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Abstract
We utilize 198 and 204 nm excited UV resonance Raman spectroscopy (UVRR) and circular
dichroism spectroscopy (CD) to monitor the backbone conformation and the GLN side chain
hydrogen bonding (HB) of a short, mainly polyGLN peptide of sequence D2Q10K2 (Q10). We
measured the UVRR spectra of valeramide to determine the dependence of the primary amide
vibrations on amide HB. We observe that non-disaggregated Q10 (NDQ10) solution (prepared by
directly dissolving the original synthesized peptide in pure water) occurs in a β-sheet
conformation, where the GLN side chains form HB to either the backbone or other GLN side
chains. At 60 °C, these solutions readily form amyloid fibrils. We used the polyGLN
disaggregation protocol of Wetzel et al (Methods Enzymol, 2006, 413, 34–74) to dissolve the Q10
β-sheet aggregates. We observe that the disaggregated Q10 (DQ10) solutions adopt PPII-like and
2.51-helix conformations where the GLN side chains form HB to water. In contrast, these samples
do not form fibrils. The NDQ10 β-sheet solution structure is essentially identical to that found in
the NDQ10 solid formed upon solution evaporation. The DQ10 PPII and 2.51-helix solution
structure is essentially identical to that in the DQ10 solid. Although the NDQ10 solution readily
forms fibrils when heated, the DQ10 solution does not form fibrils unless seeded by NDQ10
solution. This result demonstrates very high activation barriers between these solution
conformations. The NDQ10 fibril secondary structure is essentially identical to that of the NDQ10
solution, except that the NDQ10 fibril backbone conformational distribution is narrower than in
the dissolved species. The NDQ10 fibril GLN side chain geometry is more constrained than when
NDQ10 is in solution. The NDQ10 fibril structure is identical to that of the DQ10 fibril seeded by
the NDQ10 solution.

Introduction
There are at least nine neurodegenerative diseases that are caused by long CAG DNA
repeats that encode for proteins with long tracts of polyGLN residues. (1, 2) In these
diseases, the extended polyGLN regions aggregate to form amyloid fibrils. (3–5) Previous
studies suggest that polyGLN fibril structures are stabilized by both main chain and side
chain HB.(6–9) However, there has been little work that investigates the role of HB in the
aggregation mechanism(s) of polyGLN rich peptides and proteins. (10)
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Given the central role that backbone and side chain HB can potentially play in stabilizing
polyGLN aggregates, it is important to find spectral markers for tracking these HB.
Backbone HB is sometimes monitored by measuring the frequencies of the backbone amide
vibrations, such as the AmI vibration (mainly C=O s) and the AmIII vibration (mainly in-
phase combination of CN s and NH b) and the N-H stretching vibration. (11–16) The
frequency of the AmII vibration (mainly out of phase combination of CN s and NH b) also
depends on backbone HB. (17)

However, a method for studying side chain HB is needed. The C=O stretching frequencies
of ASN, GLN, protonated ASP and GLU side chains are sensitive to HB. (18–20)
Unfortunately, the use of IR spectroscopy for monitoring side chain vibrations is challenging
due to spectral congestion, and isotopic labeling is often required to unambiguously assign
bands. Solid state NMR spectroscopy (ssNMR) has been used to characterize GLN side
chain HB. (21, 22) However, ssNMR requires long measurement times, and often requires
sophisticated isotope labeling.

In this work here, we show that UVRR can selectively enhance the GLN primary amide side
chain vibrations, and that these vibrations can be used to track GLN side chain HB. Here, we
utilize 198 and 204 nm excited UVRR and CD to monitor the backbone conformation and
the GLN side chain HB of a short, mainly polyGLN peptide Q10, of sequence D2Q10K2.
Previous studies of similar peptides have shown that these peptides can aggregate to form β-
sheet rich amyloid fibrils. (8, 9, 23–29) We observe that non-disaggregated Q10 (NDQ10) in
solution occurs as β-sheets in which the GLN side chains form HB to either the backbone or
other GLN side chains. At 60 °C, these solutions readily form amyloid fibrils. We used the
polyGLN disaggregation protocol of Wetzel et al (30) to disaggregate Q10. We observe that
disaggregated Q10 (DQ10) solution adopts PPII-like and 2.51-helix conformations in which
the GLN side chains form HB to water. These samples do not form fibrils. Addition of small
quantities of NDQ10 readily nucleates fibrils. This directly demonstrates that high activation
barrier occurs between the monomer extended DQ10 solution conformation and the β-sheet
structures that fibrillize.

