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Optimal Unified Approach for Rare-Variant
Association Testing with Application to Small-Sample
Case-Control Whole-Exome Sequencing Studies

Seunggeun Lee,1 Mary J. Emond,2 Michael J. Bamshad,3,5 Kathleen C. Barnes,4 Mark J. Rieder,5

Deborah A. Nickerson,5 NHLBI GO Exome Sequencing Project—ESP Lung Project Team,9

David C. Christiani,6,7 Mark M. Wurfel,8 and Xihong Lin1,*

We propose in this paper a unified approach for testing the association between rare variants and phenotypes in sequencing association

studies. This approach maximizes power by adaptively using the data to optimally combine the burden test and the nonburden

sequence kernel association test (SKAT). Burden tests are more powerful when most variants in a region are causal and the effects are

in the same direction, whereas SKAT is more powerful when a large fraction of the variants in a region are noncausal or the effects of

causal variants are in different directions. The proposed unified test maintains the power in both scenarios. We show that the unified

test corresponds to the optimal test in an extended family of SKAT tests, which we refer to as SKAT-O. The second goal of this paper

is to develop a small-sample adjustment procedure for the proposed methods for the correction of conservative type I error rates of

SKAT family tests when the trait of interest is dichotomous and the sample size is small. Both small-sample-adjusted SKAT and the

optimal unified test (SKAT-O) are computationally efficient and can easily be applied to genome-wide sequencing association studies.

We evaluate the finite sample performance of the proposed methods using extensive simulation studies and illustrate their application

using the acute-lung-injury exome-sequencing data of the National Heart, Lung, and Blood Institute Exome Sequencing Project.
Introduction

Array-based genotyping technologies have been used

successfully in hundreds of genome-wide association

studies in the last few years for identifying over one

thousand common genetic variants associated with many

complex diseases. The recent advance of massively parallel

sequencing technologies1,2 has transformed human

genetic research. These emerging sequencing technologies

provide a richopportunity to study the association between

rare variants and complex traits. Rare variants, which have

minor allele frequencies (MAFs) of less than 0.01~0.05,

might play an important role in the etiology of complex

traits and account for missing heritability unexplained by

common variants.3,4 Several complex traits have been

found to be associated with rare variants.5–7

In recent years, significant efforts have been devoted

to developing powerful and computationally efficient

statistical methods for testing associations between rare

variants and complex traits. Single-variant tests are typi-

cally conducted to investigate associations of common

variants and phenotypes; however the same approach

has little power for testing for rare-variant effects because

of their low frequencies and large numbers. Instead, the

statistical development of rare-variant analysis has been

focused on testing cumulative effects of rare variants in
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genetic regions or SNP sets, such as genes. These tests can

be broadly classified as burden and nonburden tests.

Burden tests collapse rare variants in a genetic region

into a single burden variable and then regress the pheno-

type on the burden variable to test for the cumula-

tive effects of rare variants in the region. Examples of

the burden tests include the cohort allelic sum test,8 the

combined multivariate and collapsing method,9 and the

nonparametric weighted sum test (WST),10 which imposes

weights when collapsing rare variants. Several alternative

burden methods are largely based on the same ap-

proach.11–14 Because all burden tests implicitly assume

that all the rare variants in a region are causal and affect

the phenotype in the same direction with similar magni-

tudes, they suffer from a substantial loss of power when

these assumptions are violated.15,16

Kernel-based test methods, such as the sequence kernel

association test (SKAT),17 are nonburden tests. Instead of

aggregating variants, SKAT aggregates individual variant-

score test statistics with weights when SNP effects are

modeled linearly. More generally, SKAT aggregates the

associations between variants and the phenotype through

a kernel matrix and can allow for SNP-SNP interactions,

i.e., epistatic effects. SKAT is especially powerful when

a genetic region has both protective and deleterious vari-

ants or many noncausal variants. SKAT is derived as
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a variance-component test in the induced mixed models

wherein regression coefficients are assumed to be indepen-

dent and follow a distribution with the variance compo-

nent. SKAT efficiently calculates the p value analytically

for large samples; hence, it is computationally fast for

analyzing genome-wide sequencing association studies.

