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Abstract

Multistability and scale-invariant fluctuations occur in a wide variety of biological organisms from bacteria to humans as well
as financial, chemical and complex physical systems. Multistability refers to noise driven switches between multiple weakly
stable states. Scale-invariant fluctuations arise when there is an approximately constant ratio between the mean and
standard deviation of a system’s fluctuations. Both are an important property of human perception, movement, decision
making and computation and they occur together in the human alpha rhythm, imparting it with complex dynamical
behavior. Here, we elucidate their fundamental dynamical mechanisms in a canonical model of nonlinear bifurcations under
stochastic fluctuations. We find that the co-occurrence of multistability and scale-invariant fluctuations mandates two
important dynamical properties: Multistability arises in the presence of a subcritical Hopf bifurcation, which generates co-
existing attractors, whilst the introduction of multiplicative (state-dependent) noise ensures that as the system jumps
between these attractors, fluctuations remain in constant proportion to their mean and their temporal statistics become
long-tailed. The simple algebraic construction of this model affords a systematic analysis of the contribution of stochastic
and nonlinear processes to cortical rhythms, complementing a recently proposed biophysical model. Similar dynamics also
occur in a kinetic model of gene regulation, suggesting universality across a broad class of biological phenomena.
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Introduction

Biological systems are optimized to survive in environments

whose properties may vary greatly, such as changes in the

biochemical environment of bacteria across several orders of

magnitude, or even qualitatively, such as seasonal variations that

banish food sources and prohibit foraging behavior in some

mammalian species. Multistable dynamics and scale-invariant

fluctuations are two complex dynamical processes whose presence

in a wide variety of biological organisms suggests an adaptive role

where they occur. The former enables switching amongst a wide

variety of dynamical scenarios, whereas the latter ensures sensitivity

to environmental fluctuations even if their background ambient

intensity scales across several orders of magnitude. Their co-

existence would allow a system to express two (or more)

fundamentally distinct dynamical behaviors whilst maintaining

scale-invariant fluctuations within and between each of these. The

objective of this paper is to elucidate the basic dynamical

mechanisms of these two phenomena and show how they can be

studied within a unifying framework. We take the human alpha

rhythm, which exhibits both multistability and scale invariant

fluctuations [1], as a paradigmatic example and show how a recently

proposed biophysical mechanism [2] is a specific example of the

present, more general dynamical framework. We also investigate

multistable dynamics in a kinetic model of gene regulation [3].

Mathematically, multistability corresponds to the presence of

multiple concurrent state-space attractors, each with their own

basin of attraction. System noise is required to erratically knock

the system’s state vector from attractor to attractor (for review, see

[4,5]. A classic example in the human perceptual system is

binocular rivalry, the abrupt alternations between two discrete

percepts that occur when different images are presented to each

eye [6,7]. Multistability is also found in the human motor system,

for example when paced finger tapping switches between anti-

syncopation and syncopation [8,9]. In the setting of perceptual

decision-making, multistability between both possible choices is

thought to arise just before the outcome of a two alternative choice

task [10,11,12]. Multistability has been reported in a wide variety

of other biological contexts - including the cellular mechanisms of

working memory [13], and gene expression, where it underlies

cellular differentiation [14] and epigenetic variability in genetically

identical cell lines [15]. These observations motivate the search for

generic mechanisms not limited to a specific model or context.

In the framework of dynamical systems, multistability corre-

sponds to the exploration of a multi-attractor landscape under the

influence of system noise. Although the nature of the dynamical
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landscape has been extensively mapped, system noise is almost

invariably introduced in biological contexts as an additive stochastic

term. This contrasts with the treatment of stochastic effects in

econometrics, where a complex relationship between trade volume

(system activity) and volatility (system stochasticity) is a well-known

property of financial systems [16]. This more complex, state-

dependent relationship is also observed in a wide variety of

biological organisms including bacterial chemotaxis [17] as well as

complex physical systems. State-dependent fluctuations are argu-

ably a defining feature of human cognition, being present in

perception (the ‘‘Weber-Fechner law’’; [18]), movement (‘‘Fitt’s

law’’; [19]) and even computation (‘‘Hick’s law’’) where such

operations appear to underlie nonverbal numerical processing in

humans and monkeys [20,21] and infants [22]. The almost

ubiquitous observation of ‘‘state-dependent computations’’ [23]

challenges the approach of simply adding system noise to dynamical

states in computational models of the brain. Hence, state-dependent

fluctuations and multistability are both present in the perceptual,

cognitive and motor systems of the brain, ostensibly allowing the

brain to adopt distinct functional modes, whilst ensuring uncertainty

can be represented adaptively within and between these modes. For

example, perceptual switching during binocular rivalry between

visual stimuli differing by an order of magnitude along at least one

physical dimension (such as contrast) would necessitate tight

coupling of bistability and scale-invariant fluctuations in visual

cortex in order to ensure equivalent perceptual representations

across transitions. More generally, consider a distributed perceptual

system that encodes its beliefs about hidden sensory causes in its

mean state, whilst the precision of those beliefs is encoded in the

dispersion of those states (see for example [24]). Accordingly, in the

presence of perceptual ambiguity, the co-existence of state-

dependent fluctuations and multistability would allow such a system

to switch between several competing perceptual representations

whilst keeping the precision of those beliefs relatively constant.

Without this coupling, beliefs regarding the more intense aspects of

the external environment would inevitably be held with greater

precision regardless of their veracity.

Spontaneous activity of the human cortex is dominated by high

amplitude 10 Hz oscillations, strongest over the posterior cortex -

the so-called alpha rhythm. Knowledge of the human alpha

rhythm dates back to the earliest recordings of electro-cortical

activity by Hans Berger in 1924, yet its mechanisms remain poorly

understood. In contrast to the widely held belief that the human

alpha rhythm continuously ‘‘waxes and wanes’’, it rather bursts

erratically between two distinct ‘modes of activity’ [1]. Temporal

fluctuations of power in each of these modes are not constant, but

rather scale in proportion to the mean power of the modes.

Spontaneous activity of the human cortex hence exhibits clear

evidence of both multistability and scale-free invariance. A

biophysical mechanism for these key features of the human alpha

rhythm was recently established in a model of large-scale brain

activity [2]. This neural field model describes the large-scale

dynamics of corticothalmic activity, constrained by key neuro-

physiological properties [25]. When endowed with appropriate

biophysical properties, this model showed a remarkable concor-

dance with the multistable properties of the human alpha rhythm.

