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Short Stature, Onychodysplasia, Facial Dysmorphism,
and Hypotrichosis Syndrome Is Caused by a POC1A Mutation

Ofer Sarig,1,9 Sagi Nahum,2,9 Debora Rapaport,3,9 Akemi Ishida-Yamamoto,4 Dana Fuchs-Telem,1,5

Li Qiaoli,6 Ksenya Cohen-Katsenelson,2 Ronen Spiegel,2,7 Janna Nousbeck,1 Shirli Israeli,1,5

Zvi-Uri Borochowitz,2,8 Gilly Padalon-Brauch,1 Jouni Uitto,6 Mia Horowitz,3 Stavit Shalev,2,7,*
and Eli Sprecher1,5,*

Disproportionate short stature refers to a heterogeneous group of hereditary disorders that are classified according to their mode of inher-

itance, clinical skeletal and nonskeletal manifestations, and radiological characteristics. In the present study, we report on an autosomal-

recessive osteocutaneous disorder that we termed SOFT (short stature, onychodysplasia, facial dysmorphism, and hypotrichosis)

syndrome. We employed homozygosity mapping to locate the disease-causing mutation to region 3p21.1-3p21.31. Using whole-

exome-sequencing analysis complemented with Sanger direct sequencing of poorly covered regions, we identified a homozygous point

mutation (c.512T>C [p.Leu171Pro]) in POC1A (centriolar protein homolog A). This mutation was found to cosegregate with the disease

phenotype in two families. The p.Leu171Pro substitution affects a highly conserved amino acid residue and is predicted to interfere with

protein function. Poc1, a POC1A ortholog, was previously found to have a role in centrosome stability in unicellular organisms. Accord-

ingly, although centrosome structure was preserved, the number of centrosomes and their distribution were abnormal in affected cells.

In addition, the Golgi apparatus presented a dispersed morphology, cholera-toxin trafficking from the plasma membrane to the Golgi

was aberrant, and large vesicles accumulated in the cytosol. Collectively, our data underscore the importance of POC1A for proper bone,

hair, and nail formation and highlight the importance of normal centrosomes in Golgi assembly and trafficking from the plasma

membrane to the Golgi apparatus.
Mutations in a large number of genes have been shown

over the past years to be associated with combined defects

in skin and bone development in humans and animals.

Most of these genes code for proteins associated with the

synthesis of components of the extracellular matrix.1

Salient examples include Buschke-Ollendorff syndrome

(MIM 166700),2 several subtypes of Ehlers-Danlos syn-

drome (MIM 130050),3 cutis laxa (MIM 219100),4 geroder-

mia osteodysplastica (MIM 231070),5 and the recently

described macrocephaly, alopecia, cutis laxa, and scoliosis

syndrome (MACS [MIM 613075]).6 This association is in

line with what is known of the overlapping role played

by these molecules in the proper formation of the dermis

and in bone osteogenesis.5 In addition, the number of

genetic defects shown to cause both skeletal anomalies

and ectodermal defects is steadily increasing. Although

some of these conditions affect epidermal development

per se, as seen in primary autosomal-recessive hypertro-

phic osteoarthropathy7 (MIM 259100), many of them

seem to preferentially target the growth and differentiation

of epidermal appendages (rather than the epidermis itself),

as in cartilage-hair hypoplasia (MIM 250250)8 or trichorhi-

nophalangeal syndrome (MIM 190350).9 Several osteocu-

taneous syndromes, such as trichodentoosseous syndrome

(MIM 190320),10 have been shown to affect more than two
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ectodermal appendages and, as such, should be considered

as ectodermal dysplasias.11

In the present study, we delineate themolecular basis for

a syndrome featuring severely short long bones, peculiar

faces associated with paucity of hair, and nail anoma-

lies.12 Specifically, we studied two highly consanguineous

Arab Muslim families comprising nine individuals affected

by a distinctive form of abnormal skeletal development.

The disorder was inherited in both families in an auto-

somal-recessive manner (Figure 1). Growth retardation

was evident on prenatal ultrasound as early as during

the second trimester of pregnancy. Affected individuals

reached a final stature consistent with a height age of

6–8 years (Figure 2A). Initially, head circumference was

elevated during early childhood but became markedly

low by adulthood. Psychomotor development was normal.

