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Abstract
Recent insights into sleep apnoea pathogenesis reveal that a low respiratory arousal threshold
(awaken easily) is important for many patients. As most patients experience stable breathing
periods mediated by upper-airway dilator muscle activation via accumulation of respiratory
stimuli, premature awakening may prevent respiratory stimuli build up as well as the resulting
stabilization of sleep and breathing. The aim of the present physiological study was to determine
the effects of a non-benzodiazepine sedative, eszopiclone, on the arousal threshold and the AHI
(apnoea/hypopnoea index) in obstructive sleep apnoea patients. We hypothesized that eszopiclone
would increase the arousal threshold and lower the AHI in patients with a low arousal threshold (0
to −15 cmH2O). Following a baseline overnight polysomnogram with an epiglottic pressure
catheter to quantify the arousal threshold, 17 obstructive sleep apnoea patients, without major
hypoxaemia [nadir SaO2 (arterial blood oxygen saturation) >70%], returned on two additional
nights and received 3 mg of eszopiclone or placebo immediately prior to each study. Compared
with placebo, eszopiclone significantly increased the arousal threshold [−14.0 (−19.9 to −10.9)
compared with −18.0 (−22.2 to −15.1) cmH2O; P < 0.01], and sleep duration, improved sleep
quality and lowered the AHI without respiratory event prolongation or worsening hypoxaemia.
Among the eight patients identified as having a low arousal threshold, reductions in the AHI
occurred invariably and were most pronounced (25 ± 6 compared with 14 ± 4 events/h of sleep; P
< 0.01). In conclusion, eszopiclone increases the arousal threshold and lowers the AHI in
obstructive sleep apnoea patients that do not have marked overnight hypoxaemia. The greatest
reductions in the AHI occurred in those with a low arousal threshold. The results of this single
night physiological study suggest that certain sedatives may be of therapeutic benefit for a
definable subgroup of patients. However, additional treatment strategies are probably required to
achieve elimination of apnoea.
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INTRODUCTION
OSA (obstructive sleep apnoea) is a serious condition with major cardiovascular and
neurocognitive morbidity [1–3]. Existing treatments are often inadequate due to poor
adherence or variable efficacy [4–6]. There are currently no pharmacological therapies to
treat OSA [7]. Thus identification of novel therapeutic targets for OSA remains an important
objective.

The pathophysiological causes of OSA vary considerably between patients [8,9]. As such,
the concept of individualized therapeutic approaches is emerging such that treatment of the
major underlying abnormality may be beneficial in the appropriately targeted patient
subgroups [8,10]. Most OSA patients have anatomical compromise yielding a compensatory
increase in pharyngeal dilator muscle activity during wakefulness to maintain airway
patency [11]. During sleep, these muscles generally lose activity leading to pharyngeal
collapse among susceptible individuals. However, accumulation of physiological stimuli
(carbon dioxide and negative pharyngeal pressure) can recruit dilator activity in many OSA
patients if sleep can be maintained [12–15]. Indeed, periods of breathing stability, observed
in most OSA patients during sleep [16], are associated with increased activity of the
genioglossus muscle [13]. This finding suggests that, if sleep can be maintained for adequate
duration to facilitate sufficient endogenous respiratory stimuli accumulation, the pharyngeal
dilator muscles are both necessary and sufficient to enable breathing stability [13]. Thus the
ease with which an individual wakes up to respiratory stimuli (respiratory arousal threshold)
can become a critical characteristic [14,15]. Premature arousal may lead to repetitive apnoea
due to inadequate accumulation of respiratory stimuli to enable upper-airway muscle
recruitment. On the other hand, a very high arousal threshold (difficult to wake up) may be
deleterious if profound blood gas disturbance occurs prior to arousal.

The stimulus for arousal during respiratory events is likely negative intrathoracic pressure
[17] and is quantified as the nadir esophageal or epiglottic pressure preceding arousal [8].
Recent findings indicate that the arousal threshold varies considerably between patients with
a substantial proportion having a low arousal threshold (defined as between 0 and −15
cmH2O) and others with much more negative values [18–20]. Thus strategies to manipulate
the arousal threshold may be beneficial for some patients (those with low threshold), but
potentially deleterious for others (those with a high threshold).