A crucial process underlying this convergence between theory and

experiment was the state-dependent gating of stochastic inputs to

the specific thalamic nucleus (the key relay centre of the brain) by

oscillatory feedback from the cortex. Proximity of voltage-

dependent NMDA channels to ligand-gated ion channels was

proposed to underlie this key ‘‘state dependent’’ innovation [2,26].

The biophysical model employed by Freyer et al. [2] has been

validated across a wide range of states of arousal hence positioning

this finding within a broad and unifying account of cortical activity

[27]. However, whilst Freyer et al. [2] add an explanation of the

alpha rhythm to this framework, they do not elucidate the deeper

dynamical mechanisms at play, or whether they could be achieved

by other model innovations. The objective of the present study is

to address this in a simple algebraic (‘‘normal form’’) model of

multistable oscillations and discuss the broader implications for

other complex biological systems by demonstrating the same

phenomena in a modulatory genetic network.

Results

Multistability and scale-free fluctuations in empirically
recorded alpha activity

To provide an orientation for the present purposes, the

quantitative properties of resting state, eyes closed EEG data are

briefly re-iterated (see Materials and Methods for data acquisition

and analysis). In addition to exemplifying the properties of multi-

stability and scale-invariant fluctuations, analyses of all subsequent

modeled systems follow the same principles as those employed here.

Fluctuations in power of 10 Hz oscillations burst erratically

between a low amplitude mode and highly variable large

amplitude excursions, which range across several orders of

magnitude (Figure 1c,d). When viewed in double logarithmic

coordinates, the PDFs derived from these time series exhibit clear

bimodality (Figure 1a). Each of these modes can be well described

with a simple exponential PDF of the form Px(x)~ce{cx where x

is the power and c is the corresponding shape parameter. The

overall time series is closely described by their sum. To formally

compare the bimodal to the unimodal fit, we compare their

Bayesian information criterion (BIC) values. The better model will

yield lower BIC values, reflecting small residual variances after

penalization for the number of free parameters. Crucially,

although the peaks of these modes differ by several orders of

magnitude, when viewed in these double logarithmic coordinates

their relative widths are almost identical: This shows that their

standard deviation (SD) scales in proportion to their mean.

The ‘‘dwell time’’ statistics further characterize the properties of

these fluctuations [28]. These are defined as the successive

durations that the system resides in each of the two modes (the

Author Summary

Biological systems are able to adapt to rapidly and widely
changing environments. Many biological organisms em-
ploy two distinct mechanisms that improve their survival
in these circumstances: Firstly they exhibit rapid, qualita-
tive changes in their internal dynamics; secondly they
possess the ability to respond to change that is not
absolute, but scales in proportion to the underlying
intensity of the environment. In this paper, we study a
simple class of noisy, dynamical systems that mathemat-
ically represent a very broad range of more complex
models. We hence show how a combination of nonlinear
instabilities and state-dependent noise in this model is
able to unify these two apparently distinct biological
phenomena. To illustrate its unifying potential, this simple
model is applied to two very distinct biological processes –
the spontaneous activity of the human cortex (i.e. when
subjects are at rest), and genetic regulation in a bacterio-
phage. We also provide proof of principle that our model
can be inverted from empirical data, allowing estimation of
the parameters that express the nonlinear and stochastic
influences at play in the underlying system.
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boundary between the modes is defined by the crossing of the

exponentials) and can be understood by inspecting their cumula-

tive distribution functions (CDFs). For switching driven by a classic

stochastic process - a simple Poisson process - the dwell time

distributions conform to a simple exponential form

P X§xð Þ~exp {axð Þ evident as a straight line with slope -a in

semi-logarithmic coordinates (Figure 1b). In contrast, the empir-

ical dwell time distributions in alpha fluctuations show evidence of

long tailed statistics, which are well described by stretched

exponentials of the form P X§xð Þ~exp {axb
� �

. The parameter

b captures the stretch, which imbues the dwell times with ‘‘fat right

hand tails’’ and reflects the tendency of the system to be

increasingly trapped in one state or another for 0,b,1. That is,

the longer the system stays in one mode, the lower the likelihood of

a switch to the other mode, in contrast to a Poisson process which

has a constant failure rate.

Bifurcations of a normal form model
As reviewed above, multistability occurs in dynamic systems

when system noise causes the states to jump between two or more

co-occurring phase-space attractors, each with their own basin of

attraction [29]. While a number of dynamical scenarios with

different sets of attractors can give rise to multistability [30], the

multistable behavior of the alpha rhythm suggests a particular

setting. Given that the human alpha rhythm jumps between a low

amplitude mode and a high amplitude oscillatory waveform [31],

bistability in this setting likely reflects switching between a fixed

point and a limit cycle attractor [2]. In particular, whereas high

amplitude alpha oscillations are strongly nonlinear, the low power

fluctuations lack nonlinear structure [31,32], arguing that the low

amplitude mode more likely corresponds to fluctuations around a

fixed point rather than a second limit cycle. Although the co-

existence of these attractors can arise in a wide class of models

describing complex systems, all are mathematically equivalent to

the normal form of a Hopf bifurcation. A normal or canonical

form is a set of reduced, approximating equations which are

considered to preserve the essential features of the original system

[33,34]. Normal forms are usually analytically solvable and

therefore allow a deeper insight into the geometric structure of

the approximating equations [35]. Here we study the general

normal form of a Hopf bifurcation, namely

Figure 1. Multistability in human EEG data. A: PDFs derived from long recordings of EEG time series exhibit a low (black) and a high (red)
amplitude mode. The overall PDF is well described by their bimodal sum (white). The superiority of the bimodal over the unimodal fit is reflected in
the difference of the BIC values (BICdiff) B: The corresponding dwell times of each mode are well described by stretched exponentials (white). b
indicates the dwell time stretched exponential exponent. The gray line indicates a simple exponential form. C: Time series of filtered (8–12 Hz) EEG. D:
corresponding power fluctuations of 10 Hz oscillations (color coded according to the crossing of the distributions in panel A).
doi:10.1371/journal.pcbi.1002634.g001
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dr

dt
~{r5zlr3zbr, ð1Þ

dh

dt
~f (r)zhc: ð2Þ

(1) describes the amplitude dynamics with shape parameter l and

bifurcation parameter b (see below). (2) describes the dynamics of

the system’s phase. The function f(r) defines the relationship

between amplitude and phase, i.e. the phase dynamics is

amplitude dependent if f (r)=0. In the present paper we solely

focus on the amplitude dynamics, and for reasons of simplicity we

will only consider the case of a constant phase velocity, hc = 10 Hz

with f(r) = 0. Note that (1) is an odd function so that whatever holds

for r.0 also holds for r,0 (because the amplitude and its

derivative are both inverted). Hence, without loss of generality we

need only consider the case r$0.

