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POC1A Truncation Mutation Causes a Ciliopathy
in Humans Characterized by Primordial Dwarfism

Ranad Shaheen,1 Eissa Faqeih,2,8 Hanan E. Shamseldin,1,8 Ramil R. Noche,3 Asma Sunker,1

Muneera J. Alshammari,1,5 Tarfa Al-Sheddi,1 Nouran Adly,1 Mohammed S. Al-Dosari,1,4

Sean G. Megason,3 Muneera Al-Husain,5 Futwan Al-Mohanna,6 and Fowzan S. Alkuraya1,5,7,*

Primordial dwarfism (PD) is a phenotype characterized by profound growth retardation that is prenatal in onset. Significant strides have

beenmade in the last few years toward improved understanding of the molecular underpinning of the limited growth that characterizes

the embryonic and postnatal development of PD individuals. These include impaired mitotic mechanics, abnormal IGF2 expression,

perturbed DNA-damage response, defective spliceosomal machinery, and abnormal replication licensing. In three families affected by

a distinct form of PD, we identified a founder truncatingmutation in POC1A. This gene is one of two vertebrate paralogs of POC1, which

encodes one of the most abundant proteins in the Chlamydomonas centriole proteome. Cells derived from the index individual have

abnormal mitoticmechanics withmultipolar spindles, in addition to clearly impaired ciliogenesis. siRNA knockdown of POC1A in fibro-

blast cells recapitulates this ciliogenesis defect. Our findings highlight a human ciliopathy syndrome caused by deficiency of a major

centriolar protein.
Primordial dwarfism (PD) is a term used for describing

severe human growth deficiency with a prenatal onset

and reflects a fundamental postnatally persisting defect

in the genetic growth potential of human embryos.1 Clin-

ically, many subtypes have been described on the basis of

the presence of additional features, but perhaps one of

the most helpful clinical traits in the differential diagnosis

is the degree of involvement of the head circumference. A

few conditions are characterized by a largely preserved

head circumference despite PD phenotypes such as 3M

syndrome (MIM 273750, 612921, and 614145), Russel-

Silver syndrome (SRS [MIM 180860]), and Mulibrey

nanism (MIM 253250).2–4 On the other hand, many PD-

affected individuals have microcephaly as part of the over-

all growth-restriction phenotype. Seckel syndrome (SCKL

[MIM 210600, 606744, 608664, 613676, and 613823]) is

one of the best known because of highly characteristic

facies, but other conditions such as microcephalic osteo-

dysplastic primordial dwarfism type I (MOPD I [MIM

210710]), MOPD II [MIM 210720], and Meier-Gorlin syn-

drome (MGORS1 [MIM 224690, 613800, 613803, 613804,

and 613805]) are also recognized clinical entities, although

their clinical definitions are less clear.5–8

PD is genetically heterogeneous, and an expansive list of

genes is linked to this phenotype. As predicted for a condi-

tion that is characterized by impairment of one of themost

basic biological processes, i.e., growth, the products of

these genes represent a wide array of molecular mecha-

nisms that include mitotic mechanics, IGF2 expression,

DNA-damage response, spliceosomalmachinery, and repli-
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cation licensing.9–14 The identification of the above

genetic lesions has provided fresh insights into factors

controlling human growth and has propelled renewed

interest into PD research, which is likely to unravel addi-

tional disease pathways.

Abnormal mitotic mechanics as a pathogenic lesion in

PD has been documented for three subtypes. PCNT (MIM

605925), encoding pericentrin, is mutated in almost all

individuals with MOPD II and causes disorganized mitotic

spindles and missegregation of chromosomes.9,15,16 We

have shown that a mutation in CENPJ (MIM 609279),

encoding another centrosomal protein, causes Seckel

syndrome most likely through disruption of centrosome

integrity and induction of multipolar spindles, as shown

by others.13,17 Interestingly, mutations in the gene encod-

ing centrosomal protein CEP152 (MIM 613529), known

for its role in recruiting CENPJ to the centrosome, have

also been shown to cause Seckel syndrome.18,19 Surpris-

ingly, none of these mutations has been shown to impair

ciliogenesis in cells derived from affected individuals,

so despite the shared origin of centrosomes and cilia,

it remains unclear whether PD represents a ciliopathy

phenotype, at least in some cases.

