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Phasing of Many Thousands of Genotyped Samples

Amy L. Williams,1,2,* Nick Patterson,2 Joseph Glessner,3 Hakon Hakonarson,3 and David Reich1,2

Haplotypes are an important resource for a large number of applications in human genetics, but computationally inferred haplotypes are

subject to switch errors that decrease their utility. The accuracy of computationally inferred haplotypes increases with sample size, and

although ever larger genotypic data sets are being generated, the fact that existing methods require substantial computational resources

limits their applicability to data sets containing tens or hundreds of thousands of samples. Here, we present HAPI-UR (haplotype infer-

ence for unrelated samples), an algorithm that is designed to handle unrelated and/or trio and duo family data, that has accuracy compa-

rable to or greater than existing methods, and that is computationally efficient and can be applied to 100,000 samples or more. We use

HAPI-UR to phase a data set with 58,207 samples and show that it achieves practical runtime and that switch errors decrease with sample

size evenwith the use of samples frommultiple ethnicities. Using a data set with 16,353 samples, we compare HAPI-UR to Beagle, MaCH,

IMPUTE2, and SHAPEIT and show that HAPI-UR runs 183 faster than all methods and has a lower switch-error rate than do other

methods except for Beagle; with the use of consensus phasing, running HAPI-UR three times gives a slightly lower switch-error rate

than Beagle does and is more than six times faster. We demonstrate results similar to those from Beagle on another data set with a higher

marker density. Lastly, we show that HAPI-UR has better runtime scaling properties than does Beagle so that for larger data sets, HAPI-UR

will be practical and will have an even larger runtime advantage. HAPI-UR is available online (see Web Resources).
Introduction

Phased haplotypes are important for a number of applica-

tions in human genetics; these include genotype imputa-

tion,1,2 identity by descent (IBD) detection,3 local-ancestry

inference,4–6 and methods that identify recent strong

signals of positive selection.7,8 For each of these applica-

tions, accurate haplotypes reflecting the true composition

of alleles on each chromosome increase the accuracy of the

inference. Many statistical and computational methods

have been introduced for inferring haplotypes from

genotypes, and although molecular methods for directly

assaying haplotypes can in principle achieve near-perfect

haplotype accuracy,9 indirect computational inference of

haplotypes from genotypes is at present the most practical

and economical approach for obtaining large numbers of

haplotypes.

Considerable effort has been devoted to developing

methods that infer haplotypes accurately,1,2,10–13 but less

attention has been given to the overall runtime and scal-

ability of methods to very large sample sizes. The ability

to phase large genotype data sets is important because (1)

the accuracy of haplotypes inferred by statistical methods

increases with sample size (see Results and Browning and

Browning14), (2) genotype data sets continue to grow in

size—individual data sets containing over 50,000 samples

are now available (see Results) and larger data sets are

soon to be available (see Risch et al.15 and the WTCCC2

data set in the Web Resources)—and (3) separately phasing

large numbers of samples in smaller subsets results in errors

that are correlated within each subset, and these errors

reduce the utility of the haplotypes in subsequent

applications. Several potential problems arise from using
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separately phased haplotypes. If one performs genotype

imputation on prephased haplotypes that were phased in

batches without being randomized with regard to trait

status, false associations could arise from correlations

between trait status and the batch. Even when a study

randomizes phasing batches properly, the use of imputed

genotypes from separately phased haplotypes is subop-

timal and results in reduced power due to increased noise

in the imputed genotype values. Besides association

studies, applications such as IBD detection or identifying

signals of selectionmight miss true signals when analyzing

separately phased haplotypes.

The potential for phasing large cohorts arises in the

context of individual large data sets generated at one insti-

tution (such as those from theWelcome Trust Case Control

Consortium [WTCCC] and Children’s Hospital of Philadel-

phia [CHOP] data sets described in the Results), as well as

from collections of samples from multiple sources. The

opportunity exists for researchers to pool data sets through

collaboration and obtain data from several genome-wide

association study (GWAS) data sets available through the

National Center for Biotechnology Information database

of Genotypes and Phenotypes (dbGaP) and the European

Genome-phenome Archive.

We present a method called HAPI-UR (haplotype infer-

ence for unrelated samples), which we developed to be

both accurate and computationally practical for the appli-

cation to large genotype data sets of unrelated and/or trio

and duo samples. We demonstrate the speed and scalabil-

ity of HAPI-UR on a data set containing 58,207 samples

and show that running it on this large data set at a

genome-wide scale is practical, even with access to modest

computational power. We also show that phase accuracy
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Figure 1. HAPI-UR Uses HMMStates that SpanMultipleMarkers
and Emit Haplotype Segments for Those Sites
Three example haplotypes and the HMM states that PHASE12 and
HAPI-UR generate. Boxes represent states, and the characters
inside the boxes are the values that a state emits.
(A) PHASE and other statistical phasing algorithms build states
corresponding to each marker and emit one allele corresponding
to that site.
(B) HAPI-UR builds states that span multiple markers and emit a
haplotype segment for those sites.
increases when we include larger subsets of the cohort

together. This data set contains individuals from multiple

ethnicities, including European Americans, African Amer-

icans, Latinos, and East Asians, and we demonstrate that

overall accuracy increases when we phase all samples

together. We perform an empirical study that examines

whether phasing individuals from multiple ethnicities

separately or together increases accuracy, and our results

are in line with related studies that demonstrate increased

imputation accuracy with the use of reference haplotypes

from multiple populations or ethnicities.16–19 Our results

suggest that, unless the proportion of ethnic groups is

extremely skewed toward one group, the best practice is

to phase all samples together regardless of ethnicity.

We compared the accuracy and runtime performance of

HAPI-UR to those of Beagle,10 MaCH,2 IMPUTE2 (Howie

et al.1), and SHAPEIT20 on data sets of various sizes. The

largest data set we used for comparison consisted of

386,353 SNPs for 16,353 samples from the WTCCC21

and HapMap22 (WTCCC1 þ HapMap), and we also exam-

ined subsets (of 1,000, 3,000, or 5,000 samples) of the full

WTCCC1 þ HapMap data set. We examined phase accu-

racy by using the switch-error-rate metric.23 A switch error

occurs when a heterozygous site has phase switched rela-

tive to that of the previous heterozygous site.We calculated

switch-error rates by comparing each method’s results to

the haplotypes of 88 trio parents for whom phase was sepa-

rately inferred on the basis of trio relationships (we omitted

the trio children from all evaluation data sets). On the data

set with 16,353 samples, we show that HAPI-UR runs 183

faster than the other methods and also achieves compa-
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rable or lower switch-error rate. We also show that using

consensus phasing from across three runs of HAPI-UR on

the entire data set obtains lower switch error than the other

methods do.When run serially, this approach is more than

six times faster than the other methods, but it is also fully

parallelizable to three processors.

To ensure that HAPI-UR is computationally efficient

and accurate for data sets with a range of marker densities,

we compared HAPI-UR to Beagle on a data set with a total

of 755,008 SNPs from 5,353 samples combined from the

WTCCC2 control samples24 and HapMap22 (WTCCC2 þ
HapMap). In this comparison, HAPI-UR achieved speed

advantages and accuracy comparisons similar to those

exhibited in the WTCCC1 þ HapMap data set.

An important factor for handling large data sets is how

computational runtime scales with sample size. Whereas

Beagle runs 1563 slower when analyzing 16,353 samples

than it does when analyzing a subset of 1,000 samples,

the corresponding slowdown for HAPI-UR is 483. MaCH

scales linearly with sample size, and we conservatively

assume that IMPUTE2 and SHAPEIT scale linearly as well

(although in our experiments these methods scaled

superlinearly). HAPI-UR and Beagle scale superlinearly

but subquadratically; however, the overall runtimes of

MaCH, IMPUTE2, and SHAPEIT are such that they remain

more computationally expensive than HAPI-UR (see

Results), and they also show higher error rates for large

data sets. Because of the improved scaling factors and over-

all runtime of HAPI-UR, larger sample sizes will yield even

greater speed-improvement factors for HAPI-UR than for

Beagle, and we expect this runtime scaling to enable

HAPI-UR to phase sample sizes of 100,000 individuals or

more (see Results).