It has been shown that some nonburden tests15,18,19

constitute a special case of SKAT.16,17

Although SKAT provides attractive power andmakes few

assumptions about rare-variant effects, it has several limi-

tations. It can be less powerful than burden tests if a large

proportion of the rare variants in a region are truly causal

and influence the phenotype in the same direction.16,17

In addition, large-sample-based p value calculations,

which SKAT uses, can produce conservative type I errors

for small-sample case-control sequencing association

studies, which could lead to power loss.17,20 This is partic-

ularly an issue in current exome-sequencing studies, which

are often of small sizes.

This paper aims to address the limitations of burden

tests and SKAT and has two objectives. First, we propose

a unified test for rare-variant effects by using the data to

find the optimal linear combination of the burden test

and SKAT to maximize the power. We show that this

unified test belongs to an extended SKAT family by

allowing the correlation of the regression coefficients of

variants.21 We hence term this optimal unified test, which

is optimal in both scenarios, as SKAT-O. Specifically, using

the data, SKAT-O automatically behaves like the burden

test when the burden test is more powerful than SKAT,

and behaves like SKAT when the SKAT is more powerful

than the burden test.

The second objective of this paper is to improve

the performance of SKAT and SKAT-O in small-sample

case-control sequencing association studies. The original

SKAT test has been found to be conservative for small

samples.17,20 In this paper, we develop an analytic adjust-

ment method for SKATand SKAT-O by precisely estimating

the small-sample variance and kurtosis. This allows us to

precisely calculate the reference distribution for a small

sample, thereby properly controlling the type I error.

This is motivated by the fact that many of the current

exome-sequencing studies, such as those in the National

Heart, Lung, and Blood Institute (NHLBI) Exome

Sequencing Project (ESP), have small sample sizes; e.g.,

the acute lung injury (ALI) exome-sequencing data that

are discussed in this paper have 88 subjects and the chronic

Pseudomonas aeruginosa infection exome-sequencing data

have 91 subjects.22 The proposed small-sample adjustment

method is computationally fast and can be effectively

applied to whole-exome and whole-genome sequencing

studies.

Using extensive simulations and analysis of the ALI

exome-sequencing data of the NHLBI Lung Grand Oppor-

tunity (GO) ESP, we demonstrate that the small-sample-

adjusted unified test (SKAT-O) has proper type I error rates

for small-sample sequencing association studies, has
The Americ
higher power in a wide range of settings, and is more

robust than SKAT and the burden tests.
Material and Methods

For simplicity, we assume that we are interested in testing the

association between rare variants in a region, e.g., a gene, and

a complex trait. For whole-exome and whole-genome sequencing

studies, the samemethod can be applied to one gene or one region

at a time and then adjusted for multiple comparisons with the

user’s method of choice. For whole-genome sequencing studies,

one can consider analysis of one window of the same size, e.g.,

10 kb, at a time using themoving-window approach or of different

sizes, using haplotype blocks.

Sequence Kernel Association Test
Assume n subjects are sequenced in a region, e.g., a gene, that

has m variants. For the ith subject, let yi denote a dichotomous

phenotype, Gi ¼ ðgi1;.; gimÞ0 the genotypes of the m variants

ðgij ¼ 0;1;2Þ, and Xi ¼ ðxi1;.; xisÞ0 the covariates. Without loss

of generosity, we assume an additive genetic model and a binary

trait. Results are similar for quantitative traits. To relate genotypes

to a dichotomous phenotype, we consider the logistic regression

model

logitðpiÞ ¼ g0 þX0
ig1 þG0

ib; (Equation 1)

where pi is the disease probability, g1 is an s31 vector of regression

coefficients of covariates, and b ¼ ðb1;.; bmÞ0 is an m31 vector of

regression coefficients of genetic variants. The standard m degrees

of freedom (df) test for no genetic association, H0: b ¼ 0, has little

statistical power when m is large. Several approaches have been

proposed to reduce the df and increase analysis power. Two classes

of tests have been proposed: burden and nonburden tests.

