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A Haplotype at STAT2 Introgressed from Neanderthals
and Serves as a Candidate of Positive Selection
in Papua New Guinea

Fernando L. Mendez,1,2 Joseph C. Watkins,3 and Michael F. Hammer1,2,*

Signals of archaic admixture have been identified through comparisons of the draft Neanderthal and Denisova genomes with those

of living humans. Studies of individual loci contributing to these genome-wide average signals are required for characterization of

the introgression process and investigation of whether archaic variants conferred an adaptive advantage to the ancestors of contempo-

rary human populations. However, no definitive case of adaptive introgression has yet been described. Here we provide a DNA sequence

analysis of the innate immune gene STAT2 and show that a haplotype carried by many Eurasians (but not sub-Saharan Africans) has

a sequence that closely matches that of the Neanderthal STAT2. This haplotype, referred to as N, was discovered through a resequencing

survey of the entire coding region of STAT2 in a global sample of 90 individuals. Analyses of publicly available complete genome

sequence data show that haplotype N shares a recent common ancestor with the Neanderthal sequence (~80 thousand years ago)

and is found throughout Eurasia at an average frequency of ~5%. Interestingly, N is found in Melanesian populations at ~10-fold higher

frequency (~54%) than in Eurasian populations. A neutrality test that controls for demography rejects the hypothesis that a variant of N

rose to high frequency in Melanesia by genetic drift alone. Although we are not able to pinpoint the precise target of positive selection,

we identify nonsynonymousmutations in ERBB3, ESYT1, and STAT2—all of which are part of the same 250 kb introgressive haplotype—

as good candidates.
Introduction

Comparisons of the Neanderthal and Denisova genomes

with those of present-day humans support the hypothesis

of hybridization between these ancient Pleistocene popu-

lations and the ancestors of anatomically modern humans

(AMH) in Eurasia.1,2 With the growing acceptance of gene

flow between archaic humans and AMH, we can now begin

to investigate the role that natural selection might have

played in influencing the introgression process after

hybridization. To do this, we must move beyond estimates

of the average extent of archaic ancestry across the genome

to studies that (1) identify specific genomic regions that

have introgressed, (2) determine the extent of the chromo-

somal region affected by introgression, and (3)measure the

frequency of introgressive alleles in human populations.

Neutrally evolving introgressive alleles are only expected

to be found sporadically among human populations given

the likely loss of many of these variants through genetic

drift. On the other hand, archaic alleles that confer a selec-

tive advantage after introgressing may consistently reach

higher frequencies even in the case of low levels of archaic

admixture.3,4

Thus far, only a handful of loci have been hypothesized

to have entered the human gene pool through archaic

admixture and positive selection, including MAPT (MIM

157140),5 MCPH1 (MIM 607117),3 and particular alleles

at the HLA locus (MIM 142800, 142830, 142840).6

However, analysis of the Neanderthal genome failed to

provide evidence of introgressive alleles at the former
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two loci.1 Because of its role in fighting pathogens, HLA

presents an instance where it is relatively easy to conceive

of an a priori reason that acquisition of an archaic Eurasian

HLA allele would benefit human ancestors, especially as

they expanded into new habitats.7 However, the fact that

HLA haplotypes are known to exhibit transspecific poly-

morphism and show evidence of strong balancing selec-

tion8,9 increases the probability that similarities between

modern and archaic haplotypes are due to ancestral shared

polymorphism (i.e., as opposed to archaic admixture). In

addition, the SNPs tagging the main HLA haplotype that

was said to have introgressed were not observed in the De-

nisova or Neanderthal draft genomes.

Here we present evidence that STAT2 (MIM 600556),

a gene also having an important role in immunity, intro-

gressed from Neanderthals. Located on chromosome 12,

STAT2 encodes STAT2 (accession number AAA98760.1),

which plays an important role in interferon signaling

pathways. Because of its key role in interferon-mediated

responses10 and potential associations with autoimmune

disorders,11 we considered STAT2 a candidate for local

adaptation in humans. Initially, we resequenced ~8.6 kb

of STAT2, including all coding exons, in six OldWorld pop-

ulations (Biaka, Mandenka, San, Han Chinese, French Bas-

que, and Papua New Guineans) and observed the presence

of a haplotype (N) that is restricted to non-African popula-

tions and has a relatively deep branching. This haplotype

shares derived SNPs with Neanderthals, produces extended

linkage disequilibrium (LD) in non-Africans, and shows

recent common ancestry with the Neanderthal sequence.
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A
Surprisingly, haplotype N is found at 10-fold higher fre-

quency in Papuan New Guinea, making it a candidate for

positive selection in Melanesians.
B

C

Figure 1. Schematic Representation of Studied Region
(A) Chromosome 12. A vertical bar indicates the position of STAT2.
(B) The physical location of the genes surrounding STAT2. STAT2
is indicated with a black box, other genes are indicated with
gray boxes, and the spans of two haplotypes (described in the
main text as the short and long variants of N) are indicated with
horizontal lines and labeled as ‘‘short block’’ and ‘‘long block.’’
(C) STAT2. The six sets of contiguous resequenced amplicons are
indicated with boxes below the scheme of the gene. In the repre-
sentation of the gene, boxes indicate exons (wide boxes corre-
spond to coding sequence).
Subjects and Methods