Because (1) is always zero for r = 0, the system always has a fixed

point at the origin. This fixed point is an attractor if the RHS of (1)

is negative in the immediate neighborhood of zero. Otherwise it is

a repellor. If it is negative for all r.0 then the origin is the system’s

global attractor. However this fifth degree polynomial can have at

least two positive roots and, due to the rotation introduced by (2),

the system can hence have up to two limit cycles of finite positive

amplitude R. Any such limit cycle will be an attractor if the sign of

(1) is positive for r,R and negative for r.R. Otherwise it will be a

repellor. In Figure 2a, we consider a variety of scenarios with the

shape parameter fixed at l = 4 and different values of the

bifurcation parameter b. In the first case (red; b~{4:2 the

RHS of (1) is strictly negative (leftward moving) for r.0 and hence

the origin is the system’s global attractor. However as b increases,

the local maximum at r,1.5 crosses zero at b~{4, ensuring two

limit cycles. The preceding geometric considerations imply that

there is hence an unstable repellor (at r~0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l{2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2z4b

qr
)

and a stable attractor (at r~0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lz2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2z4b

qr
). An example

(blue) is given for b = 22. With a further increase in b, the limit

cycle repellor migrates inward and eventually (at b = 0) collides

with the fixed point. Following this bifurcation (i.e. for b.0)

geometry reveals that the fixed point is a repellor and the outer

(and now only) limit cycle is the system’s global attractor. Panel (b)

shows the three possible roots of (1) plotted across a continuous

range of b with locations of the three preceding scenarios indicated

accordingly. This plot reveals the continuous unfolding of the

three scenarios just outlined, with the abrupt discontinuities -

heralding bifurcations - at b = 24 and b = 0. This is the canonical

sub-critical Hopf bifurcation, so-called because limit cycle solutions

occur below the loss of stability of the fixed point at b = 0.

Generally, bistability is confined to the region bD{0:25l2
v

�
bv0g where the attracting fixed point and attracting limit cycles

have basins of attraction separated by the unstable limit cycle

(hence also called a seperatrix or basin boundary).

Similar geometric considerations across a range of values of the

shape parameter l reveal all possible dynamic scenarios of this

system (Figure 3). The limit cycle repellor - necessary for the

subcritical Hopf bifurcation and hence bistability - occurs across a

broad region of parameter space (one example in blue) and can

hence be considered a structurally stable solution to the system.

However, for l,0, the quintic polynomial (1) has at most two zero

crossings, i.e. two attractors. For b,0 the only attractor is at the

origin r = 0, and as b increases through b = 0 (far left panels, red to

green), this fixed point loses stability in favor of a single limit cycle

attractor that grows continuously in amplitude from the origin.

The absence of a point of inflexion for these values of l precludes

the possibility of the unstable limit cycle and hence bistability.

Because limit cycle solutions occur strictly above the loss of stability

of the fixed point at b = 0, this scenario corresponds to a supercritical

Hopf bifurcation.

This system hence captures the complete family of Hopf

bifurcations with a continuous transition between the super- and

subcritical cases. A third order (cubic) polynomial is sufficient to

model either a super-critical or a subcritical Hopf bifurcation, but

not both (i.e. there is no single cubic function that allows a smooth

transition between the two). The fifth order term can be thought of

as a higher order ‘‘correction term’’ that allows one to model a

physical system that could, in principle, express either a subcritical

or a supercritical bifurcation depending on the smooth tuning of a

control parameter (see [33]). This model hence provides a single

computational platform to explore our primary hypothesis as well

as any putative alternative hypotheses.

Multistability in the normal form model
Switching with purely additive noise. Bistability in the

subcritical setting represents the simplest likely case where the

presence of noise may cause the bimodal switching observed

experimentally. We hence study the behavior of this system in the

presence of noise, introduced through the addition of a stochastic

term to the RHS of (1),

dr

dt
~{r5zlr3zbrzgj(t), ð3Þ

Where j(t) is an independently generated zero mean stochastic

process with unit variance Sj(t)j(t{t)T~d(t) and g is a constant

Figure 2. Varying b for a fixed l = 4 yields a subcritical Hopf
bifurcation. A: Bifurcation diagram for state parameter b showing the
region of bistability. Attracting solutions shown in solid. The unstable
repellor (or seperatrix) is shown as the dotted curve. The fixed point
loses stability at b = 0. B: The geometry of equation (1) for three
different values of b. Attractors are shown as solid diamonds and
repellors as open diamonds. Bistability corresponds to the blue setting.
doi:10.1371/journal.pcbi.1002634.g002
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scaling coefficient. This Langevin equation has the classic form –

purely deterministic terms plus a scaled state-independent noise

term - employed widely in computational biology (for review, see

[36]) and numerous other fields [29]. The noise term incorporates

a wide range of potential stochastic influences occurring across a

broad range of biological processes, such as thermal fluctuations or

neuronal inputs from brain regions not explicitly modeled. Figure 4

illustrates the corresponding behavior of the three scenarios

outlined in Figure 2. As expected, for sufficient noise amplitude

(gw19) switching between low and high amplitude modes occurs

exclusively in the region of bistability (blue; middle column).

However, the corresponding bimodal PDF exhibits an obvious

deviation from the empirical data (compare Figure 4e with

Figure 1a). Whilst the mean increases by two orders of magnitude

from the low to the high amplitude fluctuations, the standard

deviation is constant. Hence in these double logarithmic coordi-

nates, the high power mode is clearly thinner than its low power

counterpart. A theoretical exponential PDF with the empirically

motivated proportional scaling between mean and standard

deviation (shown in red) is thus a poor fit to the second mode in

these numerical data. The progressive thinning of the standard

deviation with the increasing mean is also evident when

comparing the difference between the PDFs of the unimodal

fixed point (red; left column) and unimodal limit cycle (green; right

column) solutions. Naturally the standard deviations in all three

cases are of equivalent size because the fluctuations arise from the

same term. The PDFs only appear thinner when viewed in

logarithmic coordinates.

