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A Permutation Procedure to Correct
for Confounders in Case-Control Studies,
Including Tests of Rare Variation

Michael P. Epstein,1,* Richard Duncan,1 Yunxuan Jiang,2 Karen N. Conneely,1 Andrew S. Allen,3

and Glen A. Satten4

Many case-control tests of rare variation are implemented in statistical frameworks that make correction for confounders like population

stratification difficult. Simple permutation of disease status is unacceptable for resolving this issue because the replicate data sets do not

have the same confounding as the original data set. These limitations make it difficult to apply rare-variant tests to samples in which

confounding most likely exists, e.g., samples collected from admixed populations. To enable the use of such rare-variant methods in

structured samples, as well as to facilitate permutation tests for any situation in which case-control tests require adjustment for con-

founding covariates, we propose to establish the significance of a rare-variant test via a modified permutation procedure. Our procedure

uses Fisher’s noncentral hypergeometric distribution to generate permuted data sets with the same structure present in the actual data set

such that inference is valid in the presence of confounding factors. We use simulated sequence data based on coalescent models to show

that our permutation strategy corrects for confounding due to population stratification that, if ignored, would otherwise inflate the size

of a rare-variant test. We further illustrate the approach by using sequence data from the Dallas Heart Study of energy metabolism traits.

Researchers can implement our permutation approach by using the R package BiasedUrn.
Introduction

Association mapping of rare variants (those with a minor

allele frequency [MAF] < 1%) and less-common variants

(those with a MAF between 1% and 5%) requires different

analytic methods from those typically used for the detec-

tion of common genetic variants in a genome-wide associ-

ation study (GWAS). For a case-control study, GWAS-based

statistical methods usually consider genetic variants

individually and develop an association test based on

allele-frequency differences of the variant between cases

and controls. For rare-variant analysis, this strategy will

most likely have inadequate power given that power

decreases with decreasing allele frequency for fixed sample

and effect sizes. Thus, many recent publications recom-

mend association tests that aggregate rare and less-

common variants within a gene or region for analysis.

Many ‘‘burden’’ tests pool such variants into a composite

variable and then test for association between that

composite variable and disease status. The composite vari-

able could be a binary indicator of whether a subject

possesses a rare variant (defined as a variant below some

allele-frequency threshold value) within the region of

interest1–3 or could be a sum over the number of rare vari-

ants that a subject possesses across that region.4–6 Other

tests that remain powerful when testing regions contain-

ing risk and protective rare variants include the replica-

tion-based test (RBT),7 the C-alpha test,8 and the weighted

haplotype and imputation-based test (WHaIT),9 among

others.10–13
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An open issue with rare-variant association tests is their

validity in the presence of confounders such as population

stratification. Confounding from population stratification

occurs when genetic variation is correlated with varia-

tion in disease risk across latent subpopulations or

geographic gradients. This confounding is likely to arise

in association studies of rare variants because such variants

might be unique to a particular ancestral group.14,15 Like

common-variant tests employed in GWASs, certain rare-

variant tests like SKAT12 and others implemented in a

logistic-regression framework2,5,13 can incorporate sum-

mary measures of such variables as covariates. Unfortu-

nately, many other rare-variant association tests that exist

today are implemented in statistical frameworks that

do not allow such straightforward corrections for con-

founders. These include the RBT method,7 which creates

a statistic that detects enrichment of rare variants in cases

versus controls and vice versa and that can also incorpo-

rate adaptive weights, and the C-alpha test,8 which uses

a general homogeneity score statistic16 to test whether

the variance in the proportion of cases that possess rare

variants within a region differs from the expected bino-

mial distribution if all variants are neutral. Many other

rare-variant tests that do not correct for covariates also

exist.4,9,17–20

In addition to those rare-variant tests that cannot

directly adjust for confounders, there are other rare-

variant tests that offer only limited mechanisms to cor-

rect for such variables. One such example is the vari-

able-allele-frequency threshold test,3 which proposes
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Table 1. Sampling a Permuted Data Set

j ¼ 1 j ¼ 2 . j ¼ N Total

Case rk1 rk2 . rkN N1

Control 1� rk1 1� rk2 . 1� rkN N0

Total 1 1 . 1
adjusting for covariates by the replacement of disease-

outcome variables in the test statistic with residuals

from a regression analysis of disease outcome on covari-

ates under a linear model. Such a strategy is not ideal

because studies have shown that applying a linear model

to binary disease-outcome data can lead to an inap-

propriate correction for confounding.21–23 Another test

with restricted ability to correct for confounders is the

cumulative minor-allele test (CMAT),6 which allows

for the adjustment of a single categorical covariate.