Samples
Four panels of samples were used in this study. The first panel (rese-

quencing panel) consisted of 90 humans from three sub-Saharan

African and three non-African populations (16 Mandenka from

Senegal, 16 Biaka Pygmy from the Central African Republic, 10

San from Namibia, 16 French Basque, 16 Chinese Han, and 16

Papua New Guineans), as well as a common chimpanzee and a

bonobo. A studyof neutral genetic variation inhumans,12,13which

included 61 noncoding loci, had used these samples previously.

The second panel (genotyping panel) consisted of 75 Melanesians

and was genotyped for SNPs diagnostic for haplotypes in the N

and D clades (see below). The third panel (public SNP panel) con-

sisted of samples genotyped in published studies; these included

the HumanGenomeDiversity Project (HGDP) subset that was gen-

otyped on the Illumina 650Y array,14,15 ten European populations

used in a study of the geographic structure of genetic variation in

Europe,16 six HapMap populations, and 24 other populations.17

The fourth panel consists of publicly available whole-genome se-

quences (public WGS panel), including 1 Japanese (NA18956)

and 1 Luhya (NA19026) sequenced by Complete Genomics, 1

San (KB1),18 and 1 Papuan (HGDP00542),1 as well as the Neander-

thal andDenisova draft genomes. All samplingprocedureswere ap-

proved by the University of Arizona Human Subjects Committee.

Sequencing and Genotyping
In what follows all positions refer to chromosome 12 and the

2006 build of the human genome (hg18). The resequencing panel

was amplified by PCR and sequenced for ~8.6 kb of STAT2 in

six segments spanning bases 55,021,597–55,040,412 (Figure 1;

see also Tables S1A and, for primer sequences, Table S1B in the

Supplemental Data available with this article online). Chromato-

grams were analyzed with Phred/Phrap/Consed/Polyphred and

finished manually.13 The ancestral state was inferred from

chimpanzee and bonobo sequences. Samples in the genotyping

panel were sequenced at positions 55,030,502, 55,030,689, and

55,030,712 (Table S2).

Sequence and Phylogenetic Analysis
Watterson’s qW, nucleotide diversity p, and Tajima’s D19 were

computed from the resequenced data. DNAsp20 was used for esti-

mating the parameters and their sample standard deviations.

Haplotypes were phased manually after alleles that occurred in

fewer than three chromosomes were removed. Cladograms were

constructed from the haplotypes in Table 1, both manually and

through the use of PAUP21 after the removal of two haplotypes

showing evidence of recombination. A fully resolved bifurcating

tree was obtained after our data set was augmented with the

publicly available genome sequences of individuals NA19026

and KB1 and after two additional nucleotide sites outside of the

resequenced region were taken into consideration (Table S3).

Haploblock Analysis and Decay of LD
Phased haplotypes from HapMap phase III were downloaded and

analyzed with the program Haploblock Finder v. 0.7.22 For LD
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analysis, SNPs with minor allele frequency greater than 0.02

were used (i.e., singletons were removed). Pairwise LD in each pop-

ulation was plotted with the scripts accompanying the program.

The probability that the haplotype N of length r (in Morgans) per-

sisted in a panmictic population for t generations was estimated

under the assumptions that generation time was 25 years and

that the decay of a haplotype by recombination follows an expo-

nential distribution with parameter r. Because of its high precision,

we chose the genetic map of Hinch et al.23 to determine r. Given

the absence of recombinational hotsposts in the analyzed region,

the variance in r between populations is expected to be small.

Estimation of Divergence Times
We used one of two different methods to calculate the divergence

time between a pair of hominin lineages, depending on sequence

coverage. For sequences with complete coverage, the number of

mutations separating the sequences was assumed to be a sample

from a Poisson distribution. The corresponding mutation rate

was calculated with 6 million years (My) as a divergence time for

the human and chimpanzee reference sequences (Figure S1). For

an individual, the number of mutations separating the sequences

of the two chromosomes is the number of heterozygous sites.