Here, we combine the use of autozygome and exome

analysis in one consanguineous family affected by PD to

uncover a truncatingmutation in POC1A, one of two verte-

brate paralogs of POC1, which encodes one of the most

abundant proteins in the Chlamydomonas centriole pro-

teome.20 The distinct clinical phenotype aided us in iden-

tifying similarly affected individuals from two other
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Figure 1. Identification of a POC1A-Related PD Phenotype
(A) Pedigrees of the three PD-affected families included in the study and the haplotype shared between the affected individuals in the
three families.
(B) Clinical photographs of the affected individuals (a, b, and c are of VI1 from family 1, d is of VI2 from family 1, e and f are of VI3 from
family 1, g and h are of IV1 from family 2, and i and j are of IV1 from family 3).
(C) The upper panel shows a diagram of POC1A (the triangle indicates the site of the mutation). The middle panel shows a sequence
chromatogram of the nonsense mutation and the parent tracing shown for comparison (the location of the mutation is indicated by
a triangle). The bottom panel shows a diagram of POC1A (note that the truncated alteration is upstream of the five WD40 domains).
PD-affected families who we show to harbor the same

mutation on a common ancestral disease haplotype. In

addition to the multipolar spindle formation, this muta-

tion results in severely impaired ciliogenesis in cells

derived from affected individuals. Thus, our study adds

PD to a growing list of ciliopathy phenotypes in humans.

The index patient in family 1 (Figure 1A) is a 6-year-

old girl with profound growth deficiency (weight of �5

standard deviations [SDs], height of �6.7 SDs, and occipi-

tofrontal circumference [OFC] of �2.3 SDs). Her birth

parameters were also severely reduced (weight of �3.9

SDs, length of �4.7 SDs, and OFC of �2.2 SDs). She had

relative macrocephaly and distinct facial features in the

form of an elongated triangular face, a high forehead,

hypertelorism, a depressed nasal bridge, a broad upturned

nose, a long philtrum, and posteriorly rotated low-set ears

(Figures 1Ba–1Bc). She displayed normal development.

One year later, another female child was born to the same

parents and clearly had evidence of PD at birth (weight

of �3.8 SDs, length of �5.8 SDs, and OFC of �2.2 SDs).

When she was 22 months of age, growth retardation per-

sisted (weight �6.3 SDs and height �7.1 SDs) and similar
The Americ
facial features to her sister’s became more recognizable

(Figure 1Bd). Two years later, a cousin was born with an

abnormally low weight and length but a normal head

circumference (weight of �2.3 SDs, length of �3 SDs, and

OFC at the 35th percentile). Similar to his two cousins, he

displayed relative macrocephaly at the age of 3 months

(weight of �3.2 SDs, length of �5.1 SDs, and OFC at the

57th percentile) and similar facial features (Figures 1Be

and 1Bf).

Family 2 (Figure 1A) consists of first-cousin Saudi parents

and one 6-year-old child with profound global develop-

mental delay and PD. His facial features have a striking

resemblance to those observed in family 1. The pregnancy

was complicated by poor fetal growth necessitating

induced delivery at 36 weeks of pregnancy. The birth

weight was 1 kg (�4.1 SDs), and the remaining parameters

were not available to us. He stayed in the neonatal inten-

sive care unit for 2 months because of his low birth weight.

He ate poorly, vomited frequently, and showed significant

developmental delay. His clinical examination revealed

a failure to thrive, a weight of 6.45 kg (�6.3 SDs), a height

of 79.6 cm (�7.1 SDs), and an OFC of 43 cm (�6.4 SDs). He
an Journal of Human Genetics 91, 330–336, August 10, 2012 331



had a high forehead, deep-set eyes, a prominent columella,

dolichocephaly, and stubby fingers (Figures 1Bg and 1Bh).

Neurological examination was significant for hypotonia.

His thyroid-function test and growth-hormone level were

unremarkable.