Facial dysmorphism included a long triangular face with a

prominent nose (Figure 2B). The affected family mem-

bers featured an unusual high-pitched voice, small ears,

clinodactyly of the fifth finger, brachydactyly, and hypo-

plastic distal phalanges and fingernails (Figure 2C) associ-

ated with postpubertal sparse and short hair (Figure 2D).

Typical skeletal findings included short and thick long

bones with mild irregular metaphyseal changes. Femoral

necks were short. The pelvis and sacrum were hypoplastic.
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Figure 1. Linkage and PCR-RFLP Analyses of Two Families Affected by SOFT Syndrome
The family trees appear in the upper panel (black symbols denote affected individuals carrying mutation c.512T>C in POC1A). Haplo-
type analysis with polymorphic markers in chromosomal region 3q21 is depicted in the middle panel and reveals a homozygous haplo-
type shared by all affected individuals (boxed in red). The lower panel depicts the PCR-RFLP (restriction fragment-length polymorphism)
analysis: the c.512T>C substitution generates a recognition site for BtgI. Thus, unaffected individuals display a single fragment of
353 bp, individuals affected with SOFT syndrome show two fragments of 200 and 175 bp, and all three fragments are found in hetero-
zygous carriers of the mutation.
All long bones of hands were short, showing a major delay

of carpal ossification, and cone-shaped epiphyses were

noted. Vertebral body ossification was also delayed, as

recently reported in more detail elsewhere.12

All affected and healthy family members or their legal

guardians provided written and informed consent accord-

ing to a protocol approved by our institutional review

board and by the Israel National Committee for Human

Genetic Studies in adherence to the Helsinki guidelines.

DNA was extracted from peripheral-blood lymphocytes.

Given the common origin of the two families, the

apparent rarity of the syndrome under study, and the

fact that the two families were characterized by a high

degree of consanguinity, we hypothesized that a founder

homozygous mutation underlies the disease in both fami-

lies. We therefore scrutinized the whole genome for homo-

zygosity regions shared by all affected individuals by using

the Illumina HumanLinkage-12 BeadChip (Illumina),

which contains ~6,000 tagged SNPs across the genome.

DNA (200 ng) was hybridized according to the Infinium II

assay (Illumina) and scanned with an Illumina BeadArray

reader. The scanned images were imported into BeadStudio

3.1.3.0 (Illumina) for extraction and quality control, and

there was an average call rate of 99.9%. The data were

then scanned for homozygous regions with the use of

aMatLab (MathWorks)-based software script.We identified

two chromosomal regions of homozygosity larger than

2 Mb, one in 4q11-4q11 (3.7 Mb; three consecutive

SNPs) and another in 3p21.1-3p21.31 (7.3 Mb; 14 consec-

utive SNPs). Polymorphic microsatellite or SNP markers
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spanning those two areas were selected from the GeneLoc

site. As previously described,13 we established genotypes

by PCR amplification of genomic DNA by using the BigDye

terminator system on an automated sequencer (ABI PRISM

3100 Genetic Analyzer; Applied Biosystems, Foster City,

CA, USA), andwe determined allele sizes withGeneMapper

v.4.0 software. Fine mapping of the disease-associated

interval with the use of microsatellite typing suggested

linkage to3p21.2-3p21.31 (Figure1) andexcluded theother

candidate locus on chromosome 4. Using the Superlink

software,14 we obtained a maximal LOD score of 3.91 at

marker D3S3561 (Figure S1, available online). Haplotype

analysis revealed critical recombinations in individuals

III-3 and II-2, setting the disease boundaries at markers

D3S1573 and rs2279323 (Figure 1). The 2.156 Mb interval

was found to contain 68 genes. Direct sequencing of 19

prominent candidate genes (Table S1) did not disclose any

pathogenic change.