Experimental Details
Materials

The short mainly polyGLN peptide of sequence D2Q10K2 (Q10) (> 90% purity) was
synthesized by AnaSpec Inc, by using a solid phase peptide synthesis method. Briefly, the
first amino acid Fmoc-AA-OH was coupled onto the resin and the peptide was synthesized
through sequential synthetic operations of Fmoc deprotection, washing, Fmoc amino acid
coupling, and washing. The synthesized crude peptide was obtained after acid cleavage from
the solid support resin using a Trifluoroacetic acid (TFA) cocktail (where TFA is the major
component).

The resulting crude peptide was then purified with preparative HPLC (using large columns
and high flow rates) by using a mobile phase gradient consisting of 0.1 % (v/v) TFA in
water and pure acetonitrile. The purified sample was then lyophilized.

Valeramide (97% purity) was purchased from Alfa Aesar. L-Glutamine (99% purity) was
purchased from Acros. TFA (99.5% purity) was purchased from Acros. 1,1,1,3,3,3-
hexafluoro-2-propanol (HFIP, ≥ 99% purity) was purchased from Fluka.

Solutions of non-disaggregated Q10 (NDQ10) were prepared by directly dissolving the
peptide in pure water at 1 mg/ml concentrations at pH 4.3. NDQ10 solid samples were
prepared by evaporating the NDQ10 solution. The UVRR spectra were identical to that of
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the solid sample obtained from the manufacturer. We used the polyGLN disaggregation
protocol of Wetzel et al (30) to dissolve the Q10 aggregates. Briefly, solutions of
disaggregated Q10 (DQ10) were prepared by suspending 10 mg of Q10 in a 5 mL solution
of 1:1 (v/v) TFA and HFIP [TFA alone dissolves Q10 aggregates (see Fig. S3 in supporting
information); the primary function of HFIP is to facilitate the removal of TFA. (30)]. The
samples were then sonicated for 20 min [Sonication is not essential (see Fig. S3 in
supporting information)] and incubated at room temperature for ~ 2 hr. The solvents were
evaporated with a gentle stream of dry N2 gas for ~ 20 min. The peptide film was
resuspended in pure water at a final concentration of ~ 1 mg/mL and the pH was adjusted to
7. The peptide solution was centrifuged at 627,000 g for 30 min at 4 °C, and the top 66% of
the solution was used. DQ10 solid samples were prepared by evaporating the DQ10
solution. NDQ10 fibrils were prepared by incubating 4 mg/ml NDQ10 solution at 60 °C for
~ 1 week (60 °C was chosen to speed up the reaction). DQ10 fibrils were prepared by
incubating 4 mg/ml DQ10 solution after seeding with 2 % NDQ10 solution at 60 °C for ~ 4
days. Fibrils were harvested by centrifugation at 627,000 g for 15 min.

CD spectra between 190 – 250 nm were measured by using a Jasco-715 spectropolarimeter
with a 0.02 cm path length cuvette. Five 1-min accumulations were averaged.

The UVRR spectrometer was described in detail by Bykov et al. (31) Briefly, 204 nm UV
light was obtained by generating the fifth anti-Stokes Raman harmonic of the third harmonic
of a Nd:YAG laser (Coherent, Infinity). 198 nm UV light was obtained by mixing the 3rd

harmonic of the 792 nm fundamental of a 1 KHz repetition rate tunable Ti:Sapphire laser
(DM20-527 TU-L-FHG) from Photonics Industries.

The liquid sample was circulated in a free surface, temperature-controlled stream. A
spinning cell was used for the solid samples to minimize photodegradation; the solid
samples were packed into a circular groove of the cylindrical spinning disc. The fibrils were
resuspended in 100 μL pure water and transferred into a spinning Suprasil NMR tube. A
165° sampling backscattering geometry was used. The collected light was dispersed by a
double monochromator onto a back thinned CCD camera with a Lumogen E coating
(Princeton Instruments-Spec 10 System). We averaged four 5-min accumulations. The
Raman spectral frequencies are accurate to ± 1 cm−1. The relative standard deviations in
spectral intensities are ≤ 1%.