In the Material and Methods, we provide details of the

algorithm implemented in HAPI-UR. In the Results, we

compare the accuracy and runtime performance of HAPI-

UR to those of other algorithms and evaluate its perfor-

mance in phasing a large multiethnic data set. Finally,

the Discussion analyzes phasing methodologies in the

context of large data sets.

Material and Methods

The key feature differentiating HAPI-UR from other statistical

phasingmethods1,2,10–12 is that although othermethods construct

states at each marker in their hidden Markov models (HMMs),

HAPI-UR builds HMM states corresponding to nonoverlapping

windows of adjacent markers. Instead of emitting an allele for

the corresponding single marker, the states of the HAPI-UR

HMM emit multiallele haplotype segments corresponding to the

multiple markers that a window spans. Figure 1 shows the HMM

states that PHASE12 and HAPI-UR build for a set of three haplo-

types. As Figure 1B shows, HAPI-UR builds states for each unique

haplotype segment in each window. For the three haplotypes in

the figure, HAPI-UR builds three states in the first window because

all haplotype segments in that window are unique, but in the

second window, HAPI-UR builds only two states because two of

the haplotype segments in that window are identical. In contrast,
an Journal of Human Genetics 91, 238–251, August 10, 2012 239



PHASE builds one state for every haplotype at each marker, result-

ing in a total of 24 states compared to the five states that HAPI-UR

builds (Figure 1A). Note that most methods other than PHASE

produce fewer per-marker states than the total number of haplo-

types available to the analysis,1,2,10,11 so HAPI-UR is not unique

in producing fewer states than the total number of haplotypes at

each site.

HAPI-UR employs several efficiency improvements that leverage

its multimarker states. A by-product of the use of multimarker

states is that HAPI-UR considers overall fewer states and only

models state transitions at window boundaries rather than at

each marker. Additional large efficiency gains come as HAPI-UR

constructs individual-specific diploid HMMs that only contain

states that are consistent with a given individual’s genotype. To

efficiently construct these diploid HMMs, HAPI-UR stores an

index of states and provides fast lookup of the haploid states

that are consistent with a given genotype. HAPI-UR also makes

use of a hash table to look up a specific haploid state that, for a

given individual’s genotype, is complementary to another specific

haploid state, enabling rapid formation of a complete diploid state

consistent with a genotype.

HAPI-UR uses an iterative procedure that constructs a haploid

HMM from the set of haplotypes for all individuals, randomly

samples multiple haplotypes for each individual from the indi-

vidual-specific diploid HMMs it builds, and then iterates by con-

structing a new haploid HMM based on these randomly sampled

haplotypes.

This paper describes the approach that HAPI-UR uses to phase

individuals; this approach includes emitting a multimarker haplo-

type from each state and utilizing a haploid-state index that

enables state lookup on the basis of allelic values at each marker.

The method SHAPEIT, which was published while this article

was under review,20 independently developed a phasing approach

that, along with HAPI-UR, considers transitions among states only

at window boundaries. IMPUTE2 (Howie et al.1) constructs indi-

vidual-specific HMMs that include the haplotypes that are most

similar to the previous iteration’s estimated haplotypes for

a sample, and HAPI-UR constructs individual-specific diploid

HMMs conditional on an individual’s genotype. The local ancestry

method HAPMIX described an optimized form of the Li and Ste-

phens model25 that contains an HMM state at each marker for

all the unique haplotypes that occur in a given window around

the marker. GERMLINE3 was the first to use hash tables to index

haplotypes, and it uses this approach to efficiently detect IBD

sharing among prephased haplotypes.

SHAPEIT has several similar properties to HAPI-UR but also

differs from it in key respects. One difference is that it builds states

at each marker and is therefore able to model mutations at each

site, but this comes at a cost of computational overhead, and our

results show that HAPI-UR is faster and more accurate than

SHAPEIT for large data sets. SHAPEIT also constructs a fixed

number of states at each marker, whereas HAPI-UR allows the

number of states at a site to vary depending on the haplotype

diversity and number of consistent haplotypes in a window.

More specifically, SHAPEIT limits the number of possible haplo-

types to be considered at any position on the basis of the number

of heterozygous sites within a region in the individual; by default,

it enumerates only eight possible haplotypes (corresponding to at

most three heterozygous sites in a window) at any position. It is

unclear how the choice of limiting the number of haplotypes in

any position affects overall accuracy as sample size increases.
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In the remainder of this section, we define the HMMs that HAPI-

UR builds, describe our algorithm that phases individuals by

iteratively constructing and sampling from individual-specific

HMMs, provide details on the efficiency improvements that

make HAPI-UR applicable to very large data sets, describe how

HAPI-UR handles trios and duos as well as missing data, and

discuss memory usage in HAPI-UR.

HMM Definition
To define the haploid HMM that HAPI-UR uses, we must

specify the states it contains, the probabilities of the initial

states, the emission probabilities, and the transition probabili-

ties. Our algorithm constructs this HMM on the basis of a set

of N complete haplotypes for a chromosome and generates a

state for every unique haplotype segment that occurs in each

window. To construct the HMM initially, we randomly assign

phase to individuals at all heterozygous sites. The initial proba-

bility of a state in the first window is the frequency of the cor-

responding haplotype segment, so if s1 is a state in the first

window and N(s1) is the number of occurrences of the corre-

sponding haplotype segment, then the initial probability of s1
is P(s1) ¼ N(s1) / N. All states emit with probability 1 the unique

haplotype segment to which they correspond; thus, HAPI-UR

does not model genotyping errors or mutations because states

that are inconsistent with a given individual’s genotype have

an emission probability of 0. Note that Beagle also uses proba-

bility 0 for states that are inconsistent with a given individual’s

genotype.10 We describe later how HAPI-UR leverages the fact

that many states for a given sample have 0 probability in order

to improve efficiency.

We define transition probabilities between states at adjacent

windows by adapting the Li and Stephens model25 by using

a formulation related to an approximate Li and Stephens model

implemented in HAPMIX.4 The transition probability between

two states is defined as the sum of the probability of transitioning

to the subsequent state without recombination and the proba-

bility of transitioning with recombination. The standard Li and

Stephens model encodes a state at each marker for all N complete

haplotypes, and a given state can only transition without recom-

bination to the state at the next marker that models the same

haplotype as the current state. In addition, the Li and Stephens

model equally weights the probability (1/N) of recombining to

any state because it uses exactly one complete haplotype to

construct each state.

The HAPI-UR model produces states for every unique haplotype

segment in a window, thus effectively merging a number of the

original complete haplotypes into one state. Because one state

models several original haplotypes, states can transition without

recombination to one or more states at the subsequent window,

and our model weights recombinations to a state by the frequency

of the underlying haplotype segment.

Let N(sw / swþ1) denote the number of instances in which the

haplotype segment corresponding to sw at window w appears on

the same original haplotype as the segment corresponding to

swþ1 at window wþ1, and defineN(sw) and P(sw) as above for states

in the first window. The transition probability between sw and swþ1

is then

Pðsw/swþ1Þ ¼ exp

��4 Ne gwþ1

N

�
Nðsw/swþ1Þ

NðswÞ

þ
�
1-exp

��4 Ne gwþ1

N

��
Pðswþ1Þ;
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Table 1. MaximumWindow Sizes Used for the Data Sets Evaluated
in the Results

Data Set
Autosomal-Marker
Density

Maximum
Window Size

WTCCC1 þ HapMap 386,353 64

CHOP 516,972 73

WTCCC2 þ HapMap 755,008 90

For data sets with different marker densities, we suggest a linear increase or
decrease in the maximum window size.
where Ne is the effective population size of the samples being

phased and gwþ1 is the genetic distance between the centers of

windows w and wþ1. Here, the first term is the probability of

not recombining multiplied by the frequency that state sw occurs

on the same haplotype as swþ1, and the second term is the proba-

bility of recombining multiplied by the frequency of the haplo-

type segment underlying swþ1.