DNA of individual III-1 was then used for whole-exome

capture and NextGen sequencing (see Table S2 for exome-

sequencing details). To this end, genomic DNA was sub-

jected to exome capture and sequencing (Otogenetics,

Norcross, GA, USA). After fragmentation (Covaris,

Woburn, MA, USA), DNA was tested for size distribution

and concentration with an Agilent Bioanalyzer 2100 and

Nanodrop. Illumina libraries were made from qualified

fragmented gDNA with NEBNext reagents (New England

Biolabs, Ipswich, MA, USA; catalog number E6040), and

the resulting libraries were subjected to exome enrichment

with NimbleGen SeqCap EZ Human Exome Library v.2.0
0, 2012



Figure 2. Clinical Features of SOFT Syndrome
(A) Affected individuals show a final height consistent with
a height age of 6–8 years.
(B) Affected individuals display typical facial features, including
a long triangular face with a prominent nose and small ears.
(C) Clinodactyly of the fifth finger, brachydactyly, and hypoplastic
fingernails are noted.
(D) Note sparse and short hair.
(Roche NimbleGen, Madison, WI, USA; catalog number

05860482001). Enriched libraries were tested for enrich-

ment by qPCR, as well as for size distribution and concen-

tration, by an Agilent Bioanalyzer 2100. The samples were

then sequenced on an Illumina HiSeq2000. The platform

provided by DNAnexus (DNAnexus, Mountain View, CA,

USA) was used for uploading and analyzing data for

quality, exome coverage, and exome-wide SNPs and indels.

Two mutations segregating with the disease phenotype

in both families were identified in the disease interval:

(1) c.694-3C>A in STAB1 (MIM 608560; RefSeq accession

number NM_015136.2) was predicted by Splice Site Predic-

tion by Neural Network to disrupt the intron 7 donor splice

site; and (2) c.512T>C in POC1A (RefSeq NM_015426.4)

(Figures 1 and 3A) was predicted to result in amino acid

substitution p.Leu171Pro. We then screened a panel of

300 population-matched healthy individuals. The c.694-

3C>A mutation in STAB1 was identified in three individ-

uals. In addition, we were unable to demonstrate aberrant

splicing of STAB1 in both peripheral leukocytes and skin

fibroblasts obtained from affected individual III-1 (not

shown), suggesting that the SOFT (short stature, onycho-

dysplasia, facial dysmorphism, and hypotrichosis) syn-

drome phenotype results from the c.512T>C mutation in
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POC1A. A number of facts further point to the pathoge-

nicity of the c.512T>C mutation: (1) c.512T>C in

POC1Awas not found in a series of 300 healthy individuals

of Arab Muslim origin; (2) PolyPhen-2, SIFT, and align-

GVGD predicted that the mutation would result in the

substitution of a highly conserved amino acid residue (Fig-

ure 3B and Figure S2) (ConSeq score¼ 7/9) and would have

a deleterious effect on protein (Table S3); and (3) a compar-

ative study of transcription profiles of fibroblasts obtained

from affected and healthy individuals with the use of the

HumanHT-12 v.3 Expression BeadChip Kit (Illumina)

revealed strong enrichment of biological networks and

functions that are associated with the cell cycle, also

known to be affected by defective POC1A function,15 as

well as connective tissue and dermatology disorders

(p values < 0.0005; Figure S3 and Table S4).

Two POC1 proteins, POC1A and POC1B, have been

described in humans, whereas in lower organisms, only

one Poc1 protein is present.15 POC1 proteins are well

conserved evolutionarily.16 They all contain an N-terminal

WD40 domain, which forms a seven-bladed b-propeller, as

well as a C-terminal coiled coil domain (Figure S2). They

are part of centrosomes and are required for basal body

and cilia formation. Some studies have suggested addi-

tional roles for POC1 proteins because they have been

identified in association with mitochondria in human

cells.15 Poc1 in lower organisms seems to play a dual role

by regulating centriole formation and being essential for

proper ciliogenesis.17

Given these data, we examined centrosome distribution

in skin fibroblasts derived from affected individuals. Stain-

ing with g-tubulin antibodies revealed that in the muta-

tion-carrying fibroblasts, there was a significantly higher

number of cells with an increased number of centrosomes

(Figures 4A and 4B). Using electron microscopy (Fig-

ure 4C), we found that compared with normal cells,

mutant cells had normal centrosome ultrastructure. Of

note is the fact that microtubule organization tested by

staining with b-tubulin did not present a gross change

(Figure S4).