The role of multiplicative (state dependent) noise. In

order for the standard deviation to scale with the mean, a state

dependent noise term is clearly mandated. We hence introduce a

first order multiplicative term via,

dr

dt
~{r5zlr3zbrzg 1{rð Þj1(t)zrrj2(t)½ �, ð4Þ

Where j1(t) and j2(t) are uncorrelated and independent zero

mean stochastic variables with unit variance, and g§0 scales the

overall noise influence. The constant r§0 determines the relative

influence of the state-dependent (multiplicative) noise term rj2(t)
such that it effectively competes against the additive term j1(t).
Note that if the stochastic influences are purely multiplicative (i.e.

r~1) then the total stochastic influence tends to zero if the system

approaches the fixed point r?0. This leads to a rapid and

permanent ‘‘quenching’’ of the system’s activity and is thus of no

further interest. Setting 0vrv1 prevents this, whilst also allowing

the multiplicative term to play an increasingly dominant influence

away from the origin.

As shown in Figure 5, this system exhibits very close agreement

with the bistable properties of human EEG (cf. Figure 1). In

contrast to Figure 4, it is clear that the standard deviation now

scales in proportion to the mean and, additionally, the dwell time

distributions follow a stretched exponential form. This also affords

insight into the origin of the trapping (long right hand tails) in the

dwell time distributions: When the system first switches crosses the

seperatrix into the low power mode, the noise terms exert a

relatively strong influence, implying that a switch back across the

seperatrix (into the high power mode) is reasonably likely.

However, if by chance the system does not cross but instead

approaches zero, the state-dependent stochastic term diminishes in

influence and the system is relatively less likely to be perturbed

back into the high power mode. Hence switching likelihood

diminishes smoothly with dwell time (survival). Conversely, when

the system crosses the separatrix into the right hand mode, the

state-dependent term increases in effective strength, driving the

system towards the erratic high amplitude fluctuations visible in

the time series and trapping the system in the high power mode.

Parametric analysis of noise and stability parameters
Whilst these basic processes are present in most human EEG

recordings, there exists considerable inter-subject variability in the

Figure 3. Complete family of Hopf bifurcations. A: The geometry of equation (1) for different values of the shape parameter l. B:
Corresponding roots of equation (1) (solid: stable; dashed: unstable). As the shape parameter l increases, the bifurcations morph from supercritical
(left) to subcritical (right). Exemplary values of bifurcation parameter b that yield different attractor landscapes are indicated in red (fixed point), blue
(coexisting unstable and stable limit cycles) and green (stable limit cycle).
doi:10.1371/journal.pcbi.1002634.g003
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degree of bimodality, the relative height of the two modes and the

stretch of the dwell time distributions ([1]; see supplementary

Figure S1). For example, in a sample of 16 subjects the stretched

exponential exponent b varied between 0.4 and 0.6 for the low

power mode (mean 0.49) and from 0.5 to 0.9 for the higher mode

(mean 0.68). Can these high-order statistics be used for subject-

specific parameter estimation when inverting models of large-scale

cortical activity? We exploit the simple parametric form of (4) by

systematically varying the deterministic and stochastic terms and

obtaining numerical time series, from which we estimate system

statistics describing the extent of the bimodality and the shapes of

the dwell time distributions for the two modes. This allows a proof

of principle that the model parameters could be inferred from

empirical time series data.

The results for four summary statistics are shown in Figure 6,

with attention restricted to regions in parameter space where

bimodal activity arises. Results in Figure 6a–d show the impact of

varying the two noise parameters r and g, while the model’s shape

and bifurcation parameters l and b are varied in Figure 6e–g.

Note that, consistent with Figure 3, bistability only exists in a thin

strip of parameter space where lw0. Four types of summary

system statistics are shown. The top row depicts the relative

goodness of fit of a bimodal compared to a unimodal fit, after

penalizing for relative model complexity with Bayesian Informa-

tion Criteria (BIC). This captures the depth of the bimodality - that

is, the overall distinctiveness and separation of the modes (see [1]).

The second row shows the relative height of the two modes and

hence the ratio of the time that the system is trapped in either

Figure 4. Bistability with purely additive noise for three different values of the bifurcation parameter b. A: Bifurcation diagram for l = 4.
The three values of b used here are indicated in red, blue and green. B: Time course of uncorrelated noise input gj(t). C: Phase portraits of example
integrations. Black/red indicates inward/outward flow. D: Time series of example integrations. E: Corresponding power PDFs. Ar is the discrete-time
analytic signal of r (i.e. the amplitude envelope of r).
doi:10.1371/journal.pcbi.1002634.g004
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mode. The lower two rows show the degree of stretching of the

dwell time distributions for the low and high power modes (third

and bottom rows, respectively).

There are several noteworthy features of these plots: Firstly, the

curves are well behaved (no smoothing has been applied) and are

either monotonic in cross section, or unimodal. A specific

experimentally derived estimate of any of the system statistics

hence constrains the value of underlying system parameters to a

relatively simple curve or loop (corresponding to contour lines) in

each of these spaces. Secondly, although there do exist correlations

between some of the parameters, they are sufficiently distinct that

combining multiple system statistics generally further constrains

the underlying parameter values. For example, the contours in

Figure 6e for the BIC values are generally orthogonal to those in

Figure 6d for the stretching of the low power mode. Hence specific

values of each of these two system statistics will in general

constrain the values of the model parameters l and b to at most

two possibilities (where the contour lines of each statistic cross).

Fixing the parameters and simulating the system multiple times

yields an ensemble of time series from which can be extracted an

ensemble of data features. Ensemble simulations show that each of

the summary statistics (BIC difference, etc.) follow a Normal

distribution (Supplementary Figure S1) whose mean corresponds to

the value shown in Figure 6. This is crucial for formal model

inversion since this allows a (pre)metric to be defined over these

spaces, using a suitable function such as Kullback–Leibler diver-

gence and hence estimates of the distance between parameter values.

We also note that although the contour lines in these particular

planes may not cross, we actually seek the intersection of the surfaces

which yield these lines in cross-section and which more generally will

have mutual intersections in the full dimensional space. This can be

achieved with a suitable variational scheme such as [37].

Although formal model inversion is beyond the scope of the

present submission, two ‘proof-of-principle’ examples of model

inversion from EEG data are shown in Figure 7. In the top row,

system statistics of EEG data (Figure 7a) with frequent high

amplitude excursions and short dwell-times (i.e. less stretched

CDFs) are captured by the normal form model (Figure 7b) with

noise parameters r = 0.46, g = 30.4, obtained from contours of

Figure 6. In the bottom row, an empirical example with a smaller

high power mode and longer dwelling (i.e. more stretched CDFs) is

captured by increasing both the overall noise variance (to g = 57.6)

and the ratio of multiplicative noise (to r = 0.71).