Burden tests treat the b
0
j s as the same up to a weight function;

i.e., bj ¼ wjbc, where wj is a weight function that may depend on

properties of the jth variant. For example, one can assume wj to

be a function of MAF. Then Equation 1 becomes

logitðpiÞ ¼ g0 þX
0
ig1 þ bc

(Xm
j¼1

wjgij

)
; (Equation 2)

and the association between them genetic variants and a dichoto-

mous trait can be tested using a one-df test for H0: bc ¼ 0. Supposebpi is the estimated probability of yi under the null hypothesis; i.e.,bpi is calculated by fitting the null model

logitðpiÞ ¼ g0 þX0
ig1: (Equation 3)

Then the burden score statistic for testing H0 : bc ¼ 0 is

QB ¼
"Xn

i¼1

�
yi � bpi

� Xm
j¼1

wjgij

!#2
; (Equation 4)

which asymptotically follows scaled c2
1 under the null hypothesis.

This weighted burden test is equivalent to theWSTof Madsen and

Browning10 and Han and Pan,13 wherein Madsen and Browning10

assumed wj ¼ 1
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~pjð1� ~pjÞ
q

, where ~pj is the estimated MAF for

SNP j using controls. When all wj are the same and analysis is

restricted to rare variants, e.g., the variants with MAF < 5%, QB

is equivalent to the Morris and Zeggini test.12 The key limitation

of the weighted burden test is that it assumes all rare variants in
an Journal of Human Genetics 91, 224–237, August 10, 2012 225



the region are causal and are associated with the trait in the same

direction with the same magnitude after weighting, and thus the

presence of both protective and deleterious variants or a large

number of noncausal variants would substantially reduce its statis-

tical power.

SKAT,17 which includes the C-alpha test15 and the SSU test18 as

a special case, is a nonburden test. SKAT assumes that the bj in

Equation 1 are independent and follow an arbitrary distribution

with mean 0 and variance w2
j t. The null hypothesis H0 : b ¼ 0 in

the model in Equation 1 is equivalent to the hypothesis

H0 : t ¼ 0. Hence, SKAT is a variance-component test under the

induced logistic mixed model.23 Specifically, under the logistic

model (Equation 1), the SKAT statistic can be written as

QS ¼ ðy� bpÞ0Kðy� bpÞ; (Equation 5)

where bp ¼ ðbp1;.; bpnÞ0 is a vector of the estimated probability of

y under the null model (Equation 3), and K ¼ GWWG0 is an

n3n kernel matrix, where G ¼ ðG1;.GnÞ0 is an n3m genotype

matrix, and W ¼ diagðw1;.;wmÞ is an m3m diagonal weight

matrix. The SKAT statistic QS can be simplified as the weighted

sum of the individual SNP score statistics as

QS ¼
Xm
j¼1

w2
j S

2
j ¼

Xm
j¼1

w2
j

(Xn
i¼1

gij
�
yi � bpi

�)2

; (Equation 6)

where Sj ¼
Pn

i¼1gijðyi � bpiÞ is the score statistic for testing

H0 : bj ¼ 0 in the single-SNP model with only the jth SNP,

logitðpiÞ ¼ g0 þX0
igþ gijbj:

Note that the notation of the weights wj here is slightly different

from that of Wu et al.17 Our w2
j here was denoted as wj in Wu

et al.17Wemodified the notation in this paper to allow for a simple

notation for the burden test.

The weight wj can be flexibly chosen using the observed data,

such as a function of MAF, or external information, such as

a PolyPhen or SIFT score.24,25 For example, the beta density

function of MAF can be used as a weight function in which

wj ¼ Betaðpj; a1; a2Þ, where pj is the estimated MAF for SNP j using

all cases and controls, and the parameters a1 and a2 are prespeci-

fied. The SKAT test statistic QS asymptotically follows a mixture

of chi-square distributions.17 For large samples, the p value of

SKAT can be quickly and accurately calculated by either matching

the moments or inverting the characteristic function.26–28

A comparison of the burden statistic QB in Equation 4 and the

SKAT statistic QS in Equation 6 shows that the burden test aggre-

gates the variants first before performing regression, whereas

SKAT aggregates individual variant-test statistics. Hence, SKAT is

robust to the mixed signs of bs and a large fraction of noncausal

variants.
Optimal Unified Association Test
The foregoing discussions suggest that burden tests are not power-