For comparisons between NA18956 (from the WGS panel) and

the Neanderthal sequence, which has incomplete coverage, the

mutations derived in NA18956 since the common ancestor with

chimpanzee were checked against the Neanderthal sequence

(Figure S1). The mutations with sequence coverage were classified

as predating or postdating the split between NA18956 and Nean-

derthal lineages. We used methods based on the distribution of

presplit and postsplit mutations24,25 to estimate the fraction of

the interval that postdates the split. A joint likelihood was then

obtained for the divergence times of the sequence of NA18956

from those of Neanderthals and the human reference (Appendix

A), which was then used to obtain point estimates and confidence

intervals.
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Table 1. Polymorphism Table for Six Segments Covering All Exons of STAT2a

Haplotype

Genomic Positionsb Africans Non-Africans

2
2
1
1
4

2
3
5
2
2

2
3
7
3
3

2
4
2
4
0

2
6
1
2
8

2
6
2
8
4

2
6
6
4
7

2
6
9
4
9

2
6
9
6
7

2
9
2
6
4

2
9
6
3
4

2
9
9
6
5

3
0
3
5
8

3
0
5
0
2

3
0
5
4
3

3
0
6
8
9

3
0
7
1
2

3
5
7
6
1

3
5
7
6
2

3
5
8
5
9

3
6
4
7
1

4
0
0
8
9

4
0
4
0
4 BIA MAN SAN PNG HAN BAS

G C G G
C
C

A
G
A

C G C T C T A A G G T A T A C C T

Neanderthal * . . . – * . . . . . * * . . A C . . . T * .

Denisova . . * . . . * . . . . . . T . . . . . * . . .

N . . . . – — . . . . . . . . . A C . . . T A . 19 3

D . . . . . . . . . . . . . T . . . . . . . . . 3

S . T . . . . T . . . . . . . . . . . C G . . . 6

Mb-1 . . . A . . . C . . T . . . C . . . . . . . . 9 8 10 31 22

Mb-2 . . A A . . . C . . T . . . C . . . . . . . . 4

Mb-3 . . . A . . . C . . T . C . C . . . . . . . . 3

Ma-1 . . . . . . . C . . . . . . . . . . . . . . . 2 2

Ma-2 . . . . . . . C . . . C . . . . . . . . . . . 2

Ma-3 . . . . . . . C . . . C . . . . . . . . . . G 16 10 5

Ma-4 A . . . . . . C . . . C . . . . . . . . . . G 2 2

Ma-5 . . . . . . . C T . . C . . . . . . . . . . G 3

Ma-6 . . . . . . . C . C . C . . . . . . . . . . G 1 7 2

Ma-7 . . . . . . . C . . . C . . . . . G . . . . G 1 5

Rec N-Mb . . . A . . . C . . . . . . . A C . . . T A . 1

Rec S-M . T . . . . T . . . . . . . . . . . . . . . . 1

An asterisk indicates low coverage. The following abbreviations are used: BIA, Biaka; MAN,Mandinka; SAN, San; PNG, Papua NewGuinea; HAN, Han Chinese; and
BAS, French Basque.
aSites with <3 chromosomes are excluded.
b55,000,000 has been subtracted from the original positions.
Test for Selection in Melanesians
The allele frequency of the N lineage was estimated via diagnostic

SNPs (Table S2), and its geographic distribution was plotted with

Generic Mapping Tools.26 To test for an unusually high frequency

of haplotype N we (1) generated an empirical distribution of

derived-allele frequencies for each of two Melanesian HGDP

samples (Papuans and Nasioi), (2) compared the frequency of

the SNP rs7962107 (diagnostic of the long variant of the N lineage)

to this distribution, and (3) applied a one-tailed test for elevated

frequency of the derived allele. We built the empirical distribution

by using SNPs in the Illumina 650Y array that were genotyped

in the HGDP panel.15 We filtered SNPs by requiring that the

derived-allele frequency and variance among East Asian popula-

tions be within 30% of the values corresponding to rs7962107.

The frequencies in Melanesian populations of the 6,213 SNPs

that passed the filter were used for generating the empirical distri-

butions of derived-allele frequencies in Papuans and in Nasioi

samples. We note that the test yielded similar results when these

values were between 20% and 30% (see Results); however, the

value of 30% is reported below as it both increases the robustness

of the test (i.e., by including a larger number of SNPs) and at the

same time makes the test more conservative (i.e., by including
The Americ
more SNPs that are at higher frequency in East Asia than in the

N lineage).
Results

STAT2 Haplotypes

Figure 2 shows a cladogram of 13 haplotypes observed in

the 90 humans included in the resequencing panel (Table

1 and Table S4). Publicly available sequence data (public

WGS panel) from regions surrounding the 8.6 kb STAT2

helped to resolve the phylogeny into a fully binary tree

(boxes in Figure 2). The cladogram contains four clades,

labeled S, D, N, and M (standing for San, Denisova, Nean-

derthal, and modern, respectively). S is observed only in

the San, with a frequency of 35% (including a recombinant

haplotype) (Table 1). Clade D, containing a single rare

haplotype, is restricted to our Papuan sample, where it is

found at a frequency of 9%. Clade N is present at high

frequency in Papuans (59%) and at lower frequency in

the Basque (9%). The remaining chromosomes fall into
an Journal of Human Genetics 91, 265–274, August 10, 2012 267