Formation of a general diploidHMMbased on the above haploid

model is straightforward. The state space in each window is the

cross product of the haploid states, and the initial probability of

a diploid state is the product of the haploid probabilities, so for

a diploid state in the first window (s1a, s1b), P((s1a, s1b)) ¼ P(s1a)

P(s1b). States emit with probability 1 an ordered pair containing

the two haplotype segments underlying the haploid states. Tran-

sition probabilities are simply P((swa, swb) / (s(wþ1)a, s(wþ1)b)) ¼
P(swa / s(wþ1)a) P(swb / s(wþ1)b). This is a generalized formulation

of a diploid HMM, but HAPI-UR builds individual-specific diploid

HMMs as we describe next.

Phasing Algorithm
To infer haplotypes, HAPI-UR first randomly initializes the phase

of heterozygous sites in all individuals and then constructs

haploid states from these random haplotypes as outlined above.

Methods such as PHASE and MaCH construct a complete diploid

HMM that applies to all individuals and genotypes and carry

out computation on this general HMM. To improve efficiency,

HAPI-UR constructs for each individual a diploid HMM condi-

tioned on their genotype. The difference between these indi-

vidual-specific diploid HMMs and a general diploid HMM is

that the individual-specific HMMs omit diploid states that

are inconsistent with the individual’s genotype because these

have probability 0. Below, we describe the efficient computational

techniques that we use to build these individual-specific diploid

HMMs. Omitting states with probability 0 for an individual greatly

improves the efficiency of our approach because many diploid

states have probability 0 and would require construction and

evaluation in a general diploidHMM. Beagle also uses 0 probability

for states that are inconsistent with an individual’s genotype, and

this improves its efficiency in a similar way to our approach in

HAPI-UR.

During construction of each individual-specific HMM, we calcu-

late the forward probabilities for all states—with standard HMM

notation, these are the aw((swa, swb)) values for all diploid states

(swa, swb)—and then we randomly sample four haplotype pairs

from the distribution implied by these probabilities and the

HMM. The procedure for sampling from this distribution is

conceptually simple, and the paper describing Beagle14 provides

an explanation and example. In brief, we randomly sample

a diploid state (swa, swb) at the last window with a probability

proportional to aw((swa, swb)). We then perform a recursive proce-
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dure that randomly samples from the previous window a state

conditional on the chosen state in the current window.

After randomly sampling four haplotype pairs for all individ-

uals, we iterate the procedure by constructing a new haploid

HMM based on all sampled haplotypes. We then reconstruct indi-

vidual-specific diploid HMMs and randomly sample haplotypes

for each individual to complete an iteration. During the final

iteration, rather than randomly sampling multiple haplotypes

for all individuals, we use the maximum likelihood Viterbi decod-

ing of each individual’s diploid HMM to provide the final haplo-

type solution.

Window sizes vary between iterations and start with a small

window size of four markers in the first iteration and, in the last

iteration, increase to the maximum window size that is specified

as a parameter to execution. The algorithm performs two itera-

tions for each window size and grows the windows by three

markers after every two iterations. We experimented with other

window-sizing strategies—including approaches that are inspired

by the expected geometric distribution of length of IBD

sharing—by using many small window sizes separated by only

one marker initially and by using larger gaps between sizes as

the windows grew larger. We empirically found that growth by

three markers after two iterations achieves accuracy in line with

these alternate approaches (data not shown) and can also be

easily generalized to any maximum window size. We also experi-

mented with a slower version of the algorithm by performing

three or more iterations for every window size and increasing

the window size by one marker after every set of iterations. We

found that running HAPI-UR at least three times (with window

sizes separated by three markers) and using consensus phase

from among these runs produced more accurate results with

a faster runtime than did running HAPI-UR once with window-

size increases of one marker after multiple iterations.

Choosing the maximum window size depends on the marker

density of a data set; we experimented with a range of window

sizes for the data sets described in the Results, andwe list suggested

window sizes for the marker densities of these data sets in Table 1.

For data sets with marker densities different than those listed, we

advise a linear increase or decrease in maximumwindow size. Our

experiments show that data sets with larger numbers of individ-

uals benefit from increasing the maximum window size, so this

table is a guideline, and we recommend increasing the maximum

window size by small number of markers for larger data sets for

improving accuracy.

Because we use repeated iterations of the same window size in

succession during phasing, we randomly vary the size of the first

window on a chromosome to be between one marker long and

the full window size used in the current iteration. For example,

for an iteration with a window size of ten markers, the algorithm

randomly chooses a size between one and tenmarkers long for the

first window. To ensure a good mix of the locations of window

boundaries, we add a constraint that prevents this first window

from being close in size to the size of the first window in the

previous iteration. Specifically, for an iteration with window size

W, if the previous iteration’s first window size was lp, we exclude

the range [lp – W/5, lp þ W/5] for the size of the first window in

the current iteration. Randomizing the size of the first window

and ensuring that this window is not close to the same size as in

the previous iteration prevent the haplotypes from being too

dependent on the locations of the window boundaries. Without

this feature, switch errors might correlate with where window

boundaries happen to fall on the chromosome.
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Figure 2. Index that Stores the Set of Haploid States that Have
a Given Allele at a Given Marker
An example index for five haploid states that span a window of
three markers numbered m through mþ2.
(A) List of the five haploid states and list indexes for each state.
(B) The per-marker, per-allele index that stores the set of haploid
states that have a given allele at a given marker. To identify the
set of haploid states that are consistent with a genotype, HAPI-
UR intersects the sets for alleles that are homozygous. In this
example, a genotype that is homozygous for allele A at marker m
and allele B at marker mþ2 produces an intersected set of {2,4}
and is therefore only consistent with these haploid states.
Efficiency Improvements
Because diploid states that are inconsistent with an individual’s

genotype have a probability of 0, HAPI-UR uses an approach

that avoids spending compute time considering these states and

instead builds individual-specific diploid HMMs by only con-

structing diploid states that are consistent with an individual’s

genotype. To efficiently identify the set of states that are consistent

with a genotyped individual, we construct an index of all haploid

states. This index stores for each allele at each marker the set of

haploid states that contain the indicated allele, as illustrated in

Figure 2.

Figure 2A gives a list of five haplotypes that are each three

markers long and that each correspond to a haploid state. To index

these states, HAPI-UR constructs a set for every allele at every

marker; for the haplotypes in this figure, each marker has two

alleles, A and B. Figure 2B shows the sets that provide an index

of these haploid states. There are three haploid states that contain

an A allele at the first markerm—those with indexes 1, 2, and 4 in

the state list—and the set for the A allele at marker m is thus

{1,2,4}. The set for the B allele at marker m contains the states

with this allele, i.e., the complement of the set with the A allele,

and is thus {0,3}. The sets at markers mþ1 and mþ2 have the

same properties as those at marker m, and the method constructs

those sets on the basis of which haploid states contain the indi-

cated alleles.

Our algorithm uses this index by leveraging the fact that a

haploid state must contain the alleles at all homozygous markers

in a window in order to be consistent with an individual’s geno-

type. Thus, for a given individual’s genotype, the method iden-

tifies all homozygous sites in a window and intersects the sets of

states containing the homozygous alleles at those sites. As seen

in the example in Figure 2, if an individual is homozygous for

the A allele at markerm and homozygous for the B allele at marker

mþ2, themethod intersects the sets {1,2,4} and {2,3,4} and obtains

the set {2,4}, indicating that this individual is only consistent with

those two haploid states. After this intersection procedure, we

obtain a set containing all the haploid states that are consistent

with the individual’s genotype.

To enable efficient set intersection operations with minimal

space requirements, we use bit fields to store the sets of states

that contain a given allele at amarker. Each bit maps to a particular

haploid state, and the bit number (0 for the first bit, 1 for the

second bit, 2 for the third bit, etc.) is the index in the correspond-
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ing list of haploid states. A bit value of 1 indicates that the corre-

sponding state contains the allele that the set was built for, and

with the use of bit-field encoding, computing set intersection is

very efficient with the bit-wise AND operator. As an example,

a bit field with value 00101 represents the set {2,4}.

Besides this per-marker, per-allele index of states, we store a hash

table3 containing all haploid states in each window, enabling fast

lookup of the complementary haplotype for a given haploid state

and the subsequent formation of a consistent diploid state. Given

the set of haploid states consistent with an individual’s genotype

in a window, it is straightforward to deduce the complementary

haplotype segment for each state on the basis of the individual’s

genotype and to perform a hash-table lookup of this haplotype

segment. Our implementation currently assumes that markers

are biallelic and deduces the complementary haplotype segment

by inverting the allele values at all heterozygous sites in the haplo-

type segment for the known haploid state. A more general alterna-

tive that does not require markers to be biallelic is to store

genotypes as allele counts and subtract the known haplotype

segment’s allele counts.