ful when the target region has many noncausal variants or when

causal variants have different directions of association, whereas

SKAT is powerful in these situations.17 However, if the target

region has a high proportion of causal variants with the effects

in the same direction, burden tests can be more powerful than

SKAT. Because such prior biological knowledge is often unknown,

and the underlying genetic mechanisms vary from one gene to

another across the genome, the development of a test that is

optimal for both scenarios in whole-exome and whole-genome
226 The American Journal of Human Genetics 91, 224–237, August 1
sequencing studies is of substantial interest. Here, we propose

a unified test that includes burden tests and SKAT in one frame-

work. In particular, the test statistic of the proposed unified test is

Qr ¼ rQB þ ð1� rÞQS; 0%r%1; (Equation 7)

which is a weighted average of SKAT and burden-test

statistics. One can easily see that the unified test reduces to

SKAT when r ¼ 0 and to the burden test when r ¼ 1 ; i.e, the

class of tests Qr ð0%r%1Þ includes the burden test and SKAT as

special cases. One can further show that the unified test (Equa-

tion 7) is equivalent to the generalized SKAT test,21 derived as

the variance component score statistic assuming the regression

coefficients bj in Equation 1 follow an arbitrary distribution with

mean 0 and variance w2
j t and pairwise correlation r between

different bj s as

Qr ¼ ðy� bpÞ0Krðy� bpÞ; (Equation 8)

where Kr ¼ GWRrWG0 is an n3n kernel matrix, Rr ¼
ð1� rÞIþ r1 1 0 is an m3m compound symmetric matrix, and

1 ¼ ð1;.1Þ0. This implies that the weight r in Equation 7 can

be interpreted as the correlation of the regression coefficients bj s

ðj ¼ 1;.;mÞ. If the regression coefficients bj are perfectly corre-

lated ðr ¼ 1Þ, they will be all the same after weighting, and one

should collapse the variants first before running regression, i.e.,

using the burden test. If the regression coefficients are unrelated

to each other, one should use SKAT.

In practice, the optimal weight r is unknown and needs to be

estimated from the data to maximize the power. Lee et al.21

proposed the optimal-test procedure for the generalized SKAT,

which selects the weight r to maximize the power. It follows

that the optimal unified test can be calculated as

Qoptimal ¼ min
0%r%1

pr; (Equation 9)

where pr is the p value computed on the basis of a given r. The

optimal-unified-test statistic can be easily obtained through the

simple grid search: set a grid 0 ¼ r1 < r2 < . < rb ¼ 1, then

Qoptimal ¼ min
n
pr1 ;.; prb

o
:

For large samples, Lee et al.21 showed that for a given r, each test

statisticQr can be decomposed into a mixture of two random vari-

ables; one asymptotically follows a chi-square distribution with

one df, and the other can be asymptotically approximated to

a mixture of chi-square distributions with a proper adjustment.

Hence, the p value of Qoptimal can be quickly obtained analytically

with the use of a one-dimensional numerical integration.We term

the optimal unified test as SKAT-O in view of the fact that it is an

optimal test in the generalized SKAT family.
Small-Sample Optimal Unified Test
One of the key strengths of SKAT and SKAT-O over the other

competing methods is their ability to efficiently compute asymp-

totic p values without the need for resampling; also, it is easy to

adjust for covariates. This is particularly advantageous in whole-

genome and whole-exome sequencing studies wherein a large

number of tests are performed and one needs to control for

multiple comparisons and account for population stratification.

However, when the trait is binary and sample sizes are small,

e.g., hundreds of subjects, the large-sample-based p value calcula-

tions in Wu et al.17 and Lee et al.21 have been found to produce
0, 2012



conservative results, which can lead to incorrect type I error

control and power loss.17,20,21

As most current whole-exome sequencing studies, such as those

of the NHLBI ESP, have small sample sizes, there is a pressing need

to develop a method that works well for small samples. We

propose in this section small-sample-adjusted p value calculations

for SKAT and SKAT-O.