Figure 2. Cladogram for the Inferred Haplotypes in the Rese-
quenced Region of STAT2
The nomenclature of the haplotypes follows Table 1. Nonsynony-
mous mutations are indicated with a cross hatch if they are pre-
dicted as benign and with a cross within a circle and the name
of the gene if they are predicted as functional. The mutation at
COQ10A is restricted to the short variant of N, and it is unknown
whether the mutation at ERBB3 was present in the long variant of
N before the origin of the short variant. The presence of the muta-
tion at ESYT1 in the ancestry of D was inferred by the association
of D with the Denisova sequence. The additional resolution ob-
tained through analysis of an extended genomic sequence in
two samples not included in the resequencing panel (NA19026
and KB1) is highlighted in boxes indicated with dashed lines.
For example, a mutation at position 55,027,495 is shared by
the M and S clades, a mutation at position 54,799,412 is shared by
Neanderthal and Denisova, and amutation at position 55,041,325
is shared by haplotypes in the Ma clade (Table S3). Two recom-
binant haplotypes (i.e., between haplotypes in clades M and N
and clades M and S) are not shown.
two major subclades, labeled Ma and Mb (Figure 2). The

Ma subclade is restricted to sub-Saharan Africans, where

it ranges in frequency from 65% to 75%, whereas the

Mb subclade is most common in our worldwide sample

(48%). Haplotypes in clade Mb predominate in non-Afri-

cans, especially the Han and French Basque, where they

are found at frequencies of 97% and 91%, respectively.

Nucleotide Diversity at STAT2

In the resequencing panel, levels of polymorphism within

the 8,606 bp of sequence generated within and around

STAT2 (~0.03%–0.04% per base, Table 2) are lower than

the genome average (~0.1% per base).13 This result holds

when the analysis is restricted to the noncoding sequences

of STAT2 (Table 2 and Figure 1C). Notably, although they

are still lower than the genome average, values of STAT2

nucleotide diversity are highest in the San (q ¼ 0.043 5

0.018 and p ¼ 0.049) and in Papuans (q ¼ 0.040 5 0.016

and p ¼ 0.050). Additionally, these two population

samples exhibit the highest Tajima’s D values (0.55 and

0.79, respectively) (Table 2). In a comparison with 61 non-

coding loci sequenced in the same populations,12 the

STAT2 locus shows reduced polymorphism in all three
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sub-Saharan African samples, as well as in the Han

Chinese, but not in our samples of French Basque or Papua

New Guineans (Figure S2).

LD in the Vicinity of STAT2

The tree-like structure within the 8.6 kb of sequence data

analyzed in Figure 2 is consistent with strong LD in the

vicinity of STAT2. To explore how far LD extends along

the chromosome and to assess whether observed LD in

the region of STAT2 could be the consequence of a recent

bottleneck in non-Africans, we performed a haploblock

analysis of SNP-based haplotypes present in ten popu-

lations of HapMap phase III. Some non-African chro-

mosomes are characterized by an approximately 260 kb

haploblock, whereas others contain a shorter 130 kb hap-

loblock that is nested within the longer block (Figure 1).

Neither version of this haploblock is present in the African

HapMap data, where the average length of LD is much

shorter (Figure S3). The short and long haploblocks match

haplotypes that are members of the N clade. Thus, we refer

to these haplotypes as short and long variants of N. The

short variant is present in all non-African populations,

whereas the long variant is found only in East Asians, espe-

cially Japanese (Figure S3). The individual NA18956,

whose sequence is used in a more detailed analysis below,

is heterozygous for the short and long variants of the N

lineage. This sample was chosen because (1) it was se-

quenced to high coverage (e.g., > 403), and (2) it is homo-

zygous for the N lineage at STAT2. The maximal genetic

distance between markers at the ends of the short variant

is ~0.032 cM. The 95% upper bound for the time of main-

tenance of this haplotype is estimated at ~235 kya. Analo-

gously, for the long variant, the genetic length is ~0.081

cM, resulting in a 95% upper bound of 92 kya.

Comparisons with the Draft Neanderthal Sequence

For all positions within the 130 kb short block with

coverage in the Neanderthal draft genome sequence

(Figure 1), we compared the sequences of NA18956, the

human reference, the chimpanzee reference, and Neander-

thal. Wherever the human reference has the derived state

at a given site, the Neanderthal sequence shares the

ancestral state with NA18956. The Neanderthal sequence

matches NA18956 at 32 out of the 36 positions at which

NA18956 is homozygous derived.