Electron micrographs were measured by using a Tecnai T12 microscope (FEI) operating at
120 KV. Samples were prepared on carbon coated grids and stained with 2% uranyl acetate.
Samples were magnified 30,000 X.

X ray patterns were measured by using a Bruker Smart Apex CCD diffractometer.

Results
UVRR of valeramide

We examined the UVRR spectra of valeramide in order to model the GLN side chain
primary amide UVRR spectra, to determine the dependence of the primary amide vibrations
on their HB to water. 198 and 204 nm excitation both occur within the π→π* electronic
transition of the primary amide group.(32) Thus, the side chain amide group vibrations are
selectively enhanced.

Fig. 1 shows the 204 nm excited UVRR spectra of valeramide in water at 22 °C and 65 °C.
The 22 °C spectrum shows an AmI-like shoulder at ~ 1666 cm−1 (mainly CO s) and an
AmII-like band at 1606 cm−1 (mainly NH2 b with a small contribution from CO s). It also
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shows a δasCH3 shoulder at 1458 cm−1 (asymmetric deformation of the CH3 group), and a
strong peak at 1420 cm−1 where the δCH2 band (CH2 b) and an AmIII-like band (mainly CN
s with minor contributions from CH2 b and NH2 r) overlap. The ωCH2 band occurs at 1312
cm−1 (CH2 w). The rNH2

1 and rNH2
2 bands (mainly NH2 r) occur at 1132 and 1082 cm−1,

respectively. (32–34)

As the temperature increases to 65 °C, the AmI band frequency little changes. The AmII
band upshifts 2 cm−1. The δasCH3 band downshifts 2 cm−1 and its intensity decreases. The
AmIII+δCH2 peak downshifts 4 cm−1. The ωCH2 band does not change. The rNH2

1 and
rNH2

2 bands both downshift 2 cm−1.

In acetonitrile—The UVRR spectrum of valeramide in pure acetonitrile (Fig. 2) changes
dramatically compared to that in pure water. The AmI band upshifts 21 cm−1 due to the
decreased HB in acetonitrile, (17) and its relative intensity dramatically increases. The AmII
band upshifts 11 cm−1 due to the decreased HB of the -NH2. The frequency of the δasCH3
band shows little change. The AmIII+δCH2 peak and ωCH2 bands downshift 31 and 12 cm−1,
respectively. The rNH2

1 and rNH2
2 bands downshift 6 and 16 cm−1, respectively.

Solid state—The UVRR spectrum of valeramide powder from the manufacturer (red, Fig.
3) differs significantly from that dissolved in water. The AmI band upshifts 10 cm−1,
indicative of weakened carbonyl HB, (17) and the relative intensity of the AmI band
significantly increases. The AmII band downshifts 5 cm−1. The AmIII+δCH2 peak becomes
asymmetric and upshifts 12 cm−1. The δasCH3 band is not evident. The frequency of ωCH2
band changes little. The rNH2

1 and rNH2
2 bands upshift 10 and 8 cm−1, respectively.

Raman cross sections for valeramide
We calculated the Raman cross sections for valeramide in water and in acetontrile by using
eq 1:(35)

eqn 1

where Ival and Ir are the relative intensities of the valeramide band and the internal standard
band (which is the 932 cm−1 ClO4

− band in aqueous solution or the 918 cm−1 C-C stretching
band of acetonitrile in pure acetonitrile(36)). k(λr) and k(λval) are the spectrometer
efficiencies at the wavelengths of the internal standard and valeramide Raman bands. Cr and
Cval are the concentrations of the internal standard and valeramide, respectively. σr is the
total differential Raman cross section of the internal standard band at the excitation
frequency, νex. εex is the sample molar absorptivity at νex. εval and εr are the sample molar
absorptivities at the valeramide Raman band frequency and the internal standard band
frequency, respectively. The expression in the brackets approximately corrects the Raman
intensities for self-absorption in a backscattering geometry.