Combining our per-marker, per-allele index sets with a hash-

table lookup for locating complementary states provides large

efficiency gains key to HAPI-UR’s runtime performance. An alter-

native to using index sets for identifying consistent states is to

perform a linear search over all haploid states. This approach scales

poorly as window sizes increase because the number of haplotype

segments in a window grows with the window’s size. In contrast,

because we must perform set intersection at all homozygous

markers regardless of window size, this part of the method runs

in roughly constant time independent of window size; there is

only a slight overhead for the intersection operation as the bit

fields increase in size with the number of haploid states in a

window. In addition, because the number of haploid states in a

window grows with the sample size being phased, a linear search

over all haploid states will slow as the sample size grows. In

contrast, our index lookup continues to have roughly constant

runtime regardless of sample size—larger bit fields again produce

only minimal slowdown.

Trio and Duo Phasing
HAPI-UR can phase trio and duo family data, in addition to unre-

lated individuals. At sites where at least one member of a trio or

duo is homozygous, Mendel’s first law implies which allele each

parent transmitted to the child, and, ignoring a small number of

recombination events, the phase of all the individuals is unambig-

uous across these sites. To handle trios, HAPI-UR first deduces the

phase of each trio family member at unambiguous sites, and it

imposes constraints on the parents’ phase so that the haplotypes

it infers are consistent with this unambiguous trio phase and the

child’s genotype. To enforce these constraints, HAPI-UR phases

both parents simultaneously by constructing specialized states

composed of two standard diploid states—one for each parent—

and it ensures that the haplotypes in these states respect all

constraints. As in other trio phasing methods, our approach

does not directly phase trio children because the child’s two

phased haplotypes are exactly those that contain the alleles that

each parent unambiguously transmitted to the child. Our

approach uses the per-marker, per-allele index to lookup haploid

states that contain all alleles (including the homozygous alleles)

that one parent (e.g., the father) unambiguously transmitted to

the child. Given a set of haploid states that contain all unambigu-

ously transmitted alleles for one parent, HAPI-UR next deduces for
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the other parent, for each of these states, the transmitted haplo-

type that is consistent with the child’s genotype. Next, it deduces

complementary haplotypes for both parents on the basis of these

two putatively transmitted haplotypes, and these four haplotypes

form one specialized trio state. The probability of a specialized

state is the product of the probability of their composite diploid

states. HAPI-UR decodes the HMMs formed of specialized states

in a fashion analogous to that of decoding its diploid HMMs,

and it assigns phase to both parents on the basis of these special-

ized states.

Phasing duos is similar to phasing trios; duo specialized states

contain two diploid states corresponding to haplotypes in the

parent and the child, and these haplotypes respect the parent-

child phase implied by Mendel’s first law. Because duos contain

two copies of the same haplotype, HAPI-UR only incorporates

one copy of the shared haplotype when constructing the haploid

HMM at the start of each iteration.

Missing Data
HAPI-UR infers haplotypes at sites that are missing data—thereby

imputing alleles at these sites—and it handles missing data during

construction of both the haploid HMMand the individual-specific

diploid HMMs. As outlined above, HAPI-UR uses the haplotypes

unaltered from the previous iteration to construct the haploid

HMM in windows where an individual has no missing data, and

it adds a count of 1 to the N(sw) value for the corresponding states

sw. If n is the number of sites where an individual is missing data in

a given window, when 1 % n % 4, the algorithm only uses the

previous inferred haplotype values at sites where the individual

is not missing data. In these windows, the algorithm considers

all possible allelic values at missing data sites; for biallelic markers,

there are a total of 2n possible haploid states, and the method adds

a value of 1/2n toN(sw) for each such state sw. This approach avoids

dependence on the allelic values inferred at a missing data site in

any iteration and equally weights all possible haplotypes at

missing data sites. When n > 4, the method is the same as when

n ¼ 0 and reverts to using the alleles unaltered from the previous

iteration, including at missing data sites, and adds a count of 1 to

the N(sw) value for the corresponding states sw.

During the construction of individual-specific diploid HMMs,

HAPI-UR builds diploid states by identifying for each haploid

state the complimentary haplotypes that are consistent with the

individual’s genotype. At sites that are missing data, there are

multiple complementary haplotypes for a given haploid state.

Again, if n is the number of sites where an individual is missing

data in a window, for biallelic markers there are 2n complementary

haplotypes for each consistent haploid state. If 1 % n % 3, HAPI-

UR constructs all possible diploid states that are consistent with

the individual’s genotype; the limit of n ¼ 3 keeps the computa-

tional burden low for individuals or windows with extensive

missing data.

When n > 3, HAPI-UR constructs a limited number of diploid

states that are consistent with the individual’s genotype in the

given window. The number of diploid states that HAPI-UR builds

is bounded by a fixed proportion pmultiplied by the total number

of all haploid states in the window Nw (note that this is a propor-

tion of all haploid states and not of the haploid states consistent

with the individual’s genotype). The method builds diploid states

in succession and starts by finding the haploid state s* that has the

highest frequency in the window and is consistent with the indi-

vidual’s nonmissing genotypes. HAPI-UR next identifies the

haploid state that has the highest frequency and that is comple-
The Americ
mentary to s* and constructs a diploid state for this pair. The

algorithm proceeds by considering the most frequent haploid

states in succession and finding themost frequent complementary

state for each until it has built pNw states or has constructed all

possible consistent diploid states. To avoid constructing the

same diploid state twice—given that HAPI-UR might have

already built a state for a given pair—themethod stores the diploid

states it builds in a hash table and checks this table before

diploid-state construction. Note that this approach will build

many of the most likely diploid states, but it might miss the

optimal, highest-likelihood states for two reasons. First, if a pair

of moderately frequent states has an overall greater frequency

than the highest frequency states and their highest frequency

complements, the approach might miss these moderately

frequent states. Second, this approach does not consider linkage

across windows but only considers haplotype frequencies in the

current window and thus might not find the diploid states that

have the highest likelihood when accounting for linkage. Despite

these limitations, this approach is likely to be effective for the

small number of windows in which an individual has large

amounts ofmissing data, and it should often provide diploid states

that have high overall likelihood relative to that of any states that

are omitted.

In order to efficiently identify states with the highest frequency

in a window, before constructing the haploid HMM, the algorithm

sorts all haploid states in each window by their frequency. This

sorting places the highest frequency state first in the haploid-state

list that accompanies the per-marker, per-allele index (see Figure 2).

The proportion p of states that HAPI-UR constructs when

a window contains many missing data sites varies depending on

the size of the window in the current iteration. We fixed p empir-

ically as 1.53 the proportion of all haploid states contained in an

individual-specific diploid HMM, averaged across individuals and

windows, whenHAPI-UR phased theWTCCC1þHapMap data set

described in the Results.

Memory Usage
For data sets withmany samples, the largestmemory requirements

are for storing the haploid HMM, including its states and the tran-

sition probabilities between states. The number of haploid states

in a window, regardless of window size, is bounded by N, the total

number of haplotypes in the window. Let M be the number of

markers on a chromosome and W be the window size in a given

iteration. If HAPI-UR were to store transition probabilities from

each state to all states in the subsequent window, its storage bound

would be O(M/W$N2) in any iteration. Although our approach

does have this theoretical bound, we use a sparser storage scheme

for transition probabilities. Transition probabilities P(sw / swþ1)

consist of one term for nonrecombinant transitions and a term

for recombinant transitions, and our implementation only stores

the probability of transitioning to a subsequent state swþ1 if sw
has a non-zero term for transition to swþ1 without recombination.