To assess whether the 130 kb that are unique to the

long block also match Neanderthal sequence (i.e., from

54,770,000 to 54,913,000), we compared the sequences

of NA18956, the human reference, a Papuan individual

homozygous for the N lineage (HGDP00542), and chim-

panzee references as an outgroup (i.e., to infer ancestral

state). We chose to analyze variants in NA18956 because

it has the highest sequence coverage among individuals

carrying the N/Neanderthal lineage. We considered only

sites at which the best alignment quality of a Neanderthal

read was 60 or more. In 86% of the cases (18/21) where

a variant in NA18956 was ancestral (i.e., where it differed
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Table 2. Nucleotide Diversity at STAT2

Population na

All Amplicons (8,606 bp) Noncoding (6,027 bp)

S q (%) p (%) TD S q (%) p (%) TDb q/ Dc p/ Dc

Biaka 32 10 0.029 0.030 0.16 7 0.029 0.039 0.95 0.029 0.038

Mandenka 32 13 0.038 0.034 �0.30 11 0.046 0.039 �0.49 0.045 0.038

San 20 13 0.043 0.049 0.55 8 0.038 0.036 �0.15 0.038 0.035

Papuans 32 14 0.040 0.050 0.79 12 0.050 0.064 0.89 0.049 0.063

Han 32 10 0.029 0.007 �2.34 10 0.042 0.011 �2.34 0.041 0.010

Basque 32 14 0.040 0.024 �1.35 13 0.054 0.032 �1.36 0.053 0.031

aNumber of chromosomes in the sample.
bTajima’s D.
cDivergence calculated between human and chimpanzee reference sequences.
from the human reference and was shared with the chim-

panzee reference), we found the Neanderthal variant to be

ancestral. Analogously, for 86% (19/22) of the sites at

which NA18956 and HGDP00542 shared the derived

allele, we found the Neanderthal variant to be derived

(Table S5). The overall pattern of similarity between the

N lineage and the Neanderthal lineage over the long block

suggests that the entire 260 kb introgressed from the

Neanderthal lineage. Finally, Denisova and Neanderthal

sequences agree at eight of the 20 sites at which bothNean-

derthal and Denisova have sequence coverage and Nean-

derthal sequence is derived.

Divergence Time of Neanderthal and N Clade

Sequences

We used variant sites between positions 54,913,000 and

55,040,500 in the public WGS panel to estimate diver-

gence time between the Neanderthal and N clade lineages.

We used a maximum-likelihood approach to estimate the

times of divergence both between the Neanderthal and

NA18956 sequences and between each of these sequences

and the human reference (Figure 3). The Neanderthal-N

lineage divergence time is necessarily more recent because

the sequences of NA18956 and Neanderthal share several

derived mutations. If we assume a divergence time for

human and chimpanzee sequences of 6Mya, the estimated

times of sequence divergence for the reference-Neander-

thal comparison and the NA18956-Neanderthal compar-

ison are 609 kya (501–731 kya, 95% CI) and 78 kya (25–

159 kya, 95% CI), respectively. The sequences of the short

and long variants observed in NA18956 diverged ~22 kya

(6–56 kya, 95% CI) (Table 3).

Elevated Frequency of the Long Variant of N among

Papuans

We used data from the genotyping and public SNP panels

(see Subjects and Methods) to investigate the global distri-

bution of N haplotypes. Although N lineages are broadly

distributed across non-African populations and distributed

in North African Mozabites at an average frequency of 5%

(Figure 4 and Table S6), they are 10 times more frequent in
The Americ
Melanesian populations (~54%). To determine the relative

prevalence of the short and long variants of the N lineage,

we examined the subset of populations (i.e., 30 popula-

tions from HGDP) with sufficient genotyping information

to distinguish them. Table S6 shows that the long variant is

present in East Asian (14/748 chromosomes) andOceanian

(22/56 chromosomes) populations (but it never reaches

frequencies higher than 10% in samples with n > 10 in

East Asia) and that it is absent in South Asian, Southeast

Asian, western Eurasian, and North African populations.

In Papua New Guinea, where the N lineage is most fre-

quent (Table S6), the long variant predominates, account-

ing for ~85% of N lineage haplotypes.

The significance of the large difference in frequency

of the long variant of the N lineage between Melanesian

and East Asian populations was tested as follows. When

scored on chromosomes carrying the N lineage, the SNP

at rs7962107 distinguishes between the short and long

variants. We performed a test that controls for demog-

raphy by comparing the derived allele frequency at

rs7962107 between Melanesian and East Asian popula-

tions as described in the Subjects and Methods (Figure 5).