Table 1 shows the measured total differential Raman cross sections for valeramide. The 204
nm Raman cross section values of the valeramide amide bands in pure water are
approximately half of those of protein backbone secondary amide bands, (37) presumably
because the primary amide group electronic transition is blueshifted from that of the peptide
bond secondary amides. (32)

The Raman cross sections of the valeramide bands in pure acetonitrile are decreased relative
to those in pure water, except for the AmI band cross section, that doubles. A similar
behavior was observed for the AmI band of N-methylacetamide. (38) The increased cross
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section was ascribed to a larger relative CO bond excited state displacement in acetonitrile.
(38) The Raman cross sections of the valeramide bands generally triple as the excitation
wavelength decreases from 204 to 198 nm, except for the AmII band cross section in
acetonitrile, that increases by more than 10-fold. The 198 nm Raman cross section values of
the valeramide primary amide bands are similar to those of the protein backbone secondary
amide bands. (37)

Hydrogen bonding effects on frequencies of primary amide vibrations
These UVRR studies of valeramide indicate that the AmI, AmII, rNH2

1 and rNH2
2

frequencies of the primary amide depend on HB. Water HB to the carbonyls downshifts the
AmI band by 21 cm−1 (see Table 2), while HB to the –NH2 upshifts the rNH2

1 and rNH2
2

bands by 6 and 16 cm−1, respectively; the AmII band downshifts 11 cm−1 upon HB to –
NH2. The solid state AmI band upshifts 10 cm−1 relative to that in water, indicating weaker
carbonyl HB in the valeramide solid than in water. The solid state AmII band downshifts 7
cm−1 compared to that in water, and the rNH2

1 and rNH2
2 bands upshift 12 and 10 cm−1,

respectively. This indicates stronger –NH2 HB in the valeramide solid than in water.

X ray studies of butyramide solid (39) (which has one less methylene than valeramide)
indicate that each carbonyl forms two HBs to the two amine H atoms of two adjacent
molecules, while each –NH2 forms two HBs to two carbonyls. This stronger –NH2 HB may
result from the fact that while the valeramide carbonyl HB geometry is more optimized in
water than in the solid state, the –NH2 HB is stronger in the solid state.

Q10 solution backbone conformation
We performed both CD and UVRR measurements to examine the Q10 solution backbone
conformation. Previous studies of similar peptides indicate that non-disaggregated polyGLN
peptides in aqueous solutions occur as β-sheets, (24) while freshly disaggregated polyGLN
peptides adopt extended conformations.(40, 41)

Fig. 4 shows the CD spectra of Q10 solutions. The CD spectrum of the NDQ10 in pure
water (dashed line) shows a trough at ~ 218 nm and a strong positive band at 197 nm, both
characteristic of β-sheet. (42) The spectrum of the DQ10 in pure water (solid line) shows a
very slight negative ellipticity at ~ 220 nm and a strong negative band at 200 nm, indicative
of extended conformations. (43–45)

204 nm excitation occurs within the π→π* electronic transition of the backbone secondary
amides (37) and to the long wavelength side of the side chain primary amide electronic
transitions. (32) Fig. 5 shows that the 204 nm excited UVRR spectra of Q10 solutions are
dominated by the backbone amide vibrations (indicated by b). The backbone amide
vibrations are more enhanced by 204 nm excitation than are those of the side chain amide
(indicated by s; the side chain amide bands were assigned based on the measured valeramide
primary amide band frequencies). (32)

The UVRR spectrum of the NDQ10 (red) shows an AmIb band at ~ 1660 cm−1, an AmIIb

band at ~ 1550 cm−1, the (C)Cα-Hb bending bands at ~ 1400 cm−1, and the AmIIIb region
between 1180 and 1330 cm−1. The AmIb band overlaps with the GLN side chain AmIs band;
the CαHb band overlaps with the side chain AmIIIs+δCH2 peak.

The AmIIIb region of Q10 contains no overlapping side chain contributions. We calculated
the Ramachandran Ψ probability distributions for the Q10 backbone peptide bonds from the
Fig. 5 UVRR spectra by using the methodology of Mikhonin et al (11, 46, 47). This method
correlates different AmIII3 frequencies of the band envelope to different peptide bond Ψ
angles. This deconvolutes the inhomogeneously broadened AmIII bandshape to a Ψ angle
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distribution (see supporting information for details). The estimated error of this
Ramachandran Ψ angle determination was suggested to be ≤ ± 14°. (11)

The Fig. 6 Ψ-distribution for the NDQ10 shows a dominant β-sheet contribution (Ψ ~
138°). It also contains contributions from Type I, Type III or Type VIII β-turn regions (Ψ ~
−40°). The Ψ-distribution for the DQ10 shows a dominant contribution of PPII-like (Ψ ~
145°) and 2.51-helix conformations (Ψ ~ 170°). It also contains contributions of Type I′ or
Type III′ β-turns (Ψ ~ 30°).