Family 3 (Figure 1A) consists of first-cousin Saudi parents

with two healthy daughters and three sons, one of whom

was born at termwith a very low birth weight (1.25 kg), but

the other parameters were unavailable. He was 32 months

of age at the time of his referral for severe failure to thrive

(weight of �5.9 SDs, length of �7.1 SDs, and OFC of �3.3

SDs). He had evidence of global developmental delay (he

spoke 3–4 words and walked at 24 months). In addition

to having facial features similar to those of the previously

described individuals, his hands and feet were similar to

those of the individuals from family 2. A skeletal survey

showed diffuse osteopenia, strikingly hypoplastic epiph-

yses most notably in the proximal humerus and femur,

a 2 year delay in skeletal maturity, and short and broad

carpals, metacarpals, tarsals, and metatarsals (Figures 1Bi

and 1Bj). A summary of the clinical features of all five

affected individuals is provided in Table S2, available on-

line. Of note, typical signs of ciliopathy, such as polydac-

tyly, retinal degeneration, and abnormal liver and kidneys,

were specifically ruled out.

When the sister of the index patient was born, it was

likely that this form of PD was autosomal recessive. There-

fore, they were enrolled after written informed consent

was obtained and approved by the King Faisal Specialist

Hospital and Research Center Research Advisory Council

(2080006). Autozygome analysis was performed on the

index patient and her affected sister from family 1 with

the Axiom SNP Platform (Affymetrix, Santa Clara, CA,

USA) and was followed by autoSNPa genome-wide deter-

mination of runs of homozygosity essentially as described

before.21 Autozygome analysis revealed no shared overlap

between the two sisters with any of the known autosomal-

recessive causes of PD. This was followed by exome

sequencing and autozygome filtration as described

before.22,23 The resulting short list of four genes contained

a nonsense mutation (c.241C>T [p.Arg81*]; RefSeq acces-

sion number NM_015426.4) in POC1A (located on chro-

mosome 3, band 3p21.2), which encodes a centriolar

protein (Table S1). Despite the clear difference in motor

and cognitive developmental profile between the two

sisters in family 1 and the affected individuals in families

2 and 3, the strikingly similar facial profile prompted us

to sequence this gene in them, and we did indeed uncover

the samemutation in all individuals and confirmed that all

shared a common ancestral disease haplotype (Figure 1A

and Figures S1A and S1B). Reassuringly, exome sequencing

revealed that themutationwe identifiedwas the only novel

(not present in SNP databases) truncating homozygous

mutation in the shared haplotype. Two homozygous

missense variants were also identified in the shared haplo-

type; however, both are present in the reference genome of

other species (Table S1). The nonsense mutation in POC1A
332 The American Journal of Human Genetics 91, 330–336, August 1
was not present in 194 Saudi exomes or in the Exome

Variant Server.

In order to study the effect of this mutation on the tran-

script stability, we performed real-time PCR, which

showed a 65%–80% reduction consistent with nonsense-

mediated-decay activation (Figures S2A and S2B) as

confirmed by a cyclohexamide rescue assay (Figure S2C).

Immunoblot analysis of the cells derived from the index

individual consistently showed that apparently normal-

sized POC1A was produced at a reduced level (Figure S2D).

The nonsense mutation predicted an 8 kDa protein

compared with the normal 40 kDa POC1A. We considered

the possibility that this might represent a nonspecific

40 kDa band, but two independent POC1A antibodies

gave the exact same result. Furthermore, the specificity

of the band was confirmed with the antigen protein

against which the POC1A antibody was raised (Fig-

ure S2D). The possibility that this protein was a product

of an alternatively spliced transcript that skipped exon 3

and did not contain the mutation was not supported by

RT-PCR analysis, which failed to identify any RNA tran-

script other than the mutant RNA that harbored the

nonsense mutation (Figure S2A). The 40 kDa band is

unlikely to be the product of downstream reinitiation

because the first possible alternate downstream initiation

codon will create a protein of 20 kDa. Therefore, the possi-

bility of a nonsense premature termination codon (PTC)

readthrough was the most likely. Naturally occurring

PTC readthroughs of a nonsense mutation have been

previously reported.22,24 It is interesting that three inde-

pendent immunoblots were performed for the same cells

derived from the index individual and were harvested at

different times and that we found variability in the level

of POC1A (50%, 60%, and 85% for each of the three

immunoblots), indicating that the PTC readthrough is

variable and might account, at least in part, for the vari-

ability in phenotype.