The derived allele frequency of rs7962107 is significantly

high (p z 0.02) in Papuans, close to significant in Nasioi

(pz 0.06), and remains significant in Papuans after a Bon-

ferroni correction for combining these two tests.

Comparisons with the Denisova Draft Genome

We also compared the draft Denisova sequence with our

resequencing data (Table 1). For the ~8 kb of Denisova

sequence coverage within the 18.8 kb spanning STAT2

in Figure 1C, haplotype D agrees with the Denisova

sequence at all 20 segregating sites. Based on the observed

~0.8% divergence from the chimpanzee sequence and the

assumption of a Poisson distribution of the number of

mutations separating two lineages, we estimate that the

total evolutionary time separating the D and Denisova

sequences is 0–570 kya (95% CI). We can estimate their

TMRCA by considering the age of the Denisova fossil,

which could be older than 50 kya.2 If we assume that the

remains are more recent than 100 ky old, the upper bound
an Journal of Human Genetics 91, 265–274, August 10, 2012 269



Figure 3. Joint Log-Likelihood for the Divergence Times
between the Sequences of NA18956 and the Human Reference
and between the Sequence of NA18956 and the Published
Neanderthal Sequence

Table 3. Times of Divergence between Pairs of Haplotype
Lineages

Haplotype Lineage 1
(individual)

Haplotype Lineage 2
(Individual)

Divergence Time
in kya (95% CI)

N (NA18956) Mb (reference) 609 (501–731)

N (NA18956) Neanderthal 78 (25–159)

N-short (NA18956) N-long (NA18956) 22 (6–56)
for the age of the most recent common ancestor of Deni-

sova and the D lineage is 335 kya. In a survey of SNPs diag-

nostic for the D lineage (position 55,030,502, Table S4) in

108 Melanesians (49 Papuans, 16 Nasioi, 23 Vanuatuans,

and 20 New Britain Islanders) from the resequencing and

the genotyping panels, we did not identify any more indi-

viduals carrying the D lineage than had been found in our

initial resequencing survey (i.e., the three chromosomes in

the resequencing panel).
Discussion

Evidence for Neanderthal Introgression at STAT2

We provide several lines of evidence that the N lineage

of the STAT2 locus introgressed into the genome of

anatomically modern humans from Neanderthals. First,

N matches the Neanderthal sequence at all 18 sites that

fall within the resequenced 8.6 kb STAT2 region and

have Neanderthal sequence coverage (Table 1). Second,

N lineages are broadly distributed at relatively low fre-

quencies in Eurasian populations (Figure 3) and are not

observed in sub-Saharan African populations (Table S6).

Third, the N haplotype extends for ~130 kb in West

Eurasians and up to ~260 kb in some East Asians andMela-

nesians, producing much stronger LD than that observed

in sub-Saharan Africans. The LD-based 95% one-sided

confidence intervals for the time the N lineage has been

evolving in the same population as other human se-

quences are 235 ky and 92 ky for the short and long vari-

ants, respectively. Given that the N lineage and the refer-

ence sequence diverged ~600 kya, these results suggest

that population structure has influenced the recent evolu-

tion of this locus. Balancing selection alone is not expected

to maintain this extent of LD and consequently is not

sufficient to explain these patterns. Moreover, although

a strong bottleneck could generate extended LD similar
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to the levels we observe near STAT2 in non-Africans, it

would not explain why the N lineage went extinct in Africa

(i.e., why the SNPs associated with the N lineage in non-

Africans were not observed in sub-Saharan Africans that

are part of our WGS or public SNP panels). These observa-

tions meet a priori expectations that introgressive alleles

produce extended LD and that most alleles that intro-

gressed outside of Africa should be at lower frequency in

sub-Saharan Africans.4,27 Perhaps the most definitive piece

of evidence supporting archaic introgression is the recent

common ancestry between Neanderthal and contem-

porary N lineage sequences. The estimated upper 95%

CI for the divergence time between Neanderthal and N

sequences (~160 kya) corresponds to a time that postdates

current estimates of the divergence time for the popu-

lations leading to AMH and Neanderthals.1 This makes

ancestral shared polymorphism an unlikely explanation

for the similarity between Neanderthal and AMH STAT2

haplotypes. Depending on the process of archaic admix-

ture, Neanderthal alleles might have introgressed indepen-

dently in different non-African populations.28 Although

we observe two variants of this haplotype (long and short),

a TMRCA of ~22 kya (upper 97.5% of 56 kya) suggests that

the short variant resulted from recombination after intro-

gression of the long haplotype from Neanderthals (i.e.,

rather than from separate introgression processes).