We first consider p value calculations for SKAT when sample

sizes are small. When variants are rare, and the genotype matrix

G is sparse, the small-sample variance of QS is much smaller

than the asymptotic variance. Hence, we readjust the moments

of the null distribution of QS. Suppose QS was obtained with

known p. Denote this with D ¼ diagfpið1� piÞg, where pi is the

probability of being a case under the null. Let ~K ¼ D1=2KD1=2,

L ¼ diagfl1;.; lqg be a diagonalmatrix of ordered nonzero eigen-

values, U ¼ ½u1;.uq� be an n3q eigenvector matrix of ~K, and uij
be the ith element of uj. In Appendix A, we show that the small-

sample mean and variance of SKAT under the null hypothesis are

E½QS jU;L;p� ¼
Xq
j¼1

lj and Var½QS jU;L;p� ¼
Xq

j¼1;k¼1

ljlkcjk;

(Equation 10)
where

cjk ¼
Xn
i¼1

u2
iju

2
ik

�
3p2

i � 3pi þ 1
�

pið1� piÞ þ
Xn
i1si2

u2
i1 j
u2
i2k

þ 2
Xn
i1si2

ui1 jui2 jui1kui2k � 1:

A comparison of these results with those in Wu et al.17 shows

that the small-sample mean of Qs is the same as the asymptotic

mean of QS, but the small-sample variance differs from the asymp-

totic variance.With the use of the estimatedmoments, the p value

can then be calculated as

1� F

 �
QS � mQ

� ffiffiffiffiffiffiffiffi
2df

pffiffiffiffiffiffi
vQ

p þ df jc2
df

!
; (Equation 11)

where Fð$jc2
df Þ is the distribution function of c2

df , and

mQ ¼
Xq
j¼1

lj; vQ ¼
Xq
i;j¼1

liljbcij; and df ¼

 Pq
j¼1

l�2j

!2
Pq
j¼1

l�4j

;

and l�j ¼ ljbcjj= ffiffiffi
2

p
. bcjk is an estimated cjk with bp. We can apply the

same approach to SKAT-O; details are shown in Appendix B.

Note that the results here do not restrict the kernel matrix K to

be the linear weighted kernel. This proposed small-sample adjust-

ment procedure can be used for all types of kernelmatrices, such as

identity-by-state (IBS) and IBS-weighted kernels17,29
Small-Sample SKAT and Unified Test with Higher

Moments Adjustments
In the previous section, we adjusted the asymptotic null distribu-

tion of QS and Qoptimal using the small-sample variance of QS and

Qoptimal. If the sample size is very small, e.g., n ¼ 88 in the ALI

whole-exome sequencing data, this approach may not be accurate

enough to correct small-sample type I error rates. We thus need to

adjust for higher moments, especially kurtosis. Unfortunately,

deriving the analytical formula of the kurtosis of QS is a daunting

task. Hence, we propose a practical approach in which the kurtosis

is estimated through a resampling method. When there is no

covariate, the kurtosis of the null distribution of QS can be esti-
The Americ
mated from B permutation samples of phenotypes, and then the

estimated kurtosis can be used to calculate the df parameter in

Equation 11.

Specifically, suppose Q�
s;b ðb ¼ 1;.;BÞ is the SKAT test statistic

from the permutation sample y�
b. The sample kurtosis is

bg ¼ bm4bs4
� 3;

where

bm4 ¼ 1

B

XB
b¼1

�
Q�

s;b � mQ

�4
; and bs2 ¼ 1

B

XB
b¼1

�
Q�

s;b � mQ

�2
:

The df of the mixture of the chi-square distribution ðdf Þ in

Equation 11 is modified as

df ¼ 12bg ;

and the p values can be calculated with Equation 11.

When there are covariates to adjust for, the simple permuta-

tion method cannot be used. Instead, we propose to generate

resampled phenotypes from the parametric bootstrap.30 We first

estimate pi under the null model and use it to generate y�
b with

the same number of cases and controls.

It should be noted that our method has a computation-time

advantage over calculating p values on the basis of permutations

or bootstrap samples that are obtained as a proportion ofQ�
s;b larger

than QS. For whole-exome sequencing studies, one needs to calcu-

late p values at the 10�5–10�6 level to account for multiple

comparison adjustments for performing tests for 20,000 genes.