Examining alternative hypotheses: Parameter noise and
supercriticality

The notion that resting state cortex operates in the vicinity of a

nonlinear instability is certainly not unique to the present

Figure 5. Multistability and scale-free fluctuations in the model with both additive and multiplicative noise. A: Bimodal power PDFs B:
Stretched exponential dwell time CDFs for the two modes. C: Time series, showing transitions between low amplitude (black) and high amplitude
(red) modes in the model system described by equation (4) with noise parameters g= 45, r= 0.61. For additional details please refer to legend of
Fig. 1.
doi:10.1371/journal.pcbi.1002634.g005
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contribution, although the majority of previous accounts have

assumed that the bifurcation was supercritical (e.g. [31,38,39,40],

but see also [41,42]). In this case, switching between a low and

high amplitude mode arises from a ‘‘wandering’’ of the system

across either side of the bifurcation threshold, corresponding to a

random walk on the system’s bifurcation parameter.

To investigate the dynamics arising in this scenario, we set the

shape parameter lambda to -4 so that the system possesses a

supercritical bifurcation, and endow the bifurcation parameter

beta with mean reverting stochastic (Ornstein Uhlenbeck)

fluctuations,

db

dt
~{

b

t
z

ffiffiffiffiffiffiffi
2s2

t

r
j(t), ð5Þ

where j(t) is an uncorrelated Wiener process. Beta will hence

undertake stochastic excursions either side the bifurcation point,

b = 0. The typical excursion duration and depth into either regime

is determined by the correlation time t and the variance s. In

particular, if t diverges (i.e. 1/t approaches zero), equation 5

becomes a Brownian walk on b. In this setting, the first return time

for b (the dwell times for fluctuations on either side of the 0 axis)

would show a power law distribution, which is contrary to the

presence of stretched exponential dwell times in our EEG data.

Decreasing t (and hence introducing correlations) leads to an

exponentially truncated first return time distribution (again not a

stretched exponential). Should the system even yield a bimodal

PDF, here we already encounter a major difference from the

subcritical case, namely that the temporal statistics in the

supercritical setting are determined by the (arbitrarily-imposed)

characteristics of the noise through the correlation time parameter

t and do not emerge from the system’s inherent dynamics.

Two examples of this dynamic scenario are presented in

Figure 8. For small to moderate parameter noise, power

fluctuations express a unimodal exponential PDF, despite the

emergence of occasional oscillatory activity in the time series. For

moderate to large parameter noise, the system exhibits periods of

high amplitude oscillatory behavior corresponding to parameter

excursions well into supra-threshold territory. The probability

distributions in these settings do not, however, show the clear

bimodal distributions. Rather they generate broad, approximately

unimodal forms that do not converge, even over long integration

times towards any obvious simple probability distribution (multiple

local minima are occasionally present in the PDFs). This is not

particularly surprising since mean reverting stochastic (Ornstein

Uhlenbeck) fluctuations are maximally (and unimodally) distrib-

Figure 6. Summary system statistics for ‘degree of bimodality’. A,E: BIC difference between unimodal and bimodal fit; B,F: Relative height of
the two modes (abs(0.5-d)). Dwell-time stretched exponential exponent b, for low (C,G) and high (D,H) energy mode. Left column (panels A–D):
System statistics for varying values of the noise parameters g and r, with fixed values for the shape parameter l and bifurcation parameter b. Right
column (panels E–H): System statistics for varying values of the shape parameter l and bifurcation parameter b, with fixed values for the noise
parameters g and r. White circles indicate the values of the parameters where they are fixed in the complementary panels. Cyan curve indicates
theoretical minimum b-value for bistability, showing close agreement with numerical analysis.
doi:10.1371/journal.pcbi.1002634.g006
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uted around zero. In brief, the parameters of (5) play a crucial role

in determining the data features, but impart an expected high

penalty cost and generate a poor model fit. It hence seems unlikely

that this scenario, with the increased complexity, can parsimoni-

ously account for bimodal statistics in human EEG.

Bistability in a biophysical model of corticothalamic
activity

Having established the dynamical principles of bistability in a

normal form model, we now revisit bistability in a detailed

biophysical model of electrocortical activity (previously reported in

[2]). This model describes local mean field dynamics of

populations of excitatory and inhibitory neurons in the cortical

gray matter as they interact with neurons in the specific and

reticular nuclei of the thalamus [25]. These dynamics are

governed by physiologically derived nonlinear evolution equations

that incorporate synaptic and dendritic filtering, nonlinear firing

responses, corticothalamic axonal delays and synaptic gains

between presynaptic impulses and postsynaptic potentials. Resting

state cortical activity has extensively been modeled by studying the

noise-driven endogenous fluctuations. This yields a set of eight

first-order stochastic delay differential equations. For a full model

description including equations, please refer to [2,25,38].

Whereas in [2] examples of bistability were illustrated, we

presently seek to more deeply explore the underlying bifurcation

space and hence the core dynamical processes. We employ a

numerical continuation scheme [43] to study the family of

bifurcations occurring at the 10 Hz (alpha) instability within the

subspace of this system’s parameter space spanned by the

excitatory connection strengths for the reciprocal feedback

between cortex and thalamus, nes and nse. Although this delay

differential system is substantially more complex than the

preceding normal form, it nonetheless exhibits a comparable

family of Hopf bifurcations with a continuous transition from sub-

to supercriticality along a branch of 10 Hz instabilities (Figure 9a).

We hence identify a candidate set of parameter values for a

subcritical Hopf bifurcation (Figure 9b) and drive the system with

a combination of additive and multiplicative stochastic inputs. In

particular, following [44] we introduce a state-dependent feedback

term from descending excitatory cortical input to the specific

thalamic nuclei which modulates the strength of ascending

stochastic input from subcortical sources (as motivated in [37]).

The model exhibits bimodal distributions of neural activity

(Figure 9c), with long tailed dwell time distributions (Figure 9d),

bearing strong resemblance to both the normal form model and

empirical EEG. However, for other parameter combinations, the

corticothalamic model also captures a broad range of other

statistics of EEG, including epileptic seizures [27,38], sleep

spindles [27] and evoked potential waveforms [45] that do not

occur in the simple normal form model.