Several sedative agents increase the arousal threshold, including ethanol [21], flurazepam
[22], triazolam [23], pentobarbital [24] and trazodone [25]. To be an ideal therapeutic tool,
the agent must increase the arousal threshold without impairing upper-airway dilator muscle
responsiveness as may occur with alcohol and some benzodiazepines [26–28]. In unselected
patients, sedative medications have variable results, with apnoea severity falling in some
patients and increasing in others [29–35]. We believe that the variability in therapeutic
responsiveness to sedative agents relates to differences in their upper-airway myorelaxant
properties and in the underlying causes of OSA between patients. Therefore the aim of the
present study was to examine the effect of the non-benzodiazepine sedative, eszopiclone, on
the arousal threshold and sleep apnoea severity. We hypothesized that eszopiclone would
increase the arousal threshold and reduce the AHI (apnoea/hypopnoea index) in patients
with a low arousal threshold.
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MATERIALS AND METHODS
Subjects

Twenty-eight otherwise healthy adults with untreated or high clinical suspicion of suspected
OSA gave informed written consent to participate in the study, which was performed in
accordance with the Declaration of Helsinki (2000) of the World Medical Association, was
approved by the Hospital’s Institutional Review Board and was registered on
clinicaltrials.gov (NCT01102270).

Measurements and equipment
PSG (polysomnography)—EEGs, electrooculograms, surface submentalis and tibialis
electromyograms, finger pulse oximetry, chest and abdominal motion, position (position
monitor and video monitoring) and airflow (thermister plus a nasal pressure) probe were
applied to enable sleep staging, score arousals and respiratory event detection. PSG data
were acquired using a commercially available system (Nihon Kohden). Analogue signals
were simultaneously acquired on a 1401 plus interface and Spike 2 software (Cambridge
Electronic Design).

Arousal threshold determination—Both nostrils were decongested (0.05 %
oxymetazoline HCl), and the more patent nostril was anaesthetized (4 % lidocaine HCl) for
insertion of an epiglottic pressure catheter (model MCP-500; Millar). Briefly, the catheter
was advanced 1–2 cm below the base of the tongue under direct visualization and taped
securely to the nostril to avoid movement [36]. Using established techniques [8,17,23,37],
the arousal threshold was quantified as the average nadir pressure immediately preceding
arousal (Figure 1) during 20 replicate respiratory events selected at random (or as many as
were available) during each of the sleep stages analysed [stages 1, 2 and REM (rapid eye
movement) sleep] in each patient.

Protocol—Subjects were instructed to sleep in the supine posture throughout the overnight
recordings, which was confirmed via the combination of video monitoring and a position
monitor. Initially, an 8-h baseline overnight polysomnogram was performed to confirm the
presence and severity of OSA and to define the baseline arousal threshold. Subjects without
OSA (AHI ≤5 events/h of sleep), or with severe oxygen desaturation (nadir overnight SaO2
<70 %), were excluded from further participation. All remaining patients returned for two
replicate 8-h polysomnograms with an epiglottic pressure catheter to quantify the arousal
threshold. During these visits, each patient received placebo or 3 mg of eszopiclone in
random order immediately prior to sleep with only a research pharmacist knowing the
treatment assignment. Each visit was separated by approx. 1 week. A study flow diagram is
shown in Figure 2.

Data analysis and statistical procedures
All analyses were performed blinded to the study intervention. A registered
polysomnographic technician performed sleep staging, scored respiratory events and
carefully identified the presence, onset and duration of arousals according to standard
criteria [38,39]. For each visit, 20 (or as many as were available) arousals occurring in
conjunction with respiratory events were analysed for arousal threshold quantification in
each patient. To ensure that the arousal threshold was comprised of a random allocation of
arousals across the night, arousal selection was performed by allocating each individual
arousal a sequential number and using a random number generator to select the 20 arousals
to be analysed. Arousals were excluded from analysis in instances where mucus
accumulation yielded artefacts on the epiglottic pressure catheter or where there was <2
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cmH2O decrement in the epiglottic pressure catheter in the 30 s prior to arousal as these
were deemed to be spontaneous arousals.