It has been recently shown that centrosomal microtu-

bules are necessary for proper Golgi assembly.18 On the

other hand, a large number of osteocutaneous syndromes,

including autosomal-recessive cutis laxa type IIa (MIM

219200),19 gerodermia osteodysplastica,20 and MACS syn-

drome,6 have been shown to result from abnormal func-

tion of Golgi-related biological activities. Given that we

noted amplification of centrosome number accompanied

by centrosome disorganization in the mutant cells, we

wondered whether this could affect Golgi structure, as

well as centrosomal-microtubule-associated trafficking to

the Golgi. A significant fraction of POC1A-mutant fibro-

blasts presented dispersed cisternae stacks of Golgi, as visu-

alized by staining with the Golgi marker GM130 (Fig-

ure 5A). Although 78% of SOFT syndrome cells had

a dispersed abnormal Golgi, only 10% of control fibro-

blasts showed altered Golgi morphology (Figure 5B).
an Journal of Human Genetics 91, 337–342, August 10, 2012 339



Figure 3. Mutation Analysis
(A) Sequence analysis of POC1A reveals a homo-
zygous base substitution at cDNA position 512
(red arrow) in all affected individuals (lower
panel). Healthy family members were found to
be heterozygous carriers of the mutation (middle
panel). The wild-type sequence is given for com-
parison (upper panel).
(B) The mutation in POC1A is predicted to alter
a highly conserved amino acid residue as indi-
cated by conservation analysis made with the
ConSurf Server. The L171 residue is indicated by
a black arrow.
Wenext examined the functional efficacy of cellular traf-

ficking from the plasma membrane to the Golgi because

such trafficking depends on centrosome-derived microtu-

bules. For this purpose, we followed the transport of

subunit B of cholera toxin (CTx-B). The uptake of CTx-B,

which binds GM1 on the plasmamembrane, intomamma-

lian cells can be mediated by several endocytic mecha-

nisms.21,22 It does not recycle but reaches the Golgi, from

which it traffics to the cytoplasm through the endoplasmic

reticulum. To follow intracellular trafficking, we cultured

cells on coverslips coated with fibronectin and labeled

them with 0.5 mg/ml AlexaFluor 555-conjugated CTx-B at

37�C for either 1 hr or 3 hr. We then fixed and mounted

them for confocal microscopy. The results (Figures 5C

and 5D) showed that trafficking of the CTx-B from the

plasma membrane to the Golgi apparatus was significantly

altered in POC1A-mutant cells. Cholera toxin reached the

Golgi after 1 hr of internalization in normal fibroblasts,

whereas in POC1A-mutant cells, it accumulated in large
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peripheral vesicles in the cytosol. After

3 hr of pulse, CTx-B partially reached the

Golgi in mutant cells; however, positive-

CTx-B vesicles were still visible in their

cytosol.

In summary, the present report delineates

the molecular basis of a disproportionate-

short-stature syndrome that we termed

SOFT syndrome.12 We demonstrate that

a missense mutation in POC1A is associated

with arrested growth of bone and ecto-

dermal tissues and results in a severe form

of dwarfism together with facial dysmor-

phism, hypoplastic nails, and hypotricho-

sis. The substitution in centrosome-associ-

ated protein POC1A leads to centrosome

disorganization and an increase in centro-

some number, which is associated with

abnormal trafficking from the plasmamem-

brane to the Golgi. This abnormal transport

most likely reflects the aberrant distribution

of centrosome-associated microtubules,

which are important for proper assembly

of the Golgi stacks, as well as for normal
trafficking to the Golgi.18 These functional defects are in

line with a steadily expanding set of data suggesting an

association between various defects in Golgi-associated

proteins and syndromes featuring common bone and cuta-

neous abnormalities.6,19,23–25

Thus, through the study of a rare osteocutaneous

syndrome, we confirm in a human context previous data

attributing to POC1A an essential role in centrosome func-

tion, and we provide evidence for the importance of this

molecule in normal bone, hair, and nail formation.