Such an adjustment will be insufficient if there is a

need to model multiple continuous covariates, such as

summary ancestry measures based on significant eigen-

vectors from a principal-component analysis of genome-

wide SNP data.

For case-control studies, we propose a method that

enables the adjustment of any association test, including

the rare-variant association tests discussed previously, for

an arbitrary number of categorical and continuous con-

founding covariates. These covariates can include sum-

mary measures of ancestry to correct for confounding

due to population stratification. Our strategy involves a

permutation procedure that repeatedly shuffles the disease

outcomes of study participants in a way that generates

permuted (replicate) data sets with the same extent of con-

founding found in the original data set. The distribution of

any test statistic, calculated with these replicate data sets, is

a valid null distribution for the test statistic. Whereas other

rare-variant tests (including the RBT, CMAT, and WHaIT)

already use permutations to establish significance thresh-

olds, such permutations are performed by random shuf-

fling of case or control status among individuals; this shuf-

fling does not preserve the confounding present in the

data set and thereby invalidates the use of the distribution

of permuted statistics for inference when confounding

exists.

To implement our approach, we first model the odds

of disease given confounding covariables (typically by

using logistic regression). We then use Fisher’s noncentral

hypergeometric distribution24 to resample disease status

such that the odds of a subject being selected as a case

are equal to his or her odds of disease conditional on

confounder variables (which we previously defined as the

stratification score in Epstein et al.25). The sampling is

carried out with the open source R package Biase-

dUrn.26,27 Using simulated sequence data, we apply our

permutation strategy to three existing rare-variant tests

(RBT, CMAT, and C-alpha) and show that it corrects for

confounding due to population stratification that would

otherwise inflate the size of these rare-variant statistics.

In addition, we show that even the standard single-locus

tests commonly used for analyzing GWASs might benefit

from our approach when the MAF is small enough that

only a few risk alleles are observed in the population. We

also illustrate the approach with an application to

sequence data from the Dallas Heart Study of energy

metabolism traits.28,29
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Material and Methods

We assume a case-control study with N1 case participants and

N0 control participants and let N ¼ N0 þN1. For j ¼ 1; :::;N, we

let Dj indicate the jth study participant’s disease status for which

Dj ¼ 1 represents a case participant and Dj ¼ 0 represents

a control participant. For the jth study participant, we let Cj be

the covariate vector that we will adjust for when evaluating

the relationship between rare variants and disease outcome

by using an appropriate test statistic. The vector Cj can include

summary measures of ancestry, such as eigenvectors from

principal-component analysis30,31 or spectral-graph analysis32

of GWAS SNP data. Additionally, Cj can include other poten-

tial confounders, such as age, smoking status, and body mass

index (BMI).

We use permutation to establish the significance of an observed

association between genetic variants and disease status. If con-

founding exists, then certain subjects will have greater odds of

being a case than will other subjects even after differences in

causal risk factors are accounted for. Therefore, we propose

sampling a permuted data set in such a way that the odds of

a subject being selected as a case are equal to his or her odds of

disease conditional on confounder variables. For permutation

k, we let rk ¼ ðrk1; rk2;.; rkNÞT be the N-dimensional vector whose

jth component is 1 if the jth study participant is selected as a case

and 0 if the participant is selected as a control. On the basis of

the study design, each rk will have N1 components valued at 1

and N0 components valued at 0. As shown in Table 1, rk corre-

sponds to the vector of cell occupation counts for the first row

of the table given that all row and column marginal totals are

fixed. Thus, the distribution of rk is governed by a multivariate

hypergeometric distribution.24 Therefore, we sample rk by using

Fisher’s noncentral hypergeometric distribution with noncentral-

ity parameter bq ¼ ðbq1; bq2;.; bqNÞ, where bqj is subject j’s estimated

odds of disease conditional on confounder variablesCj (previously

defined as the stratification score25).