Previous studies indicate that poly-L-lysine and poly-L-glutamate adopt 2.51-helix
conformations that are stabilized by electrostatic repulsion between the charged side chains.
(48–50) We surprisingly find that DQ10 adopts 2.51-helix conformations. The mechanism(s)
by which these 2.51-helix conformations of Q10 are stabilized is unknown.

Q10 solution side chain hydrogen bonding
198 nm excitation (Fig. 7) enhances the primary amide UVRR bands significantly more than
does 204 nm excitation. As a result, the difference spectrum between the 198 and 204 nm
excited UVRR spectra of Q10 (Fig. 7) is dominated by the GLN side chain primary amide
bands.

The 198 – 204 nm difference spectrum of NDQ10 in pure water (Fig. 8) shows an AmIs

band at 1657 cm−1 and an AmIIs band at 1614 cm−1. It also shows an AmIIIs band at 1414
cm−1 and a ωCH2 band at 1353 cm−1. The rNH2

1 and rNH2
2 bands occur at 1110 and 1056

cm−1, respectively.

The 198 – 204 nm difference spectrum of DQ10 in pure water (Fig. 8, black) differs
significantly from that of NDQ10. The DQ10 AmIs band upshifts 26 cm−1, indicating
weaker HB of the GLN side chain carbonyls than that of NDQ10. The AmIIs frequency
shows little change. The AmIIIs frequency upshifts 22 cm−1. The DQ10 rNH2

1 and rNH2
2

frequencies upshift 13 and 19 cm−1 respectively, indicating stronger HB of the GLN side
chain –NH2 than in NDQ10.

The frequencies of the GLN primary amide vibrations of the DQ10 in pure water (Fig. 8,
black) are very similar to those of glutamine in pure water (Fig. 8, blue); the 204 nm excited
UVRR spectrum of glutamine only contains side chain amide vibrations, there are no
secondary amides. This indicates that HB of the GLN side chains of DQ10 is similar to that
of glutamine in pure water; i.e., the GLN side chains of DQ10 form HB to water.

The DQ10 AmIIIs band significantly narrows compared to glutamine in water. This may
result from the fact that the glutamine side chain has conformations in solution where the
primary amide side chain interacts with the –NH3

+ groups.

Previous studies indicated that polyGLN aggregates adopt β-sheet conformations that are
stabilized by both main chain and side chain HB. (6–9) We observe that the GLN side chain
HB of NDQ10 differs significantly from that of DQ10. The NDQ10 AmIs frequency
downshifts 26 cm−1 relative to that of DQ10, and its rNH2

1 and rNH2
2 frequencies

downshift 13 and 19 cm−1 respectively. Table 2 shows that HB to the primary amide
carbonyls significantly downshift the AmIs frequency, while HB to the –NH2 upshift the
rNH2

1 and rNH2
2 frequencies. Thus, HB of the NDQ10 GLN side chain carbonyls is

stronger than that of DQ10, while HB of its GLN side chain –NH2 is weaker than that of
DQ10. These results indicate that the GLN side chain carbonyls of NDQ10 do not form HB
to water. Instead, they form HB to the backbone –NH or to GLN side chain –NH2.
Presumable, this conformation results in weaker –NH2 HB.
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Q10 solids
We measured the 204 nm excited UVRR spectra of Q10 solids formed by evaporation of the
NDQ10 and DQ10 solutions. The UVRR spectral frequencies of the NDQ10 solid (Fig. 9,
black) are very similar to that of NDQ10 in solution (Fig. 9, red), indicating that the
backbone conformations and the GLN side chain HB of NDQ10 solid and solution are
essentially identical, and mainly β-sheet. The NDQ10 solid shows a powder X ray pattern
(Fig. 10) very similar to that of Perutz et al.(23) The 4.75-Å reflection (Fig. 10) is
characteristic of β-sheet structures.(23)

The AmIIIb region of the solvent evaporated DQ10 solid (Fig. 9, blue) is similar to that of
DQ10 solution (Fig. 9, green), indicating that their Q10 backbone conformations are similar.
The solid state AmIIb band downshifts 7 cm−1 compared to that of solution, indicating
weakened HB of the solid state backbone –NH(17); while the solid state AmIb and AmIs

bands upshift 5 cm−1 relative to that of solution, indicating weakened HB to the solid
backbone carbonyls and the GLN side chain carbonyls. (17)

These results indicate the Q10 solution and solid state conformations are essentially
identical.