Recombinant transitions to a given state swþ1 have the same prob-

ability regardless of the starting state sw, so it is not necessary to

store information in every starting state related to subsequent

states swþ1 that can only be reached by recombination. Instead,

our implementation only stores P(sw / swþ1) for states swþ1 that

sw can reach without recombining. In practice, the total number

of states reachable from any sw without recombination is much

less than N, and the total number of states in a window is also

much less than N, so the actual memory usage is much less than

the bound of O(M/W$N2).
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The per-marker, per-allele index stores bit fields such that there

is one bit for every haploid state in a window at every marker

and for all alleles at a marker. If A is the maximum number of

alleles at any marker (for biallelic markers, A ¼ 2), the bound on

memory required for storing this index is O(A$M$N) bits, but

note that the number of haploid states will tend to be much

smaller than N.

Besides storing all haploid states and the index of states, HAPI-

UR stores a hash table to lookup haploid states by haplotype

sequence, a haploid-state list that accompanies the index of

states, and individual-specific diploid HMMs. The hash table

containing haploid states and the list of haploid states each

require space bounded by O(N). Individual-specific diploid

HMMs exist only transiently while the method infers phase for

a given individual, and they have an upper bound on memory

use of O(M/W$N2). In practice, the number of diploid states that

are consistent with an individual is much less than N2, and the

individual-specific diploid HMMs utilize a small amount of the

total memory that HAPI-UR uses. A final memory requirement is

storage of genotypes and haplotypes for each individual, and

HAPI-UR stores these values by using bit fields, which have low

space requirements and to which very efficient bitwise operations

apply.
Results

This section describes experimental results from running

HAPI-UR on three data sets and includes an analysis of

phasing multiethnic groups of individuals. First, we show

that HAPI-UR has a comparable or lower switch-error rate

than do several existing phasing methods while also being

more than an order of magnitude faster. For this compar-

ison, we run each method on a data set containing more

than 16,000 samples and run HAPI-UR and Beagle on

another data set with a higher marker density and more

than 5,000 samples. Second, we use HAPI-UR to phase

a data set containing over 58,000 samples, and we inspect

how the ethnicity of the individuals being phased affects

accuracy; we show that the switch-error rate decreases

with sample size even when we include diverse ethnicities.

Finally, we consider the runtime scaling of HAPI-UR and

other methods and examine their applicability to data

sets with at least 100,000 samples.

Each data set that we analyze includes trio parents

without their children, and we use separately inferred

trio-phased haplotypes for these parents to identify switch

errors. We consider the trio-phased haplotypes to be

correct only at sites that have unambiguous trio phase,

i.e., sites with at least one homozygous individual in the

trio, and we omit other ambiguous sites from switch-rate

calculations.

We report computational runtimes from 2.66 GHz Intel

Core2 vPromachines that are not part of a compute cluster

and are therefore not susceptible to timing bias due to the

sharing of resources with other jobs. We report central-

proccessing-unit (CPU) time rather than wall-clock time

to avoid biases due to input/output overhead or interfering

background processes. These computers have multicore
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processors, but we ran all programs single threaded (only

SHAPEIT supports multithreading) and only executed

one process at a time on any machine in order to prevent

competition between runs.

Accuracy and Efficiency Comparisons to Existing

Methods

We compared the switch-error rate and runtime of HAPI-

UR to those of existing methods by using 17,000 samples

from the WTCCC.21 We removed 735 samples that the

WTCCC reported as having 3% or more missing data, as

showing discordance with external genotyping, as having

evidence of non-European ancestry, or as being duplicated.

We retained 86 samples that the WTCCC detected as first-

and second-degree relatives because most large studies will

include some related individuals. We merged the resulting

16,265 WTCCC samples with 88 HapMap CEU (Utah resi-

dents with ancestry from northern and western Europe

from the CEPH collection) samples22 that are unrelated

parents in a set of 44 trios, but we did not include the

offspring of these trios in the data set; we report the

switch-error rate for these 88 samples. We removed

30,956 SNPs that the WTCCC filtered for quality control,

and merged the WTCCC samples with HapMap data that

were separately filtered for quality control;22 after merging,

this data set contained 386,353 SNPs.

To thoroughly evaluate HAPI-UR in comparison to

other methods, we examined the entire 16,353 sample

WTCCC1 þ HapMap data set, as well as subsets consisting

of 5,000, 3,000, and 1,000 samples. These subsets included

the 88 HapMap CEU samples and randomly chosen

subsets of 4,912, 2,912, and 912 samples out of the total

16,265 WTCCC samples.

We ran Beagle 3.3.1, IMPUTE2 2.1.2, SHAPEIT 1.r415,

MaCH 1.0.17, and HAPI-UR on the four sizes of

WTCCC1 þ HapMap data sets on chromosomes 19–22.

The documentation for MaCH recommends running 50

rounds of phasing with 200 states, and we used these

settings. We also used the recommended settings for

IMPUTE2 by phasing the chromosomes in 5 Mb regions

with a 500 kb overlap between adjacent regions and by

using 80 states, 10 burn-in iterations, and 20 additional

(30 total) iterations; the effective population size was set

to 11,500. SHAPEIT has default parameters of 100 states,

10 burn-in iterations, 10 pruning iterations, and 50 main

iterations and an effective population size of 15,000, and

we used these default values in our tests. We ran HAPI-

UR with a maximum window size of 64 markers and an

effective population size of 10,000.

To obtain complete haplotypes from IMPUTE2, we

combined the haplotypes from adjacent regions by using

from each sample the heterozygous site that is closest to

the center of the overlapping region to determine the

relative phase between the regions. In our data set, chro-

mosome 19 contains a large ~5 Mb gap that contains no

markers, and we merged the haplotypes on either side

of the gap by using an arbitrary phase. This procedure
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Figure 3. Switch-Error Rate and Runtime
of HAPI-UR, HAPI-UR 33, Beagle,
IMPUTE2, SHAPEIT, and MaCH on the
WTCCC1 þ HapMap Data Set
(A) Switch-error rate on chromosomes
19–22 for 88 HapMap CEU trio parents
from data sets containing 1,000, 3,000,
5,000, and 16,353 samples. The switch-
error rates of HAPI-UR, HAPI-UR 33,
Beagle, and IMPUTE2 decrease with
sample size, whereas the error rates of
SHAPEIT and MaCH stay roughly con-
stant with sample size. For 1,000 samples,
SHAPEIT produces the most accurate
phase. HAPI-UR has a similar but slightly
higher switch-error rate than Beagle
does, whereas HAPI-UR 33, which com-
putes phase by consensus on the basis of

the output of running HAPI-UR three times, has a lower switch-error rate than Beagle does and is the most accurate method for
the data sets with 3,000, 5,000, and 16,353 samples.
(B) Runtimes for HAPI-UR, HAPI-UR 33, and Beagle and estimated runtimes for MaCH, IMPUTE2, and SHAPEIT for phasing all chromo-
somes on data sets with 1,000, 3,000, 5,000, and 16,353 samples. For the data set with 16,353 samples, HAPI-UR is 18.93 faster than
Beagle, whereas running HAPI-UR 33 serially is 6.313 faster. Using the runtime for phasing 1,000 samples in IMPUTE2, SHAPEIT,
and MaCH, we conservatively estimated total runtime by assuming linear scaling in both number of markers and number of samples
for each method. Although both Beagle and HAPI-UR have superlinear scaling, our estimated runtime for HAPI-UR to phase 100,000
samples is lower than those estimated for IMPUTE2, SHAPEIT, and MaCH, and HAPI-UR will have much lower switch-error rate than
any of these methods when they are run with their recommended number of states.
might introduce a small number of switch errors across this

gap, but these will impact the overall error rate only

modestly; in the worst case of 88 switch errors, the total

switch error across the four chromosomes we examined

will increase by 0.017%.

Phasing of the full 16,353 sample data set on chromo-

some 20 for MaCH did not complete, so we calculated

for this chromosome a switch-error rate relative to the

rate for the 5,000 sample data set by using the same

proportion as the average change on chromosomes 19,

21, and 22. Thus, the switch-error rate reported for

MaCH is a normalized form of the rate for all chromosomes

except for 20.

Figure 3A shows the switch-error rates of all methods for

chromosomes 19–22 on the differently sized WTCCC1 þ
HapMap data sets; this plot is similar to one that Browning

and Browning14 reported for chromosome 20 but is for

a larger data set and also includes HAPI-UR and SHAPEIT.