A key aspect of our approach is that the confounding role of

covariates is maintained in each permuted data set even though

the association between risk genotypes (or, more generally, expo-

sure) and disease is broken. Recall that a covariate is a confounder

if it influences both genotype and disease. Because we reassign

only disease status, any relationship between confounding cova-

riates and genotype found in the original data is maintained in

each permutation data set. Furthermore, sampling from Table 1

with Fisher’s noncentral hypergeometric distribution with each

participant’s odds of disease qj given covariates Cj maintains

the relationship between confounding covariates and disease

status. In particular, the odds that individual j is chosen to be a

case is qj. However, any association between genotype and

disease is broken because genotype is not considered in the calcu-

lation of the stratification score qj or in the resampling of disease

status.
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We estimate bqj with the logistic regression model

log

�
P
�
Dj ¼ 1 jCj

�
P
�
Dj ¼ 0 jCj

��hlog
�
qj
� ¼ aþ gT$Cj; (Equation 1)

where a is an intercept and g is a vector of disease-risk parameters

corresponding to the elements in Cj. We use the maximum-

likelihood estimates of these parameters to construct the esti-

mated odds of disease bqj for subject j as

bqj ¼ exp
�ba þ bgT

$Cj

�
: (Equation 2)

Using bqj in Equation 2, we construct the probability mass func-

tion of Fisher’s noncentral hypergeometric distribution as

f
�
rk; bq;N1

� ¼ g
�
rk; bq�P

s˛X
g
�
s; bq�; (Equation 3)

where gðrk; bqÞ ¼ QN
j¼1

bqrkjj and X denotes the set of all possible rk
configurations consistent with Table 1. We observe that

f ðrk; bq;N1Þ in Equation 3 does not depend on ba in Equation 2

because the intercept cancels from numerator and denominator.

We point out that, within Cj, specific covariates that do not

predict disease status should have little impact on bqj because their
disease-risk parameters g should be small. Note that use of the

estimated odds (Equation 2) in place of the true odds is justified

given that our method can be considered as a type of parametric

bootstrap. Specifically, our sampling procedure can be thought of

as a bootstrap in which we prospectively assign each participant

a disease outcome on the basis of the logistic model (Equation

1) but then reject all data sets that do not contain N1 case and

N0 control participants.

Up until now, we have avoided specification of an alternate

hypothesis so that the replicate data sets we generate can be

used for any hypothesis test provided that the composite null

hypothesis (Equation 1) is correctly specified. If we are willing to

assume a parametric alternative hypothesis, we can exploit the

connection between our resampling approach and the parametric

bootstrap to generate replicate data sets under a specified alterna-

tive hypothesis. For example, we can assume that

log

�
P
�
Dj ¼ 1 jGj;Cj

�
P
�
Dj ¼ 0 jGj;Cj

��hlog
�
qj
� ¼ aþ b$Gj þ gT$Cj;

(Equation 4)

where Gj counts the number of minor alleles found at a risk locus.

Although standard asymptotic methods can be used for making

inference about b, we can question these methods when the

MAF of the variant is less common (<5%).

To generate a resampling-based confidence interval for ðbb � bÞ
under the alternative hypothesis (Equation 4), we first estimate

coefficients a, g, and b. We then use these estimates in Equation

4 to estimate bqj and then use these estimates of qj to generate

replicates as described previously. We then fit Equation 4 to each

replicate data set and collect bbr , the b estimate obtained from

the rth replicate. Because these replicates correspond to a para-

metric bootstrap sample in which all data sets that do not have

N1 case and N0 control participants are rejected, we can base infer-

ence on the observed distribution of the bbr values. For example, we

can construct a confidence interval for bb by using the quantiles of

the resampling distribution of bbr . Other bootstrap-based confi-

dence regions described in Efron and Tibshirani33 can also be

calculated.
The Americ
Software
We generated random variates from Fisher’s noncentral hypergeo-