This suggests that the solution state activation barriers between extended PPII and 2.51-helix
conformations and the β-sheet aggregate conformations are very high; these structures are
not in a equilibrium in solution or during solution evaporation.

Q10 solution fibrillization
We observe that NDQ10 in pure water forms amyloid fibrils after incubation at 60 °C for ~
2 days (confirmed by using TEM and the ThT binding essay (24); the short time TEM of
NDQ10 does not show fibril structures, see Fig. S4 in supporting information). In contrast,
DQ10 does not form fibrils even after incubation for > 2 weeks at 60 °C. However, upon
seeding with a small aliquot of the NDQ10 solution, the DQ10 solution readily forms fibrils
at 60 °C (confirmed by using TEM and the ThT binding assay). Thus, NDQ10 appears to
contain small aggregates that seed fibrillation.

Thus, the activation barrier for DQ10 to form β-sheet aggregates that evolve to NDQ10
fibrils is quite high. The fact that DQ10 solutions do not self nucleate fibrils is consistent
with previous studies of similar peptides. (24, 51, 52)

Q10 fibrils
Fig. 11a and b show electron micrographs of the NDQ10 fibrils, and the DQ10 fibrils
formed upon seeding with the NDQ10 solution. Fig. 11c shows the 204 nm excited UVRR
spectra of the NDQ10 fibrils, the DQ10 fibrils and the UVRR spectrum of the NDQ10
solution. The NDQ10 fibril band frequencies (Fig. 11c, red) are very similar to those of the
NDQ10 solution (Fig. 11c, black). Thus, the NDQ10 fibrils also occur in a β-sheet structure
in which the GLN side chains form HB to the backbone or to other GLN side chains.
However, the NDQ10 fibril bands are significantly narrowed compared to those in the
NDQ10 solution, indicating a narrower backbone conformational distribution and more
constrained GLN side chain geometries for the NDQ10 fibrils than for the NDQ10 solution.

The UVRR spectrum of the DQ10 fibrils formed upon seeding with an aliquot of the
NDQ10 solution (Figure 11c, blue) is identical to that of the NDQ10 fibrils spontaneously
formed (Figure 11c, red), indicating identical Q10 backbone conformations and GLN side
chain HB.
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Discussion
Q10 Structure

CD and UVRR studies indicate that NDQ10 in pure water adopts a predominantly β-sheet
structure, consistent with previous studies indicating that polyGLN aggregates form β-sheet
rich structures. (24, 53) UVRR also observes turn conformations in NDQ10. The fractions
of β-sheet and turn conformations are 0.84 and 0.16, respectively. This ratio suggests that
NDQ10 in pure water occurs as β-hairpins in which two residues are in the turn region and
eleven residues form a β-sheet structure (Fig. 12).

We observe that DQ10 in pure water adopts predominantly PPII-like and 2.51-helix
conformations (Fig. 12). Previous studies indicate that glutamine residues in short polyGLN
sequences have a high propensity to form PPII-like conformations,(40, 41) other studies,
however, report disordered structures.(29, 51, 54–57)

198 and 204 nm excited UVRR indicate that the GLN side chains of NDQ10 form HB to the
backbone or other GLN side chains, while the GLN side chains of DQ10 form HB to water.

We also observe that the NDQ10 fibril secondary structure is essentially identical to that in
the NDQ10 solution, except that the NDQ10 fibril backbone conformational distribution is
narrower. Thus, the fibril GLN side chain geometry is more constrained than that of the
NDQ10 solution.

The UVRR determined NDQ10 fibril structure appears identical to that of the DQ10 fibrils
seeded by an aliquot of the NDQ10 solution. These results suggest that the Q10 fibrils
consist of stacks of β-hairpins. Previous studies of a similar peptide of sequence D2Q15K2
also indicated β-hairpin fibril structure. (8, 9, 25)

Conclusions
We utilize UVRR and CD to monitor the backbone conformation and the GLN side chain
HB of a short mainly polyGLN peptide Q10, of sequence D2Q10K2. We measured UVRR
spectra of valeramide to determine the dependence of primary amide vibrations on the
primary amide HB. We observe that NDQ10 occurs in a β-sheet-like structure in which the
GLN side chains form HB to the backbone or other GLN side chains.