For the data set with 1,000 samples, SHAPEIT achieves

the lowest switch-error rate, but this accuracy comes at

a cost because SHAPEIT also has the second greatest run-

time of all methods we considered (see below). For larger

sample sizes, the switch-error rates of both SHAPEIT and

MaCH stay roughly constant, whereas the error rates of

other methods decrease; we consider the accuracy of

each method as a function of sample size later in the

Discussion.

HAPI-UR and Beagle both have comparable and low

switch-error rates for the data sets with 3,000, 5,000 and

16,353 samples, but HAPI-UR has a slightly higher

switch-error rate than Beagle does on these data sets. To

reduce switch-error rate further, we leveraged the random-

ized nature of HAPI-UR by running it three times and by

performing consensus voting among the three results to
The Americ
decide the phase between successive pairs of heterozygous

sites. We plot the results for this method in Figure 3 as

‘‘HAPI-UR 33.’’ This approach achieves lower error and is

also more than six times faster than all other methods

(see below). Using consensus phasing based on multiple

phasing runs also benefits other methods,11,14 including

Beagle. Note that each run of Beagle is slower than HAPI-

UR, so for the same computational overhead, it is possible

to execute a larger number of runs of HAPI-UR and perform

consensus phasing among all these results. The switch

error of IMPUTE2, SHAPEIT, and MaCH would also

decrease if one ran them by using a larger number of

states;14 however, increasing the number of states in these

methods would also increase their computational burden.

In general, an appropriate tradeoff between runtime and

accuracy is necessary for phasing sizeable data sets (see

Discussion).

We ran HAPI-UR, HAPI-UR 33, and Beagle on all chro-

mosomes for each of the data set sizes and obtained

switch-error results that are consistent with those shown

for chromosomes 19–22 in Figure 3A. For the full 16,353

sample data set, the switch error of Beagle is 3.08%,

whereas HAPI-UR and HAPI-UR 33 obtain switch-error

rates of 3.14% and 2.93%, respectively. Thus, for this

WTCCC1þHapMap data set, when 3,000 ormore samples

are phased and when each program is run with its recom-

mended settings, HAPI-UR 33 provides low switch error

and HAPI-UR provides a switch-error rate that is only

slightly higher than that of Beagle.

We examined the runtimes on our noncluster computers

for applying MaCH and IMPUTE2 to phase 1,000

WTCCC1 þ HapMap samples on chromosomes 19–22,

and we estimated their runtimes for all chromosomes

from these values by assuming that their runtimes scale
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linearly in the number of markers; this scaling matches the

scaling we observed on the four chromosomes. We further

estimated the runtime of these methods for larger data sets

by assuming that their runtimes scale linearly in the

number of samples.We verified that runtime scales linearly

for MaCH by running chromosome 20 with 3,000 samples.

We also ran IMPUTE2 on chromosomes 19 and 22 with

3,000 samples and observed that it runs 3.983 and

3.553 slower for chromosomes 19 and 22, respectively,

than it does with 1,000 samples for the same chromo-

somes; despite these results, we conservatively estimated

IMPUTE2’s runtime as scaling linearly in sample size.

To estimate the runtime of SHAPEIT on the full

WTCCC1 þ HapMap data, we used it to phase 1,000

samples and 3,000 samples on chromosomes 19–22. We

found that its runtime across chromosomes is not exactly

linear in the number of markers on a chromosome;

instead, we observed differing per-marker runtimes for

phasing 1,000 samples on chromosomes 19–22. The

average per-marker runtimes were 3.60 s, 3.10 s, 3.08 s,

and 3.26 s for chromosomes 19, 20, 21, and 22, respec-

tively. In order to provide an overall runtime estimate for

the full data set, we assumed that the runtime per marker

for phasing 1,000 WTCCC1 þ HapMap samples with

SHAPEIT on chromosomes 1–18 would be 3.08 s. SHAPEIT

also showed slightly greater than linear scaling in runtime

with sample size; phasing of 3,000 samples on chromo-

somes 19, 20, 21, and 22 ran, respectively, 3.363, 3.273,

3.283, and 3.343 slower than did phasing of 1,000

samples for the same chromosomes. To provide a conserva-

tive estimate, we again assume that the runtime of

SHAPEIT scales linearly in sample size. Note that because

SHAPEIT constructs states with variable window bound-

aries that depend on the heterozygous sites of an indi-

vidual, in practice it probably does not scale linearly in

either number of markers or sample size, and our timing

results are consistent with this.

We examined the runtime of HAPI-UR and Beagle on the

four different-sized WTCCC1 þ HapMap data sets and

found that for the full data set, the total runtime across

all chromosomes for HAPI-UR is 18.93 faster than that

for Beagle and that HAPI-UR has a runtime on chromo-

some 1 of 8.36 hr compared to 151 hr (6.30 days) for

Beagle. HAPI-UR 33 is fully parallelizable to three nodes,

but when it is run sequentially, its runtime is 6.313 faster

than Beagle’s runtime. Memory overhead is minimal for

both HAPI-UR and Beagle: HAPI-UR requires less than 3.2

GB to phase the largest chromosome on the full data set,

and Beagle requires less than roughly 4 GB.

Figure 3B plots the runtimes of HAPI-UR, HAPI-UR 33,

and Beagle and the estimated runtimes of IMPUTE2,

SHAPEIT, and MaCH for all WTCCC1 þ HapMap data

set sizes we have examined. The estimated runtimes

for MaCH to phase 3,000, 5,000, and 16,353 samples

are, respectively, 167 days, 279 days, and 912 days, and

we did not include these points in Figure 3B. Both HAPI-

UR and HAPI-UR 33 show considerably lower runtimes
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than the other methods do; Beagle is the closest method

to HAPI-UR in terms of runtime but is more than an order

of magnitude slower than HAPI-UR for the full WTCCC1þ
HapMap data set.

The results above examined a data set with a smaller

marker density than that provided by most current geno-

type platforms. To explore HAPI-UR’s accuracy and run-

time performance further, we obtained the WTCCC2

control samples,24 which include 5,667 individuals, and

analyzed the Illumina 1.2M genotypes for these samples.

We removed all individuals that the WTCCC flagged for

quality control (for aberrantmissing data or heterozygosity

rates and non-European ancestry, etc.) except for those re-

ported as being related or with gender mismatches, and we

separately detected and removed 11 sample duplicates. We

also removed 227,160 SNPs that failed the WTCCC

quality-control checks. We merged these samples with

the same 88 HapMap CEU trio parents as in the

WTCCC1 þ HapMap data set, resulting in a final merged

data set of 5,342 samples with 755,008 SNPs.

We ran Beagle, HAPI-UR, and HAPI-UR 33 on this

WTCCC2 þ HapMap data set; we ran HAPI-UR with

a maximum window size of 90 markers and an effective

population size of 10,000. The overall switch-error rate of

Beagle on this data set is 1.86%, whereas HAPI-UR and

HAPI-UR 33 obtain switch-error rates of 1.93% and

1.84%, respectively. Thus, HAPI-UR and HAPI-UR 33 again

achieve comparable error rates to Beagle, and HAPI-UR has

a slightly higher switch-error rate. (Note that it is incorrect

to compare these switch-error rates with those from

WTCCC1 þ HapMap because higher marker densities

produce lower switch-error rates14).

This WTCCC2 þ HapMap data set has only 5,342

samples and shows speed gains that are similar to those

of the 5,000 sample WTCCC1 þ HapMap data set. HAPI-

UR runs 9.793 faster than Beagle on this WTCCC2 þ
HapMap data set; this speed is slightly better than the

speed gains of HAPI-UR on the 5,000 sample WTCCC1 þ
HapMap data set (9.283 faster than Beagle). These timing-

and phase-accuracy results on the WTCCC2 þ HapMap

data set show that, for this data set (which has roughly

double the marker density of WTCCC1 þ HapMap),

HAPI-UR remains extremely fast while also achieving accu-

racy that is comparable to that of other methods.

Phasing of Large, Multiethnic Data Sets

We ran HAPI-UR on a collection of 58,207 samples geno-

typed on the Illumina Infinium platform by the Center

for Applied Genomics at CHOP.26–29 These 58,207 samples

remained after we removed sample duplicates and close

relatives that showed identity by state (IBS) sharing

totaling at least 1,200 cM (of a total 3,522 cM on auto-

somes) contained in stretches of IBS longer than 3 cM.