metric distribution by using the R package BiasedUrn created

by Fog.26 The name ‘‘Biased Urn’’ refers to a related use of Fisher’s

multivariate hypergeometric distribution in an urn-model pro-

blem in which each ofN balls has a specified odds of being selected

and in which we sample N1 of these balls without replacement. As

distributed in the Comprehensive R Archive Network (CRAN), the

BiasedUrn package has set the maximum number of columns in

Table 1 to 32. So that the package is amenable for the sample sizes

expected from resequencing studies, the package is recompiled so

that it can generate permutation data sets for any case-control

study in which N % 10,000. On our website, we provide instruc-

tions on how to recompile and install this package with the

increased value for N (see Web Resources). We also provide sample

R code implementing the approach in Appendix A. Because we use

the R package BiasedUrn for calculations involving Fisher’s

noncentral hypergeometric distribution, we refer to our sampling

procedure as biased urn sampling throughout the remainder of the

paper.
Results

Biased Urn Sampling Preserves Structure in the

Original Data Set

We first performed a proof-of-principle simulation on the

basis of an existing GWAS to ensure that our proposed

biased urn sampling strategy with Fisher’s noncentral

hypergeometric distribution would preserve the structure

present within a data set (such structure is not preserved

with random [naı̈ve] permutations.) We used data from

a case-control GWAS of African American subjects with

schizophrenia (these data are available for download

from the database of Genotypes and Phenotypes

[dbGaP]34 [see Web Resources and Acknowledgments]).

The GWAS data set initially consisted of data from 921

case and 954 control participants genotyped for 845,814

SNPs on the Affymetrix 6.0 platform. After we used the

PLINK software package35 to implement quality-control

procedures similar to those described in Fellay et al.,36

our final sample consisted of data from 907 case and 937

control participants genotyped for 808,169 SNPs. We

then used a reduced set of 41,182 SNPs in approximate

linkage equilibrium (pairwise r2 % 0.04 as determined by

PLINK) to infer eigenvectors from principal-component

analysis;31 these eigenvectors serve as summary measures

of ancestry. On the basis of the principal-component anal-

ysis, we used Tracy-Widom statistics to identify eight

eigenvectors that were significant at level a ¼ 0.01.

We fit the logistic regression model (Equation 1) to our

sample of 907 cases and 937 controls, and we let Cj repre-

sent the vector of the eight significant eigenvectors for

study participant j. The maximum-likelihood estimates ofbg ¼ ðbg1; bg2;.; bg8Þ are shown in the second column of

Table 2. We next examined whether permuted data sets

generated with our biased urn sampling procedure main-

tained the structure found within the original case-control

data set. We generated a permuted data set by using our
an Journal of Human Genetics 91, 215–223, August 10, 2012 217



Table 2. Regression Coefficient Estimates Under Biased Urn and
Random Permutation Schemes

Original Data

Permutation Scheme

Biased Urn Random

Mean (SD) Mean (SD)

g1 �8.39 �8.47 (2.02) �0.06 (2.03)

g2 1.41 1.44 (2.14) �0.08 (2.03)

g3 �2.13 �2.28 (2.00) �0.11 (2.04)

g4 �4.86 �4.96 (2.05) �0.09 (2.03)

g5 �0.88 �0.93 (2.02) �0.08 (2.02)

g6 0.69 0.80 (2.09) 0.01 (2.03)

g7 �1.22 �1.24 (2.01) 0.00 (2.04)

g8 �0.76 �0.80 (1.99) 0.03 (1.96)

The results for each permutation scheme are based on 1,000 permutations of
the data set. The following abbreviation is used: SD, standard deviation.

Table 3. Type-I Error Results Under Confounding for 10 kb
Regions

Test

Odds Ratio
of Disease
(YRI versus
CEU)

a ¼ 0.05 a ¼ 0.005

Biased Urn Random Biased Urn Random

CMAT 1 0.0521 0.0511 0.0046 0.0045

2 0.0450 0.0850 0.0047 0.0123

4 0.0485 0.1607 0.0053 0.0503

8 0.0551 0.2366 0.0058 0.1004

RBT 1 0.0469 0.0468 0.0043 0.0042

2 0.0487 0.0591 0.0045 0.0066

4 0.0501 0.0962 0.0055 0.0169

8 0.0546 0.1994 0.0055 0.0463

C-alpha 1 0.0491 0.0542 0.0043 0.0051

2 0.0460 0.1712 0.0049 0.0364

4 0.0453 0.4890 0.0042 0.2251

8 0.0527 0.7603 0.0055 0.5011

These results are based on 10,000 replicates each assuming 300 cases and 300
controls. The significance of each replicate was established with 5,000 permu-
tations. The following abbreviations are used: YRI, Yoruba in Ibadan, Nigeria;
CEU, Utah residents with ancestry from northern and western Europe from
the CEPH collection; CMAT, cumulative minor-allele test; and RBT, replica-
tion-based test.
biased urn sampling procedure and then refit the logistic