Figure 7. Illustration of two EEG data sets and corresponding model solutions. A: EEG data with frequent high amplitude excursions and
short dwelltimes (i.e. less stretched dwelltime CDFs). B: corresponding model solution with r = 0.46, g = 30.4. C: EEG data with infrequent high
amplitude excursions and long dwelltimes (i.e. more stretched dwelltime CDFs). D: corresponding model solution with r = 0.71, g = 57.6.
doi:10.1371/journal.pcbi.1002634.g007
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Bistability and multiplicative noise in a genetic regulatory
network

Intriguingly, the processes we presently study in the human

brain have been observed across a range of distinct different

biological systems. For example, the crucial role of bistability has

been recently reported in gene expression [14,15,46,47] as has the

existence of long-tailed distributions in gene expression [48]. State-

dependent noise has also been reported to play a key role in

bacterial chemotaxis [17]. Our analyses may thus speak broadly to

other biological contexts.

We analyse a kinetic model of genetic regulation [3]. This model

captures DNA-protein interaction in a small feedback network of

genetic regulation in the temperate bacteriophage l - a protoypical

example of efficient phenotypic switching in response to an

environmental signal [49,50]. Please note that the bacteriophage

l is unrelated to shape parameter l in equation (1). Briefly, the

concentration of a single genetic repressor, x, initiates a sequence of

DNA binding and dimerization at three sequential binding sites,

each quickly reaching equilibrium due to its fast kinetic rates. The

resulting DNA-protein complex then initiates transcription and

production of x - hence enacting a positive feedback loop - which is

offset by its degradation. Transcription also requires the presence of

an RNA polymerase. Both transcription and degradation occur at

slower time scales than binding and dimerization.

By assuming the fast kinetic equations are kept at (or close to)

equilibrium in comparison to transcription and degradation, the

evolution of x can be described by the differential equation,

dx

dt
~

a 2x2z50x4
� �

25z29x2z52x4z4x6
{cxz1, ð6Þ

where the dimensionless parameter a is a measure of the degree in

which the transcription rate is increased above its basal rate by

repressor binding, and c is proportional to the relative strengths of

the degradation and basal rates [3].

Despite the complex algebraic form of (6), it can be seen that for

physiologically realistic values of a = 10 and c = 5.5, this functional

form has only one local maximum for x.0 and closely matches the

qualitative shape of the best (least squares) fitting quintic

polynomial (Figure 10a). Indeed, fixing the transcription rate

parameter a = 10 and treating c as a bifurcation parameter reveals

a pair ofbifurcations yielding bistability between a high and low

transcription rate occuring in the range 3.79,c,5.73 (Figure 10b).

Stochastic influences in genetic networks are widely modelled,

representing the action of thermal fluctuations, parameter

variability, and the impact of more complex chemical processes

also not explicitly modelled. Similarly, in large-scale neuronal

systems stochastic inputs typically represent non-specific inputs

Figure 8. Two cases of parameter noise in the supercritical setting. Left column: Small noise variance, right column: Large noise variance. A:
Supercritical Hopf bifurcation for l = 24. The bifurcation parameter b is set to zero and perturbed at each integration time point with a mean
reverting stochastic process, see equation (5). Examples of the resulting temporal excursions of b are depicted green. Grey boxes indicate standard
deviations of the stochastic process. B: Resulting time-series of A2

r . C: Corresponding PDF.
doi:10.1371/journal.pcbi.1002634.g008
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from neuronal regions (such as sensory organs) not otherwise

explicitly modelled. In both settings, in systems where noise

interacts with a feedback loop it can be introduced via a state-

dependent stochastic term. Figure 10c–e shows an example time

series with a state-dependent noise term xj(t) added to the RHS of

(6). It hence exhibits a bursty time series for the amplitude

distribution, with a bimodal PDF showing scale-free fluctuations,

and long-tailed dwell time distributions, all in excellent agreement

with the properties of the normal form model. Intriguingly, these

bimodal, scale invariant distributions appear to replicate those

observed in other genetic regulatory systems, such as Figure 7 of

[41].

Discussion

Detailed biophysical models - derived and parameterized using

prior biological knowledge - are useful for elucidating specific

biological mechanisms underlying particular phenomena, and

unifying different behaviours of the same system within a single

framework (e.g. [27]). In contrast, simple algebraic (so-called

normal forms) models provide deeper insights into the underlying

dynamical processes at play, and whilst they lack the ability to

prescribe specific biophysical mechanisms, they provide a window

into unifying principles that exceed the confines of any one

particular domain. A classic example is the logistic equation,

which was derived as an abstraction of population dynamics [51]

but became a mathematical paradigm for chaotic dynamics in

complex systems. We presently show that a normal form of the

Hopf bifurcation - a fifth order polynomial - is able to recapitulate

the multistable and scale-invariant dynamics of human cortical

activity when endowed with a subcritical instability and multipli-

cative noise. We also show how this model captures the dynamical

principles at play in a detailed neural field model of cortical

dynamics as well as a kinetic model of genetic regulation in a

bacteriophage, hence suggesting universality in the biological

world.

Regardless of their niche, biological systems share a number of

competing constraints such as flexibility, robustness, cost efficiency,

Figure 9. Scale-free bimodal fluctuations in a biophysical model of corticothalmic activity. Results are shown for fluctuating excitatory
field potentials we. A: Full family of Hopf bifurcations identified by continuing solutions along a 10 Hz instability. B: Candidate sub-critical Hopf
bifurcation (red curve in panel A). Stable attractors in black, unstable solutions in red. C: Candidate Power PDF with clear bimodal distribution. D:
Corresponding stretched exponential dwell time CDFs. E: Power time series shows erratic switching.
doi:10.1371/journal.pcbi.1002634.g009
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fidelity, and reproduction. Is it hence surprising that apparently

diverse biological systems exploit similar dynamical mechanisms in

addressing these? Given that universality underpins many dynam-

ical systems observed in nature [52], and indeed normal form

models are formally equivalent to broad classes of more complex

systems under fairly general conditions, it is perhaps to be expected

that simple models should capture fundamental dynamical

processes that arise throughout biology. We have argued that the

combination of a subcritical bifurcation with multiplicative noise

satisfies two key constraints, namely spontaneous switching between

multistable modes of activity (flexibility) and scale-invariant

fluctuations between these modes over several orders of magnitude

(fidelity). The presence of bistability in both the detailed neural field

model [2] and the genetic regulatory system [3] was already known:

here we suggest that they share the same dynamical mechanism.