For each outcome variable, where the distribution of the delta between eszopiclone and
placebo was found to be normally distributed (on the basis of a Shapiro–Wilk test),
statistical comparisons were performed using paired Student’s t tests. Non-normally
distributed data were compared using a related-samples non-parametric test (Mann–Whitney
U test) (SigmaPlot). A power calculation was performed prior to the study using the arousal
threshold as the primary outcome. Based on our previous work with trazodone [25], we
conservatively estimated that 15 subjects would be required to detect a 4 cmH2O difference
in the stage 2 arousal threshold between placebo and eszopiclone (based on a ΔS.D. of 4.5
cmH2O) to achieve 90 % power. Thus 17 patients were randomized to allow for a potential
15 % dropout rate. ANOVA for repeated measures was used to examine sleep state effects
(stage 1, 2 and REM sleep) on arousal threshold values during the baseline condition
(SPSS). Statistical significance was defined as P < 0.05. All group data are reported as
means ± S.E.M. or medians with interquartile range for non-normally distributed variables.

RESULTS
Baseline anthropometric and sleep characteristics

Of the 28 subjects recruited, five did not have OSA (AHI = 2 ± 1; overall range 0–5 events/h
of sleep) during the baseline polysomnogram and were excluded from further participation
and analysis. An additional six subjects had severe OSA (AHI = 82 ± 11; overall range 60 to
136 events/h of sleep), experienced marked oxygen desaturation (nadir SaO2 = 63 ± 3;
overall range 54 to 69 %) and had high arousal thresholds (stage 2 arousal threshold = −40
±6; overall range −25 to −63 cmH2O). These patients were excluded from participating in
the cross-over intervention portion of the study (Figure 2). The mean age and the body mass
index for the remaining 17 patients (seven females) were 45 ± 4 (overall range 19–62) years
and 33 ± 2 (overall range 19–45) kg/m2 respectively (see Table 1 for baseline sleep data). At
the time of enrolment, seven subjects had suspected OSA with no prior diagnosis, five were
recently diagnosed but not yet treated and five had a prior diagnosis (between 2 and 8 years
earlier) but did not tolerate CPAP (continuous positive airway pressure) therapy (two of
whom also had uvulopalatopharyngoplasty surgery).

Effect of eszopiclone on sleep parameters and obstructive sleep apnoea severity
Compared with the placebo visit, 3 mg of eszopiclone prior to the 8-h PSG significantly
increased total sleep time by over 1 h (Table 1). Both non-REM (190 ± 20 compared with
270 ± 17 min; P < 0.01) and REM sleep (34 ± 6 compared with 46 ± 5 min; P = 0.08)
durations tended to increase. Sleep onset latency was not different between conditions (P =
0.10; Table 1). During the eszopiclone visit, sleep quality improved as reflected by a
reduction in the arousal index and less stage 1 with more stage 2 sleep as a percentage of
total sleep time (Table 1). There were minimal central apnoeas or SWS (slow-wave sleep) in
either condition (<1 % of total sleep time). The proportion of time spent in REM sleep as a
percentage of total sleep time was similar between conditions (P = 0.38; Table 1). When
brief arousals from sleep (>3 and <15 s) did occur, they were of similar duration during
placebo compared with eszopiclone (9.0 ± 0.3 compared with 8.6 ± 0.3 s; P = 0.12) as was
the proportion of awakenings (>15 s) compared with brief arousals (38 ± 4 compared with
37 ± 4 %; P = 0.84).

Eszopiclone reduced the total AHI by 23 ± 9 % (Table 1 and Figure 3). The reduction in
AHI with eszopiclone occurred in non-REM sleep with no change in the REM AHI (P =
0.43; Table 1). The reduction in apnoea frequency occurred in the absence of respiratory
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event duration prolongation (P = 0.95) or changes in nadir SaO2 (P = 0.55) or average SaO2
during sleep (P = 0.34) or oxygen desaturation index (P = 0.15) or average nadir SaO2
associated with respiratory events (P = 0.43) (Table 1).