regressionmodel (Equation 1) to the new data set to obtain

a new estimate of g. We repeated this process 1,000 times

and recorded the mean value of g across the permuted

data sets in the third column of Table 2. The results clearly

show that permuted data sets generated with our biased

urn procedure maintain the same population structure

found within the original data set; however, when we

repeated the same analysis by using the standard approach

of randomly permuting the disease status without regard

for confounding, we saw that the structure present in the

case-control sample was not preserved in the permuted

data sets (see fourth column of Table 2). This confirms

that the use of random permutations for assessing the

significance of rare-variant association tests like RBT and

WHaIT, which ignore confounders, could lead to erro-

neous inference if the observed association is due to con-

founding in the original case-control sample.

Simulations to Assess Validity of Rare-Variant Tests in

the Presence of Confounding

We compared the performance of the biased urn sampling

procedure with that of random permutations on different

rare-variant tests by using simulated resequencing data

sets that were subjected to confounding arising from pop-

ulation stratification. We used the coalescent simulator

cosi37 to produce large sets of haplotypes (ranging from

10 kb to 100 kb) whose variation patterns mimicked those

observed in HapMap YRI (Yoruba in Ibadan, Nigeria)

and CEU (Utah residents with ancestry from northern

and western Europe from the CEPH collection) samples.

Randomly pairing haplotypes to form diplotypes, we

prospectively generated case-control data sets in which

a subject’s odds of disease were a function of the average

percentage of African ancestry across the region, and we

thereby induced confounding. We assumed an overall

disease prevalence of 0.01. We considered both discrete
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population models that treated the YRI and CEU haplo-

types as separate groups and admixture models that

created haplotypes that were a mixture of YRI and CEU

ancestry. We generated admixed haplotypes by using the

model of Price et al.;38 for a given haplotype, this model

assumes crossover events occurring after initial admixture

by using an exponential distribution with parameter l

(corresponding to the number of generations since initial

admixture; we assumed this value to be 6). These crossover

events divide the haplotype into distinct segments. With

probability t, we filled a segment with the corresponding

segment from a European haplotype; otherwise, we filled

it with the corresponding segment from an African haplo-

type. t was sampled from a Beta(3,12) distribution.39

For each simulated data set, we applied the CMAT,6 RBT,7

and C-alpha8 test to test for association between disease

and the rare variants (defined as those variants with

a sample MAF threshold < 5%) within the region. For

each test, we first established significance by using 5,000

random permutations that did not adjust for confounding

due to population stratification. Next, we established the

significance of the test by using 5,000 data sets generated

with biased urn sampling that adjusted for this confound-

ing. To do this, we simulated genotype data for each

subject on at least 10,000 SNPs that were selected from

HapMap and showed marked allele-frequency differences

between HapMap YRI and CEU samples. We then con-

structed principal components30,31 for each subject on

the basis of the SNP data and used them to construct the
0, 2012



Table 4. Type-I Error Results Under Confounding for 100 kb
Regions

Test

Odds Ratio
of Disease
(YRI versus
CEU)

a ¼ 0.05 a ¼ 0.005

Biased
Urn Random

Biased
Urn Random

CMAT 1 0.0466 0.0482 0.0045 0.0048

2 0.0474 0.1040 0.0048 0.0192

4 0.0480 0.2308 0.0050 0.0868

8 0.0544 0.3035 0.0052 0.1439

RBT 1 0.0477 0.0497 0.0048 0.0053

2 0.0445 0.0691 0.0046 0.0080

4 0.0461 0.1463 0.0042 0.0308

8 0.0515 0.3986 0.0057 0.1406

C-alpha 1 0.0440 0.0501 0.0044 0.0049

2 0.0402 0.2834 0.0040 0.0727

4 0.0410 0.7962 0.0050 0.5049

8 0.0422 0.9771 0.0038 0.8729

These results are based on 10,000 replicates each assuming 300 cases and 300
controls. The significance of each replicate was established with 5,000 permu-
tations. The following abbreviations are used: YRI, Yoruba in Ibadan, Nigeria;
CEU, Utah residents with ancestry from northern and western Europe from
the CEPH collection; CMAT, cumulative minor-allele test; and RBT, replica-
tion-based test.