We point out that although a recent common ancestry

between a human lineage and Neanderthal sequences

might indicate gene flow between Neanderthals and

modern humans, this information alone does not inform

us about the direction of gene flow. With the additional

evidence of the observed extent of LD in modern human

sequences, it is possible to infer that the N lineage intro-

gressed into modern humans (either from Neanderthals

or another archaic source that contributed to both Nean-

derthals and AMH). Although two X-linked haplotypes

previously predicted to be introgressive27,29 were more

recently shown to share derived SNPs with the Neander-

thal sequence,30,31 the case of STAT2 is the first to show

both a recent TMRCA and gene flow from archaic to

modern humans.

Interestingly, a rare haplotype observed only in Papuans

shares all ancestral and derived sites with the Denisova

sequence. Estimates of the time of divergence of the D

lineage and the Denisova sequence suggest a recent com-

mon ancestor (i.e., ~300 kya). The presence of Denisova-

like sequences in Papuans has been found for another
0, 2012



Figure 4. Geographic Distribution of the N Lineage
The N lineage is shown in the filled region of the pie chart.
locus, OAS1 (MIM 164350),32 and is consistent with results

of genome-wide surveys suggesting that the signal of Deni-

sova admixture might be limited to Melanesia and a few

neighboring island southeast Asian populations.32,33

Positive Selection on the Introgressed N Lineage in

Melanesia

Green et al.1 estimated a Neanderthal genetic contribution

to non-Africans of about 1%–4%, and more recently Reich

et al.2 estimated the Neanderthal ancestry of Melanesians

at about 1%. The observed occurrence of the introgressive

allele of STAT2 in Eurasians is in line with these estimates.

For example, the frequency of the N lineage typically varies

between 2% and 9% in Eurasian populations (Figure 4). In

contrast, the average frequency of this lineage inMelanesia

(54%) is approximately ten times higher than the mean

Eurasian frequency of ~5%. Moreover, the long variant

comprises ~85% (17/20) of Papuan N chromosomes, but

it only makes up ~2% (14/748) of East Asian N chromo-

somes. We find that the elevated frequency of the long

variant cannot be explained by demographic processes

alone, suggesting that positive selection has acted to

increase the frequency of the N lineage in Melanesia.

However, given the length of LD associated with the intro-

gressive haplotype in Melanesia, it is not clear that the

target of selection was at STAT2.

There are four nonsynonymous mutations differenti-

ating the ~260 kb introgressive haplotype from African

haplotypes. Two of these variants are less likely to be the
The Americ
target of selection on the N lineage in Papuans because

they do not lead to a predicted change in function (hori-

zontal lines on branches in Figure 2). Nonsynonymous

mutations in the long variant that are predicted to have

functional effects are found in ERBB3 (MIM 190151) and

ESYT1 (Table 4). The Neanderthal genome shares the

derived state at ESYT1 but has no sequence coverage at

the candidate site in ERBB3. A single nonsynonymous

substitution with potential functional effects distinguish-

ing the N lineage from most African haplotypes and

the other Eurasian haplotypes is also found in STAT2;

however, this difference is also shared by the short variant

(Figure 1).

The variant within ERBB3 affects the intracellular

domain of the tyrosine-kinase-type cell-surface receptor

ERBB3 (p.Arg1042His; Table 4), changing a residue that is

highly conserved in mammals. ERBB3 and ERBB2 form a

heterodimer that plays an important role in cell growth,

survival, and differentiation and in the suppression of

apoptosis.34 ESYT1, which has ubiquitous expression,

encodes for the extended synaptotagmin-like protein 1

(ESYT1), a type I transmembrane protein.35,36 It has been

recently shown that the expression of ESYT1 is dramati-

cally induced during differentiation of fibroblasts into

adipocytes. The variant on the N lineage (p.Ser848Trp;

Table 4) affects a residue generally conserved in primates.

Interestingly, the Denisova sequence also encodes trypto-

phan at this position (Figure 2). STAT2 plays a crucial

role in one of the JAK-STAT pathways of interferon
an Journal of Human Genetics 91, 265–274, August 10, 2012 271
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Figure 5. Cumulative Distribution Function for Derived Allele Frequencies
For (A) Papuans and (B) Nasioi, the distribution is conditional on the observed derived allele frequency of the SNP rs7962107 in East
Asians. The gray bar indicates the observed frequency f of rs7962107 for the HGDP samples in the public SNP panel. Panels (A) and
(B) are based on 6,213 SNPs, whereas panel (C), for East Asians, is based on 660,219 SNPs.
signaling. Its proper function involves the recognition of

phosphorylated tyrosines through its SH2 domain. The

observed mutation with potential for functional effects

in STAT2 (p.Ile594Met) affects a residue annotated in

GenBank as belonging to the SH2 domain.