Effect of sleep state and eszopiclone on the respiratory arousal threshold
The arousal threshold was 30 ± 4 % higher (more negative; more difficult to arouse) during
stage 2 compared with stage 1 sleep at baseline [−15.6 (−19.9 to −12.5) compared with −9.9
(−14.6 to −7.5) cmH2O; P < 0.01; n = 17]. In the 12 patients in whom REM data were
available, the arousal threshold was similar to stage 1 [−11.3 (−14.9 to −9.7) compared with
−11.5 (−13.8 to −8.2) cmH2O; P = 0.15] and lower (less negative; easier to arouse) than
stage 2 [−11.3 (−14.9 to −9.7) compared with −15.1 (−18.9 to −12.6) cmH2O; P < 0.01].

The arousal threshold was also 18 ± 4 % higher (more negative) during eszopiclone
compared with placebo during stage 2 sleep (Figure 4). Paired comparisons for eszopiclone
compared with placebo arousal threshold values during stage 1 and REM sleep were
available in 14 and eight patients respectively. Unlike stage 2 sleep, there were no
statistically significant differences in the arousal threshold between eszopiclone compared
with placebo during stage 1 sleep [−13.0 (−18.2 to −9.1) compared with −12.7 (−16.4 to
−8.7) cmH2O; P = 0.43] or REM sleep [−14.3 (−17.0 to −9.4) compared with −10.4 (−14.0
to −9.4) cmH2O; P = 0.80]. There were insufficient data to assess SWS arousal thresholds.

Effect of eszopiclone in patients with a low respiratory arousal threshold
At baseline, eight out of 23 patients had a low arousal threshold (pre-specified stage 2
arousal threshold between 0 and −15 cmH2O). All of the eight out of 17 patients with a low
arousal threshold that completed the cross-over portion of the study invariably had a
reduction in the AHI during the eszopiclone condition (mean reduction 43 ± 9 %; Figure
5A). Changes in the AHI with eszopiclone were more variable in patients with higher (more
negative) arousal thresholds in whom there was no overall change in the AHI (P = 0.52;
Figure 5B).

DISCUSSION
The results of the present double-blind placebo-controlled cross-over physiological study
indicate that, compared with placebo, 3 mg of eszopiclone immediately prior to sleep
significantly increases the stage 2 respiratory arousal threshold, sleep duration, improves
sleep quality and lowers the AHI without prolonging respiratory events or worsening
hypoxaemia. In the patients identified as having a low respiratory arousal threshold,
reductions in the AHI occurred invariably and were most pronounced. However, reductions
in the AHI to below conventional standards of treatment efficacy were not achieved in the
majority of patients.

Effect of eszopiclone on sleep parameters and OSA severity
Although the magnitude of the improvement was quite marked in the present study, the
findings of increased sleep duration, in the absence of respiratory event prolongation and
worsening of hypoxaemia, are in accordance with the findings of a recently published pilot
study by Rosenberg et al. [30]. In that previous study, 3 mg of eszopiclone was administered
prior to sleep in unselected mild-moderately severe OSA patients with no overall change in
the AHI [30]. We postulate that the larger magnitude change in sleep duration and reduction
in the overall AHI in the current study may be explained by differences in patient selection
criteria. In particular, patients with marked oxygen desaturation (and therefore likely blunted
chemosensitivity and low propensity for arousal) were excluded from participation in the
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current study. Indeed, the six patients who were excluded from participating in the cross-
over portion of the present study all had severe OSA and high arousal thresholds.