Although Hasty et al. [3] illustrated exemplar time series with both

additive and parameter noise, we add specific predictions arising

from a state-dependent stochastic term, namely that the fluctuations

may be scale invariant and the dwell times in each mode will be

long-tailed. This is consistent with effects documented in other

genetic systems [48], possibly due to similar mechanisms.

By suggesting the functional form of the deterministic and

stochastic terms in large-scale cortical dynamics, the present

findings have direct and pragmatic implications for the analysis of

neuroimaging data. Where stochastic processes have been

previously introduced to dynamic models of cortical systems, they

have almost invariably taken the form of a purely additive term.

Our analysis mandates a state-dependent noise term for inversion

of neural field (e.g., Jirsa and Haken [53], Robinson et al. [54])

and neural mass (e.g., Wendling et al. [55], David and Friston

[56]) models from electrocortical data. We have given a proof-of-

principle here by inverting the normal form model from two

examples of bistable human EEG data (Figure 7). Naturally,

formal inversion should leverage other (lower order) properties of

the data such as spectral peaks and scaling regimes [25,57]

However, the bistable statistics are indispensable for disentangling

the additive and multiplicative noise parameters, as well as the

global properties of the system’s phase space.

Moving beyond the exemplar model inversion method demon-

strated here, a more formal framework, such as the variational

framework implemented in Dynamic Causal Modeling (DCM)

[58], would enable robust parameter estimation and model

Figure 10. Bistability and trapping in a kinetic model of genetic regulation. A: Form of equation (6), f(x) (black), is well matched by best
fitting quintic polynomial, g(x) (red). B: Bifurcation diagram of equation (6). C: Candidate Power PDF with clear bimodal distribution. D: Corresponding
stretched exponential dwell time CDFs. E: Power time series shows erratic switching.
doi:10.1371/journal.pcbi.1002634.g010
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comparison. We provide a preliminary exploration of model space

in duplets of parameters and show that (1) The space appears

sufficiently well behaved (surfaces are smooth and unimodal), and

(2) For fixed parameters, system statistics are Normally distributed.

These observations suggest that the parameters will be identifiable

and penalties for system complexity that rest upon the divergence

between prior and posterior parameter distributions will be

obtainable: Both of these are required for the variational model

inversion scheme implemented in DCM [37]. This method has

been successful in neuroscience for inverting both EEG and

functional magnetic resonance imaging (fMRI) data. In fact the

model typically used in DCM for fMRI is also a truncated power

series (linear or 2nd-order), similar to our algebraic model, to

which fluctuations [59] have been added. Our findings suggest

that a higher order term (at least cubic) may be required for many

of the rich behaviours observed near the edge of dynamical

instabilities, and not necessarily only in EEG data. While EEG

oscillations are much faster than fMRI responses, dwell time

switching in cortical systems exhibits long tails and hence occurs

well into the scales observable in fMRI data (,10 sec). It is hence

possible that a DCM with a higher order state term may be a

better generative model for fMRI data than the current quadratic

term. This is an empirical question that can be addressed using a

suitable model inversion scheme [60,61].

As noted before, a cubic polynomial is sufficient to describe the

family of either sub- or supercritical Hopf bifurcations, but not both:

A fifth order term is required to enable a smooth transition between

the two [33]. Inclusion of higher order terms opens the possibility of

modeling even more subtle features of the dynamics, such as sub-

harmonics and nonlinear amplitude-frequency effects. These may

be crucial to highly nonlinear neuronal computations such as pitch

perception in the auditory system [62] and vibrotactile perception

[63]. It is also important to note that the present normal form, which

captures the basic dynamics of the biological systems we study,

cannot be expected to capture all forms of multistability. In

particular, the limit cycle is extinguished at the ‘‘lower end’’ of

bistability (Figure 2A) through a saddle-node bifurcation. That is,

the attractor loses structural stability and ceases to exist. An

alternative dynamical scenario would be that such an attractor only

loses asymptotic (Lyapunov) stability. That is, it remains an

invariant set but loses attraction in one or more subspaces, hence

becoming a saddle [64]. In this setting, system noise could still allow

the system to itinerantly shadow the ‘‘ghost attractor’’ [4], although

(in the absence of an attracting basin) the associated switching

behavior may follow a simple Poisson process and not show any

trapping (i.e. stretched, long-tailed dwell times). This dynamical

scenario could only arise in a different normal form model.

Whilst we have argued that modeling state-dependent noise and

higher order state terms in neurophysiological data has pragmatic

implications, they also speak to fundamental computational

processes in the brain. As recalled in the Introduction, state-

dependent fluctuations are arguably a defining feature of

perception (the ‘‘Weber-Fechner law’’), movement (‘‘Fitt’s law’’),

and computation (‘‘Hick’s law’’). Intriguingly, multistability co-

exists with scale invariant fluctuations in these basic cognitive

systems. For example, multistability is a well known property of the

function (as exemplified by binocular rivalry) and physiology (see

for example [65]) of the visual system. Likewise, Weber’s law has

well-known neurophysiological correlates in the early visual system

[66]. Whilst the fixed ratio of the standard deviation with the

mean intensity of a percept or motor action permits relative

uncertainty to remain constant, the presence of multistability in

these same systems additionally allows switching to distinct

dynamical regimes which may confer adaptive advantage. If

generative models that contain higher order terms are to provide

stronger model evidence than simpler models (without those

terms), it will arguably be most likely during experimental

manipulations where such scale-free (or multistable) computations

provide a performance advantage. That is, when the optimal

generative model for the data embodies the same functional form

as that required to optimize task performance.

Materials and Methods

Electroencephalographic data
Resting state EEG data were acquired from 16 healthy subjects

using BrainAmp amplifiers (hardware bandpass filter, 0.1–250 Hz;

BrainAmp; Brain Products) and EEG caps (Easy-Cap; FMS).

Written informed consent was obtained from each subject prior to

their participation. For detailed description of EEG data

acquisition, preprocessing and analysis, please refer to [1,2].

Normal form model - numerical integration
Time series were obtained from numerical integration of (4) in the

presence of stochastic fluctuations. We used Heun’s integration

scheme (an extension of the Euler integration into a two-stage second-

order Runge–Kutta integration scheme [67]) with Dt~0:001s.

In order to ensure stable and reproducible results, we obtained

10 different time series for each set of parameter values, starting

from different initial conditions. Integration length was 900 s,

matching the length of the EEG data sets. The first 10 seconds

were always discarded to account for initial transients.