Table 5. Power Results for 10 kb Regions

Test
Permutation
Scheme

Relative Risk of Rare Variant

1.5 2.0 2.5

CMAT Biased urn 0.135 0.244 0.290

Random 0.141 0.241 0.289

RBT Biased urn 0.144 0.263 0.373

Random 0.144 0.273 0.383

C-alpha Biased urn 0.267 0.552 0.735

Random 0.279 0.572 0.754

Results assume 300 cases and 300 controls. Results were evaluated at a ¼ 0.05
and are based on 1,000 replicates. The significance of each replicate was estab-
lished with 5,000 permutations. Simulations assumed no confounding due to
population stratification. Ten percent of rare variants (MAF % 1%) were
assumed to be causal in the region. Each causal rare variant was assumed to
have an identical relative-risk value. For the RBT, we tested a one-sided hypoth-
esis of excess rare variants in cases compared to controls. The following
abbreviations are used: CMAT, cumulative minor-allele test; and RBT, replica-
tion-based test.
stratification score in Equation 2; we then used this strati-

fication score within the biased urn procedure in Equa-

tion 3. We also investigated similar sampling based on

known ancestry.

Table 3 provides empirical type-I error rates for the

CMAT, RBT, and C-alpha test for 10 kb regions on the basis

of biased urn and random permutation procedures,

whereas Table 4 provides such rates for 100 kb regions.

For each table, the results show that biased urn sampling

and random permutations both maintain the appropriate

significance level when no confounding exists within the

simulated data sets (the odds ratio of African to European

ancestry is 1). However, when we induce confounding in

the simulated data sets (when the odds ratio of African to

European ancestry > 1), we see that biased urn sampling

maintains appropriate type-I error, whereas random

permutations yield inflated size. This inflation increases

with the degree of confounding. These results are based

on simulations under discrete population models; we see

similar findings for admixture models (results not shown).

To ensure that biased urn sampling’s preservation of

type-I error under confounding did not reduce power, we

performed a simulation under an alternative model, in

which we assumed stratification but no confounding due

to stratification in samples (by assuming the odds ratio

of African to European ancestry was 1). Within a simu-

lated region, we assumed that 10% of variants with a

MAF < 0.01 were causal and that each variant indepen-

dently increased disease risk under a log-additive model;

we assumed that the relative risk of each causal variant
The Americ
was identical. Table 5 provides power results for biased

urn sampling and random permutations for different

values of relative risk. These results show that the power

of biased urn and random permutations are quite similar

in these situations, suggesting that biased urn will yield

results analogous to random permutations when con-

founding is absent, whereas the procedure has appropriate

control of size when confounding is present.

Resampling-Based Confidence Intervals of Variant

Risk Estimates

For less-common variants, we examined the confidence

intervals of risk estimates based on our biased urn sam-

pling under the alternative hypothesis specified in

Equation 4 and compared such intervals to those derived

on the basis of asymptotic theory. Assuming a disease prev-

alence of 0.01, we prospectively generated 5,000 data sets

comprising 300 cases and 300 controls as described previ-

ously. We assumed a risk variant with a MAF of 0.02 (and

an effect size of b ¼ 1 on the log-disease-odds scale) and

further induced confounding by letting the disease odds

ratio of each African chromosome be 4. For each data set,

we calculated a 95% resampling-based confidence interval

for the variant risk estimate by using 10,000 biased urn

replicates generated from Equation 3 on the basis of the

model in Equation 4. We calculated resampling-based

confidence intervals various ways, including by using the

quantiles of the resampled estimates and a bias-corrected

calculation.40 We also calculated an asymptotic 95% confi-

dence interval for the estimate of the variant effect on the

basis of a standard logistic-regression model adjusting for

the effect of the confounding.

Our simulations revealed that the resampling-based

confidence intervals had appropriate coverage and were

smaller in magnitude than the corresponding asymptotic

interval. We observed that our 95% resampling-based
an Journal of Human Genetics 91, 215–223, August 10, 2012 219



Table 6. CMAT Analysis of Sequence Data from the Dallas Heart
Study

Trait Gene

p Value of CMAT

Random
Permutations

Biased Urn
Permutations

Triglycerides ANGPTL3 <0.0001 0.0141

ANGPTL4 <0.0001 0.0015

ANGPTL5 0.0201 0.0974

BMI ANGPTL3 0.5930 0.7418

ANGPTL4 0.6984 0.7058

ANGPTL5 0.0077 0.0301

Biased urn permutations are corrected for effects of age, gender, and race.
Analysis is based only on nonsynonymous variants in each gene. Each p value
is based on 10,000 permutations. The following abbreviations are used: CMAT,
cumulative minor-allele test; and BMI, body mass index.