These solutions readily form amyloid fibrils. In contrast, DQ10 solutions adopt PPII-like
and 2.51-helix conformations in which the GLN side chains form HB to water. These
samples do not form fibrils upon heating within two weeks. The NDQ10 and DQ10 solution
structures are essentially identical to their solid state structures. Although the NDQ10
solution readily forms fibrils when heated, the DQ10 solution does not form fibrils unless
seeds from the NDQ10 solution are added. This indicates very high activation barriers occur
between these solution conformations.

The Q10 fibril secondary structure is essentially identical to that of the NDQ10 solution,
except that the fibril backbone conformational distribution is narrower and its GLN side
chain geometry is more constrained compared to that of the NDQ10 solution.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Temperature dependence of the 204 nm excited UVRR spectra of valeramide in water at 22
°C (Black) and 65 °C (Red). Water contributions were removed. The intensities were
normalized to the 932 cm−1 ClO4

− peak height.
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Figure 2.
The 204 nm excited UVRR spectra of valeramide at 22 °C: Black in water; Red in pure
acetonitrile. Solvent contributions were removed. The intensities were normalized to the
AmIII+δCH2 peak height.
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Figure 3.
The 204 nm excited UVRR spectra of valeramide solid (Red) and in water (Black) at 22 °C.
Water contributions were removed. The intensities were normalized to the AmIII+δCH2
peak height.
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Figure 4.
CD spectra of 1 mg/ml DQ10 (solid line) and NDQ10 (dashed line) in pure water at 22 °C.
Measured by using a 0.02 cm path length cuvette.
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Figure 5.
The 204 nm excited UVRR spectra of the DQ10 (black) and NDQ10 (red) in pure water at
22 °C. b indicates backbone vibration; s indicates side chain vibration. The intensities were
normalized to the AmIIIb peak height.
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Figure 6.
Calculated Ψ-angle distributions for the NDQ10 and DQ10 in pure water at 22 °C.
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Figure 7.
The 198 (blue) and 204 nm (black) excited UVRR spectra of the NDQ10 in pure water at
22 °C, and the difference spectrum between them (red). The intensities were normalized to
the AmIIIb peak height before spectral subtraction.
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Figure 8.
The difference spectra between the 198 and 204 nm excited UVRR spectra of the NDQ10
(red) and DQ10 (black) in pure water at 22 °C. The 204 nm excited UVRR spectrum of
glutamine in pure water at pH 1.6 at 22 °C (blue).
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Figure 9.
The 204 nm excited UVRR spectra of the NDQ10 solid (black) and solution (red), DQ10
solid (blue) and solution (green) at 22 °C. b indicates backbone vibration; s indicates side
chain vibration. The intensities were normalized to the AmIIIb peak height.
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Figure 10.
Powder x ray diffraction of NDQ10 solid. The sample was prepared by slowly evaporating
NDQ10 solution on a glass slide over ~ 2 days.
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Figure 11.
Electron micrographs of (a) NDQ10 fibrils in pure water after incubation at 60 °C for ~ 1
week and (b) DQ10 fibrils in pure water upon seeding with 2% NDQ10 solution after
incubation at 60 °C for ~ 4 days. (c) 204 nm excited UVRR spectra of the NDQ10 fibrils,
the DQ10 fibrils and the NDQ10 solution at 22 °C.
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Figure 12.
Proposed structures of NDQ10 and DQ10. NDQ10 occurs as β-sheets in which the GLN
side chains form HB to the backbone or other GLN side chains. DQ10 adopts PPII and 2.51-
helix conformations in which the GLN side chains form HB to water. Main chain – main
chain HB a, main chain – side chain HB b, side chain – side chain HB c.
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Table 2

The measured AmI, AmII, rNH2
1 and rNH2

2 frequencies of valeramide.

AmI/cm−1 AmII/cm−1 rNH2
1/cm−1 rNH2

2/cm−1

in water at 22 °C 1666 1606 1132 1082

in water at 65 °C 1666 1608 1130 1080

in acetonitrile at 22 °C 1687 1617 1126 1066

solid at 22 °C 1676 1601 1142 1090
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