For all following analyses the amplitude time series r(t) was

transformed to its Analytic signal Ar tð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 tð Þzr̂r2 tð Þ

p
, where r̂r is

the Hilbert transform of r, since the fitting of an exponential PDF,

i.e. a chi-square distribution with two degrees of freedom (DoF), to

a power time series mandates an underlying signal with two DoF.

Substituting r by Ar tð Þ increases the DoF to two, thereby ensuring

the valid application of the exponential PDF fitting procedure.

Parameter estimates for bimodal PDFs
Power PDFs were obtained by partitioning the time series of

A2
r tð Þ into 200 equally-sized bins and counting the number of

observations in each bin. Using the maximum likelihood estimate

(MLE), empirical PDFs were then fitted to two types of distribution

functions: A simple exponential form [68]Px(x)~ce{cx, where x

is the power and c is the shape parameter; and a biexponential

form Px(x)~dc1e{c1xz(1{d)c2e{c2x, where c1 and c2 are the

shape parameters of the two exponentials and d is a weighting

factor. We formally compared the bimodal to a unimodal fit using

the Bayesian information criterion (BIC), which includes a penalty

term for model complexity: L~{2 ln Lzk ln(n), where L is the

maximum likelihood estimate, i.e. the maximum value of the log

likelihood function for the estimated model, n is the number of

observations and k is the number of free parameters (k = 1 for the

unimodal fit and k = 3 for the bimodal fit).Given two or more

candidate models, the ‘best’ model will yield relatively low values

of L – reflecting small residual variance after penalization for the

number of free parameters. In order to gain a better insight into

the functional form of the PDF, we formally evaluated the fitted

PDFs in log-log coordinates.

Parameter estimates for stretched exponential dwell time
CDFs

Following estimation of bimodal exponential distribution

functions, the respective dwell time distributions were character-

ized by estimating their cumulative distribution functions (CDFs)
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[28]. Using the same procedure as described in [1,2] we fitted the

stretched exponential form P(X§x)~exp {axb
� �

to the dwell

time CDFs. In order to estimate the parameters a and b, the

equation was rewritten as log {log P X§xð Þð Þð Þ~b log(x)z
log(a). The parameters a and b were estimated from both the

empirical and model data by means of a least squares linear

regression in log(x)-log(log(P)) coordinates.

Parametric analysis of noise and stability parameters
To map out the possible bistability and dwell time statistics, we

explored the parameter space of our model by systematically

varying stability parameters b and l as well as the noise

parameters g and r from (4). For l.0, and {0:25l2
vbv0

the system exhibits two attractors (a fixed point and a limit cycle)

coexisting in parameter space, and hence expresses bistability,

given an adequate noise term. We hence chose fixed values l = 4,

b = 23.4 and systematically varied the noise parameters g and r
between 80 linearly equally spaced values in the defined ranges

g[ 24:8,77:8½ �, and r[ 0:15,0:94½ � which were determined through

iterative adjustment.

For each combination of values (80680), we iterated (4) as

described in section Normal form model - numerical integration. For each

time series, we applied the same fitting procedures and parameter

estimation methods as for the EEG data (as detailed above),

yielding two key system statistics: the BIC difference, quantifying

the relative goodness of fit of a bimodal versus a unimodal PDF,

and the stretched exponential exponent b indicating the degree of

stretching of the dwell time distributions for the low and high

power modes. BIC difference and exponent b were taken as

averages across the 10 calculated time series at each point.

The procedure was repeated for fixed noise parameters

(g = 44.945 and r = 0.61) and varying stability parameters

(<(l)~ 0:6,8:5½ �,b[ {17:84,{0:22½ �) as well as for all remaining

possible combinations of two fixed and to varying parameters.

Corticothalamic neural field model
This computational model describes local mean field dynamics

[36,53,69] of populations of excitatory and inhibitory neurons in

the cortical gray matter as they interact with neurons in the

specific and reticular nuclei of the thalamus. These dynamics are

governed by physiologically derived nonlinear evolution equations

that incorporate synaptic and dendritic dynamics, nonlinear firing

responses, axonal delays, and synaptic gains between presynaptic

impulses and postsynaptic potentials [25]. The activity within each

neural population is described by three state variables - the mean

soma membrane potentials Va(x, t) measured relative to resting, the

mean firing rate at the cell soma Qa(x, t), and local presynaptic

activity wa(x, t) where the subscript a refers to the neural

population (e: excitatory cortical; i: inhibitory cortical; s.: specific

thalamic nucleus; r: thalamic reticular nucleus; n: nonspecific

subcortical input). The global spatial mode is described by the

eight first-order delay differential equations,

dwe(t)

dt
~ _wwe(t), ðm1Þ

d _wwe(t)

dt
~c2

e S Ve(t)ð Þ{we(t)ð Þ{2ce
_wwe(t), ðm2Þ

dVe(t)

dt
~ _VVe(t), ðm3Þ

d _VVe(t)

dt
~ab neewe(t)zneiS Ve(t)ð ÞznesS Vs t{

t0

2

� �� �
{Ve(t)

h i

{ azbð Þ _VVe(t), ðm4Þ

dVs(t)

dt
~ _VVs(t), ðm5Þ

d _VVs(t)

dt
~ab nsewe t{

t0

2

� �
znsrS Vr(t)ð Þznsnwn(t){Vs(t)

h i

{ azbð Þ _VVs(t),

ðm6Þ

dVr(t)

dt
~ _VVr(t), ðm7Þ

d _VVr(t)

dt
~ab nrewe t{

t0

2

� �
znrsS Vs(t)ð Þ{Vr(t)

h i

{ azbð Þ _VVr(t):

ðm8Þ

Note that equation (m6) contains the stochastic term

wn(t)~w(0)
n zw(a)

n (t)zxw(m)
n (t)we(t{t0=2), ðm9Þ

comprising additive w(a)
n and multiplicative w(m)

n noise terms. The

multiplicative term is modulated by the delayed corticothalamic

feedback we(t{t0=2).

Lengthy time series (4200 s) of the excitatory cortical presyn-

aptic activity we(t) where used to represent the cortical sources of

scalp EEG and obtained by numerical integration of the model. As

for the normal form model, we used Heun’s integration scheme

with Dt~0:001s.

Supporting Information

Figure S1 Multiple (10,000) simulations of one fixed parameter

setting reveal that each of the summary statistics shown in Figure 6

follows a normal distribution. A: Empirical probability distribu-

tions (blue) and fit of normal probability density function (red). B:

Corresponding normal probability plots.
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