Supplemental Data

Supplemental Data include four figures and four tables and can be

found with this article online at http://www.cell.com/AJHG.
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Figure 4. Centrosome Amplification
(A) Affected and healthy fibroblasts were fixed, stained for
g-tubulin (centrosomes) (Santa Cruz Biotechnology, Santa Cruz,
CA, USA or Sigma-Aldrich, Saint Louis, MO, USA), and visualized
by confocal microscopy. Nuclei were stained with DAPI. POC1A-
mutant cells show significant amplification of centrosomes
(>2/cell; arrows), which also appear to be in various shapes
(sand like). Scale bars represent 5 mm and 10 mm.
(B) The number of cells displaying an abnormal centrosome
number (>2/cell) and morphology was determined by the exami-
nation of 130–250 randomly chosen cells stained with g-tubulin
antibodies. Results are provided as a percentage of abnormal
cells out of the total number of cells counted 5 standard error
of the mean (SEM). Asterisks indicate statistical significance
(***p < 0.0001) as analyzed by the Student’s t test.
(C) Electron microscopic examination does not reveal significant
differences between the ultrastructural appearances of centrioles
(arrows) of affected and control cells. Scale bars represent 2 mm
and 200 nm.
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The URLs for data presented herein are as follows:

ArrayExpress, http://www.ebi.ac.uk/arrayexpress/

ConSurf Server, http://consurftest.tau.ac.il/

dbSNP, http://www.ncbi.nlm.nih.gov/SNP/

GenBank, http://www.ncbi.nlm.nih.gov/Genbank/

GeneLoc, http://genecards.weizmann.ac.il/geneloc/index.shtml

Online Mendelian Inheritance in Man (OMIM), http://www.

omim.org

Splice Site Prediction by Neural Network, http://www.fruitfly.org/

seq_tools/splice.html

Superlink, http://bioinfo.cs.technion.ac.il/superlink-online-

twoloci/makeped/TwoLociMultiPoint.html

UCSC Genome Browser, http://genome.ucsc.edu/
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Accession Numbers

The ArrayExpress accession number for the microarray data pre-

sented in the Supplemental Data is E-MEXP-3650.
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Figure 5. Altered Golgi Morphology and Aber-
rant Trafficking to the Golgi in SOFT Syndrome
Fibroblasts
(A) SOFT syndrome fibroblasts and control fibro-
blasts were fixed and stained with GM130 anti-
bodies (Sigma-Aldrich, Saint Louis, MO, USA).
Arrows point to dispersed Golgi. Scale bars repre-
sent 10 mm and 20 mm.
(B) Cells displaying a dispersed or typical perinu-
clear Golgi pattern were counted (150–250
randomly chosen cells stained with GM130 anti-
bodies were counted for each experiment).
Results are provided as a percentage of abnormal
cells out of the total number of cells counted 5
SEM. Asterisks indicate statistical significance
(***p< 0.0001) as analyzed by the Student’s t test.
(C) Cells were labeled with AlexaFluor 555-
conjugated subunit B of cholera toxin (CTx-B;
Invitrogen/Molecular Probes, Eugene, OR, USA)
for the indicated times, fixed, and visualized by
confocal microscopy. Arrows indicate normal
transport of CTx-B to the Golgi, and arrowheads
show atypical peripheral large vesicles represent-
ing abnormal CTx-B transport. The scale bar
represents 20 mm.
(D) Abnormal CTx-B trafficking was quan-
tified after 1 hr and 3 hr pulse in 40–85 ran-

domly chosen cells. Results are provided as a percentage of cells displaying abnormal transport out of the total number of cells
counted 5 SEM. Asterisks indicate statistical significance (***p < 0.0001) as analyzed by the Student’s t test.
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T., Willaert, A., Benmansour, A., De Paepe, A., and Verloes,

A. (2010). The RIN2 syndrome: A new autosomal recessive

connective tissue disorder caused by deficiency of Ras and

Rab interactor 2 (RIN2). Hum. Genet. 128, 79–88.

25. Morava, E., Guillard, M., Lefeber, D.J., and Wevers, R.A.

(2009). Autosomal recessive cutis laxa syndrome revisited.

Eur. J. Hum. Genet. 17, 1099–1110.
0, 2012


	Short Stature, Onychodysplasia, Facial Dysmorphism, and Hypotrichosis Syndrome Is Caused by a POC1A Mutation
	Supplemental Data
	Acknowledgments
	Web Resources
	Accession Numbers
	References


