 2–16 0 154,155

FGFR2 mutation 5–16 2–3 100,101

KRAS mutation 8–43 2 57,80,88

PIK3CA mutation 20–52 33 57,62

PIK3R1 mutation 21–43 12 52,58

PPP2R1A mutation 3–7 17–41 133–135

PTEN mutation 26–79 13–19 57,198

TP53 mutation 5–20 53–90 60,122,125,129

CCNE1 amplification 5 42 154

ERBB2 amplification 1–63 17–42 137,138,200

E-Cadherin negative expression 5–53 62–88 173,174,176

Claudin-3 positive expression 38 74 167

Claudin-4 positive expression 9 63 167

p16 positive expression 5–38 63–100 160,161

Notes:

*
Based on an analysis of twelve tumors;

**
based on an analysis of nine tumors.
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Table 2

Ongoing clinical trials of targeted therapies for endometrial cancer (ClinicalTrials.gov)

Inhibitor Molecular target Phase Monotherapy/combination therapy Trial identifier

Temsirolimus mTOR II Combination NCT01010126

Temsirolimus mTOR II Combination NCT00977574

Temsirolimus mTOR I Combination NCT00982631

Ridaforolimus mTOR I Combination NCT01256268

Everolimus mTOR I Combination NCT00703807

MK2206 AKT II Monotherapy NCT01307631

BKM120 PI3K II Monotherapy NCT01397877

XL147 PI3K II Monotherapy NCT01013324

XL147 PI3K I Combination NCT00756847

GDC-0980 PI3K II Monotherapy NCT01455493

BKM120 Pan-PI3K II Monotherapy NCT01289041

DS-7423 PI3K/mTOR I Monotherapy NCT01364844

BEZ235 PI3K/mTOR II Monotherapy NCT01290406

PF-04691502/PF-05212384 PI3K-mTOR/PI3K-mTOR II Combination NCT01420081

XL147/MSC1936369B PI3K/MEK I Combination NCT01357330

GSK1120212/GSK2110183 MEK/AKT I Combination NCT01476137

MSC1936369B/SAR245409 MEK/PI3K-mTOR I Combination NCT01390818

FP-1039 FGF II Monotherapy NCT01244438

Trastuzumab HER-2 II Combination NCT01367002

ARRY-380 HER-2 I Monotherapy NCT00650572

BIBF 1120 VEGFR/FGFR/PDGFR II Monotherapy NCT01225887

TKI258 RTKs II Monotherapy NCT01379534

Sunitinib or temsirolimus RTKs/mTOR II Monotherapy NCT01396408

GSK2636771 PTEN-deficiency I/IIa Monotherapy NCT01458067

ARRY-382 CSF-1 receptor I Monotherapy NCT01316822

RO4929097/temsirolimus Gamma-secretase/mTOR I Combination NCT01198184

Olaparib PARP I Combination NCT01237067
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