A shift from lighter stage 1 to more consolidated stage 2 sleep, as occurred with eszopiclone
in the current study, is known to reduce OSA severity [40]. However, the precise underlying
mechanisms are uncertain. Apnoea severity has also recently been shown to be reduced
markedly during SWS [40], and OSA tends to get worse in REM compared with non-REM
sleep [40,41]. However, in the present study, there was minimal SWS in either condition,
and the proportion of REM sleep was not different. The non-REM reduction in AHI
compared with no change in REM AHI with eszopiclone is consistent with the proposed
mechanism yielding a reduction in apnoea severity with a non-benzodiazepine sedative. The
upper-airway dilator muscles are known to be responsive during non-REM sleep when
provided with sufficient time and respiratory stimulation [12,13] but are much less so during
REM sleep [36,42,43].

Effect of sleep state and eszopiclone on the respiratory arousal threshold
We are not aware of any published studies that have systematically quantified the arousal
threshold in stage 1 sleep. The novel finding that the arousal threshold increased (more
negative) by ~ 30 % from stage 1 to stage 2 sleep is consistent with recently published
results demonstrating an ~ 40–50 % reduction in apnoea and arousal frequency respectively
from stage 1 to 2 sleep [40]. Together, these observations suggest that the increase in the
arousal threshold from stage 1 to 2 sleep may provide greater opportunity for respiratory
stimuli to accumulate to enable sufficient upper-airway dilator muscle recruitment and thus,
airway patency. Alternatively, stage 2 compared with stage 1 sleep may be inherently more
stable from the standpoint of breathing stability for currently unknown reasons.

The arousal threshold was also ~ 20 % higher (more negative) during eszopiclone compared
with placebo during stage 2 sleep. Thus, in addition to the associated changes in arousal
threshold from a shift in the percentage of stage 1 to stage 2 sleep with eszopiclone, once
stage 2 sleep was achieved, there were fewer arousals, and greater levels of negative
epiglottic pressure (a known upper-airway dilator muscle stimulus) were tolerated before
arousal. Although there were insufficient data to assess the arousal threshold in SWS, a large
increase in the arousal threshold associated with a decrease in apnoea severity in this sleep
stage has been reported recently [40,44,45]. Thus further reductions in apnoea severity
would be predicted in patients with a low arousal threshold if there were a non-myorelaxant
sedative medication that could increase SWS to enable further upper-airway dilator muscle
recruitment.

Effect of eszopiclone in patients with a low respiratory arousal threshold
The proportion of patients found to have a low arousal threshold in the current study during
the baseline visit (eight out of 23) is consistent with the ongoing work within this area in
other cohorts in which ~ 30 % of OSA patients were found to have a low arousal threshold
[19,20]. The invariable reductions in AHI in OSA patients with a low arousal threshold
strongly support the concept that a low arousal threshold is an important contributing factor
to OSA pathogenesis for a substantial proportion of patients. In accordance with the
proposed role of the arousal threshold in OSA pathophysiology, changes in the AHI with
eszopiclone were more variable in patients with higher (more negative) arousal thresholds
[14,15,45,46]. Specifically, depending on how close a patient is to their upper-airway
muscle recruitment threshold, and their ability to respond to respiratory stimuli during sleep,
even patients with moderate to high arousal thresholds may benefit from strategies to
manipulate the arousal threshold [15,46]. Alternatively, in patients with poor muscle
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responsiveness during sleep and a high arousal threshold, a sedative medication may worsen
OSA.

These present findings suggest that there is the potential to reduce obstructive sleep apnoea
severity with the use of a non-benzodiazepine sedative medication by targeting this
therapeutic trait in the appropriately selected patients (i.e. those with a low arousal
threshold/recruitable upper-airway dilator muscles). However, although 3 mg of eszopiclone
lowered the AHI from moderately severe to mild in the patients with a low arousal threshold
(25 ± 6 compared with 14 ± 4 events/h of sleep) in the present study, only two out of eight
of these patients had a reduction in AHI from above to below 10 events/h of sleep. Thus,
even in patients identified as having a low arousal threshold, other pathophysiological
factors are clearly involved. Alternatively, it remains possible that a higher sedative dose
may lead to greater reductions in the AHI in these patients, although higher doses may
exhibit deleterious effects on upper-airway dilator muscle function.