We removed 3,456 SNPs with 5% or more missing data,

resulting in a final data set containing 516,972 SNPs. The

samples include population identifiers of European Amer-

ican, African American, Latino, or East Asian ancestry. We
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Figure 4. Switch-Error Rate for HAPI-UR
Phasing on Several Subsets of the CHOP
Data Set, Stratified by Ethnic Group and
Sample Size
(A) Switch-error rate for 88 African
American trio parents either phased
combined with other ethnicities (‘‘African
Combined’’) or alone (‘‘African Alone’’)
and for 597 European American trio
parents phased with other ethnicities
(‘‘European Combined’’) or alone
(‘‘European Alone’’). Switch-error rate
decreases with sample size and also
decreases when we include samples from
multiple ethnicities in the phasing run.
The full 58,207 data set contains African
Americans and European Americans
along with Latinos and East Asians,

and the switch-error rate is lowest for both African Americans and European Americans with the use of this full data set.
(B) Switch-error rate for 88 African American trio parents in a data set of 5,000 African Americans phased either combined with differing
proportions of European Americans (‘‘African Combined’’) or alone (‘‘African Alone’’). When the number of European American samples
is equal to or less than the number of African American samples, the switch-error rate of the African Americans decreases relative to
phasing alone. As the number of European American samples grows larger relative to the number of African Americans, the switch-error
rate increases. When the ratio of African American to European American samples is 1:2 or 1:4, the switch-error rate remains lower for
combined phasing than for phasing alone. For a ratio of 1:7.6 African Americans to European Americans, the switch-error rate of
combined phasing is higher than for phasing alone.
performed principal-component analysis30 in ten separate

batches to identify individuals with mislabeled popula-

tions. For the phasing runs in which we specifically

analyzed European American and/or African American

samples, we excluded samples that did not cluster with

the European Americans or that were not on the gradient

of African American ancestry. After filtering, the data

contain 37,925 European American samples and 10,003

African American samples. This data set includes a total

of 1,194 European American parents from 597 trios and

88 African American parents from 44 trios, and we report

switch-error rates for these samples.

To inspect switch-error rates in data sets with varying

sample size, ethnicity, and relative proportions of ethnic

groups, we ran HAPI-UR with a maximum window size

of 73 markers and an effective population size of 10,000

on all chromosomes for ten different subsets of the

CHOP data set. We compared switch-error rates among

the collections of phased samples, which were: (1) the

full 58,207 sample CHOP data set, (2) all 37,925 European

American and all 10,003 African Americans, (3) a random

subset of 20,000 European Americans and all African

Americans, (4) a further random subset from (3) of

10,000 European Americans and all African Americans,

(5) a random subset from (4) of 5,000 European Americans

and 5,000 African Americans, (6) all European American

samples alone, (7) the same 20,000 European Americans

as in (3) phased alone, (8) the same 10,000 European Amer-

icans as in (4) phased alone, (9) the same 5,000 European

Americans as in (5) phased alone, (10) all African Ameri-

cans alone, and (11) the same 5,000 African Americans as

in (5) phased alone.

Figure 4A plots the switch-error rates for all chromo-

somes of the CHOP data set. We show switch-error rates

for both European American (plotted as ‘‘European’’) and
The Americ
African American (plotted as ‘‘African’’) samples phased

alone or combined with either the indicated numbers of

African American or European American samples or the

entire data set. The x axis lists the sample size of the

combined data set and the number of African American

and European American individuals included in the

combined data set. We plot the switch-error rate for

phasing the individual ethnic groups alone at the same

x value as the larger combined data set to enable direct

comparison of switch error for phasing a given ethnic

group alone versus combined with multiple ethnicities.

The switch-error rate for European Americans always

decreases with sample size when we phase these samples

either alone or combined with African Americans or the

full multiethnic data set. Switch error decreases for phasing

larger numbers of European samples alone, but including

additional samples from other ethnicities provides lower

error than phasing alone.

When African Americans are phased alone, the switch-

error rate again decreases with sample size, but because

some data sets include proportionally more European

Americans than African Americans, the switch-error profile

for multiethnic phasing of African Americans is more

complicated. The combined data sets containing 10,000

and 20,003 samples have equal proportions of European

American and African American samples (5,000 and

~10,000, respectively), and the switch-error rate of the

African Americans decreases relative to that of phasing

African Americans alone in both these cases. The data

sets containing 30,003 and 47,928 samples both contain

only 10,003 African Americans, and as the plot shows,

the switch error of the African Americans phased in these

data sets increases relative to that of the combined data

set with 20,003 samples. Note that even when all the

European American samples are phased with the African
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Figure 5. Runtime for Phasing Chromosome 22 on Various
Subsets of the CHOP Data Set with HAPI-UR
Runtime increases with sample size and is tractable for the full
58,207 sample data set at 26 hr. We estimate the runtime for
phasing chromosome 1 on the full data set to be 5.57 days.
Americans, where the ratio of European American haplo-

types to African American haplotypes is nearly 4 to 1, the

switch-error rate for the African Americans remains lower

(1.78%) than that for phasing these samples alone

(1.85%). The switch-error rate of the African Americans is

lowest (1.54%) when we phase the complete data set that

includes Latinos and East Asians, and uneven ratios of

ethnic groups might be less important when more than

two populations are phased together.

To further explore the relationship between switch error

and the ratio of sample ethnic groups, we phased 5,000

African Americans combined with different numbers of

European American samples, and we show the switch-error

rates in Figure 4B. The switch-error rate of the African

Americans decreases considerably when we include even

a relatively small number of European American samples.

The lowest switch-error rates occur when the ratio of

African American to European American samples is

between 2:1 and 1:1, and the error rate is slightly lower

for the ratio of 1:1. The switch-error rate for African

Americans increases when the sample ratio is biased

toward including more European American samples than

African Americans but remains lower than phasing alone

for ratios of 1:2 and 1:4. The largest sample ratio biased

toward European Americans is 1:7.6, and in this extreme

case, the switch-error rate of the combined phasing is

higher than that of phasing the African American samples

alone. These results suggest that, depending on the appli-

cations of the resulting haplotypes, it is typically best to

phase all individuals together unless there is extreme bias

in the ratios of ethnic groups. Alternatively, if one wishes

to minimize the switch-error rate for only a single ethnic

group rather than for an entire multiethnic collection of

samples, including equal or lower numbers of samples
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from other ethnic groups will yield the lowest switch error

for the group of interest.

Phasing of the entire CHOP data set required relatively

modest compute resources despite its extremely large

size. Chromosomes 1 and 2 had the highest memory

requirements of 20.2 GB each. To inspect runtime across

a range of sample sizes, we phased chromosome 22 on

our noncluster computers, and we show the runtimes in

Figure 5. Runtime increases with sample size and is again

modest; phasing of the full data set on chromosome 22

completed in 26 hr (1.1 days). To determine runtime of

larger chromosomes, we phased the data set with 5,000

African Americans on chromosome 1 and estimated the

runtime for phasing all 58,207 samples on chromosome

1 to be 5.57 days. This estimate assumes that the time ratio

required for phasing chromosome 1 compared to chromo-

some 22 for 5,000 African Americans is the same when the

full data set is phased. We found that in the WTCCC1 þ
HapMap data set, estimating the runtime on the full

16,353 sample data set with the use of the runtime for

3,000 samples in this way overestimated the true runtime

for the full data set by nearly 6%, and our estimated run-

time for chromosome 1 is thus likely to be accurate or

slightly conservative.

Runtime Scaling with Sample Size

An important factor in evaluating algorithms that target

large data sets is how quickly their runtime increases

with sample size. An algorithm can be very fast for small

sample sizes but scale poorly to larger data sets and be

slower than some other algorithmwith better scaling prop-

erties. Figure 6 compares the runtime scaling of Beagle to

that of HAPI-UR and shows that Beagle runs 1563 slower

for 16,353 samples than for 1,000 samples. In contrast,

HAPI-UR runs 48.13 slower for phasing 16,353 samples

than for 1,000 samples. Thus, as sample sizes grow, the

speed gains in HAPI-UR will become even larger than those

in Beagle, making HAPI-UR especially practical for large

data sets.