The identification of specific introgressive variants can

shed light on the phenotypic changes brought about by

archaic admixture and the role that natural selection may

play in the process of genetic introgression. In general,

introgressive alleles are more likely to persist in AMH if

they were selected at the time of hybridization. However,

even alleles that initially behave neutrally can become

adaptive at a later time in some populations, which should

lead to differentiation among AMH populations at the

introgressed allele. This scenario is consistent with the

differentiation observed at STAT2 between Melanesian

(especially Papuans) and East Asianpopulations (Figure S4).

Despite the high frequency of the long variant of N, the

introgressive haplotype is not fixed or near fixation in

any of the Melanesian populations, a situation compatible

with several scenarios. For example, if selection is recent,

the selected allele might not have had enough time to

reach fixation. Alternatively, selection might be older, but

with a weak selection coefficient. It is also possible that

the selected allele is subjected to some form of balancing

selection. Any combination of the previous three scenarios

is also possible, and distinguishing among these possibili-

ties would require a more extensive Melanesian sequence

data set and/or genotype/phenotype association studies

in Melanesians. In light of the small overall genetic contri-

bution of Neanderthals, it is remarkable that an introgres-

sive allele reaches such a high frequency and that it does

so only in populations of one region.
Appendix A: Calculation of Divergence Time for

the Neanderthal Lineage

Here we show the joint likelihood function of the diver-

gence time of two lineages with complete sequence
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coverage and the split time of one sublineage with incom-

plete sequence coverage, if we assume that there is a single

genealogy and that the mutation rate is known. In

Figure S1, the lineages with complete sequence coverage

are M and N. The lineage N is more closely related to the

lineage R, which has incomplete sequence coverage.

Let K1 and K2 the number of mutations since their most

recent common ancestor in the lineages M and N, respec-

tively, C be the number of the K2 mutations with sequence

coverage in the lineage R, and A be the number of those C

mutations at which R has the derived allele (Figure S1). The

maximum possible value for C is reached when the

sequence R has maximum coverage. Although A depends

on K2, A is conditionally independent of K2 once C is

given. If t and td are the times since the splits of M and

N, and of N and R, respectively, and m is the mutation

rate, the likelihood function for t and td can be written as

Lðtd; t j k1; k2; a; cÞ ¼ PfK1 ¼ k1;K2 ¼ k2;A ¼ a jC ¼ c; td; tg
¼ PfK1 ¼ k1 j tgPfK2 ¼ k2 j tgPfA ¼ a jC ¼ c; td; tg

¼ ðmtÞk1
k1!

e�mtðmtÞk2
k2!

e�mt

 
c

a

!�
td
t

�ðc�aÞ�
1� td

t

�a

Note that 0%a%c%k2.

The likelihood function reaches its maximum for the

values bt ¼ ðk1 þ k2Þ=ð2$mÞ and bt d=bt ¼ 1� a=c.

To determine the range of values of td and t that are

consistent with the data, we performed the calculation in

a grid for the values of the parameters. For each of the

parameters, we required that the log-likelihood was not

smaller than 1.92 times the value for the maximum. The

values for the constants in the grid search are a ¼ 32, c ¼
36.5, k1þk2 ¼ 109, and m ¼ 8.95 3 10�5/year.

The half integer in the values of cwas chosen because out

of the four heterozygous sites in NA18956, only one of

them has sequence coverage in Neanderthal. The value

chosen for themutation rate uses themaximum-likelihood

estimate when the divergence time between the human

and chimpanzee reference sequences is 6 Mya.
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Table 4. Nonsynonymous Mutations Possibly Influencing the Genealogy of STAT2

Gene Lineage Mutation Position (hg18) Amino Acid Substition Effecta Descriptionb

ERBB3 N 54,781,290 p.Arg1042His probably damaging protein kinase

ESYT1 N þ D 54,818,985 p.Ser848Trp probably damaging membrane trafficking

ANKRD52 N 54,923,242 p.Ser1061Thr benign protein binding

COQ10A N 54,947,172 Met1-c possibly damaging mitochondrial

PAN2 Ma 55,008,327 p.Leu179Ile benign 30–50 exoribonuclease

STAT2 S 55,023,522 p.Gly825Asp benign signal transducer

STAT2 M 55,026,949 p.Ile594Met possibly damaging ‘‘

STAT2 Ma 55,029,264 p.Ile464Val benign ‘‘

APOF Ma 55,041,325 p.Ile311Thr possibly damaging lipid transport

APOF S þ M 55,041,724 p.Gly178Ala benign ‘‘

Mutations are indicated with respect to the inferred ancestral state. When multiple isoforms are present, the position corresponds to the longest isoform.
aAs predicted by Polyphen 2. The prediction of some variants as damaging might only indicate a change in function.
bFrom Gene Ontology.
cResults in a truncated protein for the isoform with 243 amino acids. The reading frame is preserved.
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