Ultimately, the concept of individualized therapy tailored at multiple pathophysiological
traits may lead to alternative treatment approaches for appropriately characterized patients.
For example, combinations of one or more of the following may be effective; a mandibular
advancement splint to improve anatomy, oxygen therapy to improve respiratory control
instability [47] or, as the present results suggest, a non-benzodiazepine sedative medication
to increase the arousal threshold in patients with a low arousal threshold. For this type of
approach to be maximally effective, greater knowledge and simplified tools to quantify the
key pathophysiological traits in individual patients will be required.

Further considerations and methodological limitations
An important consideration regarding these findings is that, although an increase in the
arousal threshold likely facilitates the required stimuli to recruit upper-airway dilator muscle
activity, it remains unclear whether the resulting stabilization of breathing yields a major
cardiovascular benefit over unstable breathing with repetitive apnoeas/hypopnoeas (with
associated catecholamine surges from arousals and hypoxaemia). Although reductions in the
frequency of respiratory events and increased sleep duration [48] would be predicted to be
beneficial, it is possible that the presence of prolonged large negative intrathoracic pressures
during stable, but flow-limited breathing increases left ventricular transmural pressure (and
therefore afterload) [49,50]. Thus larger longer-term multicentre trials would be required to
examine this possibility before such an approach can be recommended clinically.

The reason for the variability in the change in arousal threshold with eszopiclone between
sleep stages is uncertain but may reflect a specific stage 2 phenomenon. Alternatively, a lack
of change in stage 1 and REM sleep may be a reflection of the reduced number of subjects
and the decreased proportion of the night in which these sleep stages occurred. Indeed,
although the direction of change was consistent with the stage 2 effect, during eszopiclone
compared with placebo there were 15 ± 3 compared with 14 ± 3 arousals per patient during
stage 1 and only 8 ± 2 compared with 5 ± 1 arousals per patient available for analysis during
REM sleep. Larger studies are required to address these questions definitively.

Finally, the total sleep time for the study group at baseline was relatively low. We suspect
that this is largely a reflection of the high proportion of patients recruited with a low arousal
threshold (and thus increased likelihood to have fragmented/poor sleep efficiency).
However, some components of the research setting including standardization of the supine
posture and the addition of an epiglottic pressure catheter may have also been potential
influential factors. Thus it will be important to conduct future studies during more natural
sleep to address these possibilities.
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Summary and possible future directions
The results of this single-night physiological study demonstrate that the sedative medication
eszopiclone increases the respiratory arousal threshold, sleep duration and lowers the AHI in
patients who do not have marked overnight oxygen desaturation at baseline (nadir overnight
SaO2 >70 %). The arousal threshold was shown to increase by ~ 30 % from stage 1 to stage
2 sleep, and eszopiclone reduced the proportion of stage 1 sleep and increased stage 2 sleep.
Reductions in the AHI occurred in the absence of respiratory event prolongation or
increased hypoxaemia. Furthermore, patients identified as having a low arousal threshold
(between 0 and −15 cmH2O) experienced an approx. 45 % reduction in the AHI with
eszopiclone. These findings also suggest that approx. one-third of untreated obstructive
sleep apnoea patients have a low arousal threshold and thus may be amenable to such an
approach. However, future novel drugs with stronger stage 2/3-inducing effects in the
absence of upper-airway muscle impairment might be required for this group of patients to
achieve elimination of apnoea. Thus, although the results of the present physiological study
offer promise, large-scale clinical trials assessing hard outcomes will be required before
manipulation of arousal threshold can be widely recommended. Ultimately, a combination
of strategies that target multiple pathophysiological traits (which can be assessed non-
invasively) may be required for this approach to be viable clinically.
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Figure 1. A PSG example of the procedure used to quantify the respiratory arousal threshold
PSG tracings are from a baseline study in a 55-year-old female patient with moderately
severe obstructive sleep apnoea (AHI = 23 events/h of sleep). EEG, C3–A2; nasal flow,
nasal airflow (arbitrary units); Pepi, pressure at the level of the epiglottis. Results presented
show an approx. 45-s segment during stage 2 sleep in which the patient is experiencing an
approx. 30-s respiratory event. Note the increasing breathing efforts (more pronounced
negative Pepi) during the period of impaired airflow up until the point of arousal from sleep
(grey-shaded portion of the EEG). As indicated, the respiratory arousal threshold is
quantified as the nadir epiglottic pressure during the effort immediately prior to arousal from
sleep (in this example approx. −20 cmH2O).
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Figure 2. Flow diagram of the enrollment, randomization and analysis procedures
The present study was a double-blind placebo-controlled cross-over study in which an
overnight baseline PSG was initially performed to determine eligibility. If deemed eligible,
OSA patients were randomized to the allocation order (placebo first or 3 mg of eszopiclone
first) and returned for two additional PSG studies at which time the appropriate intervention
was administered prior to sleep (visit 1 and visit 2). Refer to the text for further details.
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Figure 3. AHI scatter plots representing each individual patient’s AHI during the placebo and
eszopiclone condition (n = 17)
Mean ± S.E.M. values are presented adjacent to each condition. *Significant difference
compared with placebo.
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Figure 4. Stage 2 sleep arousal threshold scatter plots representing each individual patient’s
arousal threshold during the placebo and eszopiclone condition (n = 17)
Median (interquartile range) values are presented adjacent to each condition. *Significant
difference compared with placebo.