The exact runtime scaling of HAPI-UR is not easily deter-

mined and depends on the haplotype structure and diver-

sity of the data set. The empirically observed scaling for the

WTCCC1 þ HapMap data sets we have evaluated is super-

linear but subquadratic (Figure 6). It might be that the

scaling properties of HAPI-UR will improve in very large

data sets because they might contain multiple copies of

the same haplotype; in that case, fewer haploid states

would be necessary for constructing an HMM, and the run-

time scaling of HAPI-UR would tendmore toward linearity.

We estimated how long HAPI-UR would take to run on

data sets with 100,000 and 200,000 samples at the same

marker density as the WTCCC1 þ HapMap and CHOP

data sets by using least-squares to fit quadratic functions

to the observed runtimes and data set sizes for these two

samples. These fits are conservative in that they assume

that the runtime will continue to grow at a regular rate

that we fit by a quadratic function even as more samples
0, 2012



Figure 6. Runtime of Beagle and HAPI-UR for 3,000, 5,000, and
16,353 Samples Increases Relative to that for 1,000 Samples
Both Beagle and HAPI-UR scale superlinearly but subquadratically,
and the precise scaling factors of both programs depend on the
haplotype diversity of the data set being analyzed. The slowdown
for analyzing 16,353 samples compared to 1,000 samples is 1563
for Beagle and 48.13 for HAPI-UR.
are added, whereas the true scaling might be smaller

given that samples might contain duplicated haplo-

types. Extrapolation based on the quadratic fit to

the WTCCC1 þ HapMap runtime shows that for chromo-

some 1, HAPI-UR is expected to take 8.64 days to phase

100,000 samples and 32.8 days to phase 200,000 samples

at this marker density. Based on the runtimes we observe

for phasing the CHOP data, the estimated runtimes to

phase chromosome 1 at the CHOP marker density are

15.1 days for 100,000 samples and 56.6 days for 200,000

samples. Because the most computationally intensive

part of the algorithm is constructing and sampling from

the individual-specific diploid HMMs, parallelization of

the algorithm across samples is feasible (although not yet

implemented), and thus, for example, a parallelized run

for phasing 200,000 samples at the CHOP marker density

across eight processors should take slightly more than

7.08 days. It is also feasible to phase sections of chromo-

somes separately in parallel (and have some overlap across

sections) and to combine the inferred phase across these

sections to form complete haplotypes; this is the recom-

mended approach for phasing with the use of IMPUTE2

and is how we performed phasing with IMPUTE2 in the

results presented above.

For a fixed number of states, the runtime of MaCH scales

linearly in sample size, and we have conservatively

assumed that the runtimes of IMPUTE2 and SHAPEIT scale

linearly. MaCH has a very high runtime and is not compet-

itive with HAPI-UR on data sets with tens of thousands of

samples. The estimated total runtime for HAPI-UR to phase

all chromosomes for 100,000 samples at the WTCCC1 þ
HapMap marker density is 101.6 days (note that this is

parallelizable across chromosomes and that the estimate
The Americ
for chromosome 1 reported above is 8.64 days). Using

our conservative estimate of linear scaling for IMPUTE2

and SHAPEIT, their estimated runtimes to phase 100,000

samples at the WTCCC1 þ HapMap marker density are

1,096 days and 1,382 days, respectively. This is the runtime

for these methods with a fixed number of states, but our

results suggest that in order to leverage the full benefit of

large data sets, both these methods would need to be run

with a larger number of states, and this would increase

their runtime further.
Discussion

Low-cost SNP genotyping has permitted the collection of

data from thousands of individuals at hundreds of thou-

sands of SNPs, which in the last several years has resulted

in the discovery of more than 1,300 common genetic vari-

ants associated with risk for common disease.31 Although

these diploid genotype data have been extraordinarily

powerful tools for medical genetics, the conversion of

these data to phased haplotypes is likely to enable

additional discoveries both in medical genetics through

genotype imputation and in population genetics. Current

algorithms require large computational resources to phase

more than a few ten thousand samples simultaneously,

yet data sets with up to 100,000 individuals genotyped

on the same SNP array are now being generated (see Risch

et al.15 and the WTCCC2 data set in the Web Resources). It

is important to phase all individuals simultaneously so

that haplotypes can be obtained with the highest overall

accuracy and so that correlated errors do not result from

separately phasing subsets of the samples.

HAPI-UR provides a method for efficiently phasing large

data sets, and we have shown that HAPI-UR has similar

accuracy to Beagle but is much faster and more scalable

to very large data sets. We found that SHAPEIT and

MaCH are considerably slower than HAPI-UR for phasing

large data sets and that their switch-error rates stay roughly

constant with increasing sample size (Figure 3). The HMMs

of these methods have a fixed number of states in any run,

and our results suggest that in the presence of a larger

number of haplotypes, i.e., greater haplotype diversity,

these methods are unable to represent the added informa-

tion that all the samples provide. Thus, in order to benefit

from all the information contained in larger data sets, both

SHAPEIT and MaCH would need to be run with a larger

number of states, but this would increase their computa-

tional overhead further from the runtimes reported in

Figure 3B.

IMPUTE2 shows decreasing switch error with sample

size (Figure 3A), and this is most likely due to the fact

that it constructs an HMM for each individual by using

the haplotypes in the data set that are most similar to esti-

mated haplotypes for that individual. Thus, IMPUTE2

identifies the haplotypes that are most likely to provide

useful information in order to phase a given individual.
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Despite the increased accuracy with sample size, IMPUTE2

does not benefit from large sample sizes as much as HAPI-

UR and Beagle do, and using a larger number of states (and

therefore a longer runtime) is most likely necessary for

IMPUTE2 to take full advantage of the accuracy that can

be achieved with larger data sets.

In general, phasing even a modest data set with, for

example, 200 samples involves a tradeoff between runtime

and accuracy. At the extreme of targeting the highest accu-

racy without regard to compute time, running PHASE—

which implements the full Li and Stephens model25

instead of an approximation as in IMPUTE2, SHAPEIT,

MaCH, and HAPI-UR—would most likely produce the

greatest phase accuracy among all the methods we have

considered.32 However, PHASE would probably take

several years to complete phasing a data set with 10,000

samples. On the other extreme, a phasing method that

randomly assigns phase to an individual would require

minimal runtime while producing extremely inaccurate

and meaningless phasing results.

HAPI-UR and Beagle both occupy a space in the phasing

landscape wherein the states they examine adapt, in

a localized region, on the basis of the haplotype structure

and diversity of the data. In regions with low haplotype

diversity, both HAPI-UR and Beagle will include fewer

states than they will in regions with higher diversity.

This property might explain why, in contrast to methods

that utilize fixed numbers of states, both of these methods

have increased accuracy and efficiency when they examine

a large number of samples. Running IMPUTE2, SHAPEIT,

or MaCHwith a very large number of states could probably

produce haplotypes with greater accuracy than either

HAPI-UR or Beagle could on large data sets, but this would

also incur a large computational burden.

A phasing approach with a very different paradigm than

HAPI-UR and the other methods we have considered is

that of long-range phasing.13 Kong et al. applied long-

range phasing in over 35,000 Icelanders and were able to

identify many distant relatives for each sample and phase

the individuals by identifying homozygous SNPs in one or

more of their relatives. This approach works well for

phasing Icelandic samples, but it is unclear whether this

methodology would work in more outbred populations

and, if so, what size of data set and/or marker density

would be needed for it to work. It might be that, for

example, European American data sets that include more

than 1,000,000 samples and a sizeable marker density

would benefit from long-range phasing, and this is an

avenue worth exploring as data sets of this magnitude

become available.

The results we have presented suggest that as sample size

increases, phasing runtime must increase at a superlinear

rate if one is to gain full advantage of the information con-

tained in all samples, yet consideration of computational

runtime is essential for practically leveraging large data

sets. We have shown that HAPI-UR infers phase in large

data sets with accuracies comparable to or better than
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existing methods and is also more than an order of magni-

tude faster. Because the number of states that HAPI-UR uses

in any window is dependent on the haplotype structure

and diversity in an individual, the method adapts to the

nature of the data set, and we anticipate that it will

perform well in the large data sets that now exist, as well

as those that are being generated.
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