We then performed in situ hybridization on embryonic

day 10.5 mouse embryos and quantitative RT-PCR (qRT-

PCR) on various mouse embryo stages and adult tissues,

and we found widespread expression of Poc1a (Figure S4).

In view of the established role of POC1 in centriole forma-

tion and maintenance,25 we tested whether the mutation

we identified affects the function of the centriole during

mitosis given that this could explain the PD phenotype

on the basis of abnormal mitosis, the same mechanism

invoked for at least two other genes linked to PD.9,14,19

Indeed, we observed multipolar spindle formation at a

frequency of 20% in metaphase-stage cells derived from

the index individual (none was observed in control cells).

Remarkably, we also observed the occurrence of supernu-

merary centrioles at a frequency of 13% in cells derived

from the index individual (none was observed in control

cells), although it was not clear whether these represented

overduplication or abnormal fragmentation (Figure 2).

Repeated experiments in fibroblasts derived from the

index individual clearly showed that this phenomenon
0, 2012



Figure 2. Mutation in POC1A Leads to Abnormal Mitotic
Spindles and Centrioles
Fibroblast cells stained with anti-PCNT (red), anti-a-tubulin
(green), and DAPI.
(A) The control fibroblast cell in the metaphase stage shows the
normal number of centrioles and mitotic spindles.
(B–D) Fibroblasts derived from the index individual show an
abnormal number of centrioles and the tri- and quadri-polar
spindle phenotype (arrowheads). The scale bars represent 5 mm.
of supernumerary centrioles occurred in cells in the

prophase and metaphase stages of the cell cycle.

Other than the important role the centrioles play in

centrosome-mediated control of mitosis through organiza-

tion of the mitotic spindles, they are critical for the forma-

tion of cilia (motile and immotile). We asked whether the

abnormal centriole phenotype we observed in the centro-

some extends to the cilia as well. Indeed, whereas control

fibroblasts were almost uniformly capable of forming

normal cilia after serum starvation, fibroblasts derived

from the index individual were severely deficient in that

capacity (70% reduction, p ¼ 5.4 3 10�7) (Figures 3A–3C),

which strongly suggests an essential role played by

POC1A in ciliogenesis in humans and that our mutation

severely impairs this function. Furthermore, we observed

that the cilia from PD fibroblasts derived from the index

individual were significantly shorter (p ¼ 1.28 3 10�11)

than the cilia from control cells (all cells were plated on

gelatin [Figures 3A, 3B, and 3D]). To reveal whether the

few short cilia observed in the fibroblasts derived from

the index individual were functional, we stained the cells

by using antibodies against IFT-A and IFT-B complex, and

we saw a normal IFT-A (represented by THM1) and IFT-B

(represented by IFT88) staining pattern (Figures 3F and

3H). One explanation that we hypothesize is that the

PTC readthrough mechanism is variable between cells

and that once a critical amount of POC1A is made, the

cell will manage to form a normal functioning cilium. In

line with the data we show on the normal IFT-A and

IFT-B, GLI1 upregulation, as a readout of sonic hedgehog

(SHH) signaling, in response to SAG does not appearmuted

in POC1A-knockdown cells (Figure S3). This might explain

why our affected individuals lack the more ‘‘classical’’

ciliopathy phenotype.
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POC1A-knockdown experiments with RNAi showed that

POC1A deficiency causes a severe ciliogenesis defect

(Figures 4B and 4C). It is important here to note that there

was no evidence that POC1B was reduced in those knock-

down cells, which lends credence to the conclusion that

POC1A deficiency causes the ciliogenesis defect we see in

cells derived from the index individual (Figure 4H). Pear-

son et al. found that knockdown of POC1B, but not of

POC1A, results in a ciliogenesis defect, but they acknowl-

edged that the efficiency of POC1A knockdown was poor

and that more significant reduction could result in a cilio-

genesis defect,26 as we were able to achieve here. This raises

interesting possibilities about whether POC1B mutations

in humans could result in a similar phenotype. The super-

numerary centriole phenotype observed in prophase- and

metaphase-stage cells derived from the index individual

was also replicated in cells in which we achieved highly

efficient but low-frequency (5%) knockdown of POC1A

(Figures 4E and 4G). This raises the intriguing possibility

that this cellular phenotype might be allele specific.