Table 7. RBT Analysis of Sequence Data from the Dallas Heart
Study

Trait Gene

p Value of RBT

Random
Permutations

Biased Urn
Permutations

Triglycerides ANGPTL3 0.0006 0.0126

ANGPTL4 <0.0001 0.0034

ANGPTL5 0.0231 0.1102

BMI ANGPTL3 0.5174 0.6890

ANGPTL4 0.9180 0.9348

ANGPTL5 0.0046 0.0170

Biased urn permutations are corrected for effects of age, gender, and race.
Analysis is based only on nonsynonymous variants in each gene. Each p value
is based on 10,000 permutations. The following abbreviations are used: RBT,
replication-based test; and BMI, body mass index.
confidence interval calculated with quantiles had appro-

priate coverage of 0.949. The coverage of the asymptotic

95% confidence interval was also appropriate (0.953);

however, the resampling-based confidence intervals were

somewhat shorter than the asymptotic intervals and

shifted away from the null. We found that the mean 95%

resampling-based confidence interval calculated with

quantiles was (0.122, 2.120), whereas the corresponding

asymptotic confidence interval was wider at (�0.029,

2.087) and further contained the null value of 0. We

observed similar trends for 99% confidence intervals

(results not shown).

Application to the Dallas Heart Study

The Dallas Heart Study is a multiethnic population-based

study that previously examined the relationship between

sequence variation within ANGPTL3 (MIM 604774),

ANGPTL4 (MIM 605910), and ANGPTL5 (MIM 607666)

and various quantitative metabolism-related traits.28,29

Coding regions of these three genes were sequenced in

a group of 3,476 subjects (1,830 African Americans, 1,045

European Americans, and 601 Hispanics). In this applica-

tion, we studied two metabolic outcomes: triglyceride

levels and BMI. Prior to analysis, we first removed data

from 216 subjects who were being treated with statins.

Then, for each outcome, we selected subjects in the top

and bottom 20% of the outcome distribution (after

removing subjects with missing outcomes) to mimic

a case-control study design. To study triglycerides, we ob-

tained 570 case and 570 control participants. To study

BMI, we obtained 563 case and 563 control participants.

We applied the CMAT6 to test for association between

rare nonsynonymous (NS) variants in ANGPTL3,

ANGPTL4, and ANGPTL5 and our case-control representa-

tions of triglycerides and BMI. Within the triglyceride

sample, we found 36 NS variants in ANGPTL3, 39 in

ANGPTL4, and 27 in ANGPTL5. Within the BMI sample,

we saw 36 NS variants in ANGPTL3, 38 in ANGPTL4, and
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27 in ANGPTL5. For each CMAT statistic, we established

significance by using both random permutations and

biased urn sampling that adjusted for the effects of age,

gender, and race. The results of these analyses are shown

in Table 6. The results clearly show that the CMAT p values

based on random permutations are smaller than their

corresponding p values based on biased urn sampling ad-

justing for confounders. Notably, failing to adjust for con-

founders appears to lead to a spurious association between

rare NS variants in ANGPTL5 and triglyceride levels. Subse-

quent investigation revealed that, as expected, race was

a confounder because it was associated with both case-

control status (p< 0.0001) and the presence of rare NS vari-

ants in ANGPTL5 (p ¼ 0.0002). We also repeated the anal-

yses by using a two-sided version of the RBT7 and observed

similar findings and trends (Table 7). We also applied the

C-alpha8 test and observed similar trends with the excep-

tion that there was no evidence of association between

rare NS variants in ANGPTL5 and either BMI or triglyceride

levels with the use of either random permutations or

biased urn sampling (Table 8).
Discussion

In this article, we propose a simple biased urn sampling

procedure (based on the use of Fisher’s noncentral hyper-

geometric distribution) that resamples subjects under the

null hypothesis of no association in a way that preserves

the confounding present in the actual data set. This proce-

dure is particularly valuable for rare-variant association

tests, many of which are not easily adjusted for probable

confounders like population stratification and whose

applicability is thus limited in case-control resequencing

studies. With a combination of simulated and real data

sets, we have illustrated how our approach corrects for con-

founding in three common rare-variant association tests.