ECKERT et al. Page 15

Clin Sci (Lond). Author manuscript; available in PMC 2012 August 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5. AHI scatter plots during the placebo and eszopiclone condition in (A) the patients with
(n = 8) and (B) the patients without (n = 9) a low respiratory arousal threshold (between 0 and
−15 cmH2O)
Mean ± S.E.M. values are presented adjacent to each condition. *Significant difference
compared with placebo.

ECKERT et al. Page 16

Clin Sci (Lond). Author manuscript; available in PMC 2012 August 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

ECKERT et al. Page 17

Table 1
Group PSG sleep parameters

Group PSG data for the 8-h overnight sleep studies during the baseline, placebo and eszopiclone conditions.
Data were collected in the supine posture. Values are means ± S.E.M. or medians (interquartile range).

Parameter Baseline Placebo Eszopiclone

Sleep onset latency (min) 11 (5–14) 14 (3–26) 5 (3–15)

Total sleep time (h) 5.3 ± 0.4 5.4 ± 0.4 6.8 ± 0.2*

Sleep efficiency (% total sleep time) 66 ± 5 68 ± 5 84 ± 3*

Stage 1 sleep (% total sleep time) 28 (20–33) 28 (18–34) 19 (14–26)*

Stage 2 sleep (% total sleep time) 61 (48–64) 58 (55–71) 68 (64–69)*

REM sleep (% total sleep time) 10 ± 2 10 ± 2 11 ± 1

Total AHI (events/h of sleep) 31 ± 5 31 ± 5 24 ± 4*

Non-REM AHI (events/h of sleep) 30 ± 5 29 ± 5 22 ± 5*

REM AHI (events/h of sleep) 31 ± 5 33 ± 6 29 ± 5

Central apnoea index (events/h of sleep) 0 (0–0.4) 0.2 (0–0.3) 0 (0–0.1)

Arousal index (arousals/h of sleep) 25 (20–31) 22 (15–37) 17 (15–24)*

Event duration (s) 29 ± 1 32 ± 1 32 ± 2

Overnight SaO2 nadir (%) 81 ± 1 80 ± 1 80 ± 1

Average SaO2 during Sleep (%) 93 ± 0.5 93 ± 0.6 94 ± 0.4

ODI (oxygen desaturation/h of sleep) 28 (25–42) 28 (22–37) 21 (15–36)

Average nadir SaO2 during events (%) 89 ± 0.4 89 ± 0.7 90 ± 0.5

*
Significant difference compared with the placebo condition. n = 17 patients. ODI, oxygen desaturation index [number of 3 % oxygen

desaturations (lasting > 5 s)/h of sleep].
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