Centrioles have long been recognized for two physiolog-

ical roles—microtubule organization and the formation of

cilia and flagella—and both roles have been implicated in

human diseases, most notably in the setting of develop-

mental anomalies.27 TheMTOC role is known to be disrup-

ted by mutations in four genes known to cause primary

microcephaly (CENPJ, CEP215/CDK5RAP2 [MIM 608201],

ASPM [MIM 605481], and STIL [MIM 181590]) and in one

gene that is linked to Seckel PD (PCNT). It is important to

highlight that PCNT is a component of the PCM rather

than the centriole itself, and yet it has been found in flies

and mice to be essential for cilia formation.28,29 Although

the PD phenotype in PCNT-related Seckel individuals is

presumed to be caused by defective MTOC, it remains

unknown whether impaired ciliogenesis might also be part

of the pathogenesis. On the other hand, ciliopathies repre-

sent a clinically heterogeneous group of disorders in which

a ciliary defect is the key pathogenic mechanism.30 A few

ciliopathies, such as Alstrom syndrome (MIM 203800), are

caused by defective structural centriolar proteins, but most

can be traced to abnormalities in other aspects of ciliary

biology.Unlikeother formsof centriole-relatedPD, the fami-

lies we describe in this study highlight a clinically distinct

PD, and the fact that cells derived from affected individuals

with this phenotype display defects in both roles of centri-

oles suggests that this is a bona fide ciliopathy phenotype.

In summary, we report a distinct PD phenotype caused

by deficiency of the centriolar protein POC1A. The two

basic centriolar functions of MTOC and ciliogenesis are

impaired in individuals with this phenotype, suggesting

that PD can be added to a growing list of ciliopathy pheno-

types in humans.
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Supplemental Data include four figures and two tables and can be

found with this article online at http://www.cell.com/AJHG.
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Figure 3. POC1A-Related PD Is a Ciliopathy
(A–B’) Control fibroblasts and fibroblasts derived from the index individual were visualized by fluorescent microscopy for acetylated-
a-tubulin staining of cilia (green) and DAPI-stained nuclei (blue). Control fibroblasts are uniformly capable of forming normal cilia after
serum starvation (A), whereas fibroblasts derived from the index individual show severely deficient cilia formation (B) (the same
numbers of cells were seeded on the coverslip for each cell line). Higher magnifications (A’ and B’) show that the axonemal lengths
of the cilia from control fibroblasts (A’) and fibroblasts derived from the index individual (B’) are significantly different. The scale
bars represent 10 mm.
(C) The cilia frequencies of gelatin-plated control fibroblasts and fibroblasts derived from the index individual are significantly different
(p ¼ 5.4 3 10�7). Error bars represent the standard error of the mean (SEM).
(D) The average cilia lengths from control cells and cells derived from the index individual are significantly different (p ¼ 1.283 10�11).
Error bars represent the SEM.
(E–H) Control fibroblasts and fibroblasts derived from the index individual were visualized by confocal fluorescent microscopy for acet-
ylated-a-tubulin staining of cilia (green) and IFT88 (1:1000; a generous gift from Dr. Bradley K. Yoder) or THM1 (1:500; a generous gift
from Dr. Pamela V. Tran) (red). Control fibroblasts show the colocalization of IFT88 (E) and THM1 (G) with acetylated-a-tubulin staining
of cilia. Normal IFT88 (F) and THM1 (H) staining patterns are shown in the few short cilia observed in the fibroblasts derived from the
index individual.
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