In addition, we have shown how resampling-based
0, 2012



Table 8. C-Alpha Analysis of Sequence Data from the Dallas Heart
Study

Trait Gene

p Value of C-Alpha Test

Random
Permutations

Biased Urn
Permutations

Triglycerides ANGPTL3 <0.0001 0.0010

ANGPTL4 0.0001 0.0363

ANGPTL5 0.1572 0.2043

BMI ANGPTL3 0.9168 0.9814

ANGPTL4 0.8314 0.8472

ANGPTL5 0.2310 0.2872

Biased urn permutations are corrected for effects of age, gender, and race.
Analysis is based only on nonsynonymous variants in each gene. Each p value
is based on 10,000 permutations. The following abbreviation is used: BMI,
body mass index.
confidence intervals of risk estimates for individual suscep-

tibility variants can be calculated when a parametric alter-

native hypothesis is specified.

Our procedure adjusts rare-variant association testing for

confounders by using permutation, which is a common re-

sampling procedure used for statistical inference. Another

resampling procedure called the parametric bootstrap41

has been proposed by Lin and Tang13 for adjusting

logistic-regression-based rare-variant association tests for

the effects of covariates. The parametric bootstrap of Lin

andTangcreates replicatedata sets fromaprospectivemodel

in which the disease outcome of each subject in a data set is

generated on the basis of the subject’s probability of disease

conditional on covariates (which we write as bqj=ð1þ bqjÞ by
using the notation in Equation 2). For logistic regression,

it is known that a retrospective analysis of such prospec-

tively generated data can give the same results (except for

the intercept, which is typically not of interest). Further-

more, it is also known that logistic regression is indifferent

to whether row and/or column totals in Table 1 are held

fixed. However, because the parametric bootstrap does

not preserve the number of cases and controls within

each generated data set, it is unclear whether it can be

applied to tests that are not based on logistic regression.

Our biased urn procedure, on the other hand, possesses

the useful feature that it preserves the number of cases

and controls within each sample by design and so corre-

sponds to retrospective sampling. For this reason, it can

be applied to any test that is appropriate for case-control

data as long as a valid model for the stratification score is

used. Such preservation of case-control numbers in repli-

cate data sets is particularly valuable for exome-sequencing

studies of Mendelian traits, studies which often possess

only a handful of cases for analysis.19 Finally, we note

that we could apply the parametric bootstrap in such

a manner that we only accept data sets that preserve the

original number of cases and controls, but such a procedure

will be much less computationally efficient than biased

urn sampling. In our simulations, we observed that this
The Americ
approach required ~253 more computation time than

biased urn sampling across different sample sizes.

Our biased urn sampling is implemented in a recompiled

version of the R BiasedUrn package. Appendix A provides

sample code for applying the approach. The computation

time required for generating permuted data sets depends

on sample size but is reasonable even for studies composed

of thousands of participants. On a single 3.20 GHz Intel

Xeon central processing unit running Windows XP on

a Dell PowerEdge 2950 server with 2 GB of random-access

memory, the generation of 10,000 permuted data sets for

sample sizes of 1,000, 5,000, and 10,000 required ~30 s,

~8 min, and ~30 min of computation time, respectively.

Furthermore, the process can be implemented in parallel

for the reduction of computation time.
Appendix A: Sample R Code for Implementing

Biased Urn Sampling Procedure

library(‘BiasedUrn’) #load (modified) package

# Assume one has already scanned in required data set.

# dis: array of disease outcomes (1 affected, 0 unaffected) for N subjects

# z: covariate matrix of dimension N 3 C

n.case < - sum(dis) # number of cases

n.perm < - 1000 # number of permutations

# step 1: fit logistic-regression model in Equation 1

model < - glm (dis ~z, family= binomial())

# step 2: construct estimated disease odds in Equation 2

d.odds < - exp (model$linear.predictors)

# step 3: generate N x n.perm matrix of permuted data sets

m1 < - c(rep(1, length(dis)))

perm.hg < - rMFNCHypergeo(n.perm, m1, n.case, d.odds)
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