This requires more than 107–108 permutations or bootstraps for

each gene. However, our approach requires sampling phenotypes

under the null model only 10,000 times to obtain stable estimates

of the higher moments. Note that the null model is the same

across different genes, and hence the same resampled bootstrap

phenotypes under the null model can be used for all the genes

across the genome. Hence, we can save a substantial amount of

computation time.
Numerical Simulations
We conducted extensive simulation studies to evaluate the

performance of the proposed methods for binary traits when

sample sizes are small. We generated sequence data of European

ancestry from 10,000 chromosomes over 1 Mb regions using the

calibrated coalescent model.31 We randomly selected regions

with lengths of 3 kb and tested for associations in all simulation

settings.

Type I Error Simulations

We first generated data sets under the null model to evaluate

the type I error control of the proposed methods. Dichotomous

phenotypes with 50% cases and 50% controls were generated

from the null logistic regression model

logitðpiÞ ¼ g0 þ 0:5X1i þ 0:5X2i;

whereX1 was a continuous covariate fromNð0;1Þ, X2 was a binary

covariate from Bernoullið0:5Þ, and g0 was chosen to create a trait

prevalence of 0.01 under the null hypothesis. We applied six

different methods to each of the randomly selected 3 kb regions:

(1) counting-based burden test (N); (2) weighted burden test

(W); (3) SKATwithout small-sample adjustment (SKAT); (4) unified

test without small-sample adjustment (SKAT-O); (5) small-sample-

adjusted SKAT (adjusted SKAT); and (6) small-sample-adjusted

unified test (adjusted SKAT-O).
an Journal of Human Genetics 91, 224–237, August 10, 2012 227



Table 1. Simulation Studies of Type I Error Estimates of Four
Different Methods of Testing an Association between Randomly
Selected 3 kb Regions with Dichotomous Traits at Stringent
a Levels a ¼ 10�3, 10�4, and 2.5310�6.

a SKAT SKAT-O
Adjusted
SKAT

Adjusted
SKAT-O

Sample Size ¼ 200

10�3 1.84 3 10�4 5.03 3 10�4 1.13 3 10�3 1.24 3 10�3

10�4 5.30 3 10�6 3.20 3 10�5 1.01 3 10�4 1.04 3 10�4

2.5 3 10�6 1.00 3 10�7 3.00 3 10�7 3.20 3 10�6 2.50 3 10�6

Sample Size ¼ 500

10�3 5.17 3 10�4 8.14 3 10�4 1.12 3 10�3 1.16 3 10�3

10�4 2.95 3 10�5 7.13 3 10�5 1.14 3 10�4 1.12 3 10�4

2.5 3 10�6 1.00 3 10�7 1.00 3 10�6 2.50 3 10�6 2.30 3 10�6

Sample Size ¼ 1,000

10�3 7.22 3 10�4 1.00 3 10�3 1.09 3 10�3 1.12 3 10�3

10�4 5.59 3 10�5 1.02 3 10�4 1.22 3 10�4 1.19 3 10�4

2.5 3 10�6 1.00 3 10�6 2.80 3 10�6 3.20 3 10�6 3.10 3 10�6

Each entry represents type I error rate estimates as the proportion of p values
smaller than a under the null hypothesis based on 107 simulated phenotypes.
For all methods except N, Betað1;25Þ weights were used to

upweight rarer variants. For N, we used flat weights and restricted

variants with observed MAF < 0:03. For both N and W, the

likelihood-ratio test was used to compute p values. The p values

of the optimal unified tests were computed using the 11 points

of equal-sized grids search of r from 0 to 1. For adjusted SKAT

and adjusted SKAT-O, the sample kurtosis was estimated from

10,000 bootstrapped phenotype sets. Three different total sample

sizes (n¼ 200, 500, and 1,000) were considered, with 10,000 simu-

lated data sets for each sample size.

To investigate type I error rates in the SKAT family tests when

the a level is set at a level for exome-wide testing, we conducted

simulations with slightly different settings. In order to reduce

the computational burden, we first generated 20,000 genotype

sets of randomly selected regions, and we then generated 500

phenotype sets for each genotype set. A total of 107 phenotypes

were generated, and type I error rates were estimated by the

proportion of p values smaller than the given a level.

Power Simulations

To evaluate the power of the proposed unified tests and their

small-sample adjustments relative to the competing methods,

we simulated data sets under the alternative model. As with the

type I error simulations, we randomly selected 3 kb regions from

a broader 1 Mb region, but we then randomly chose causal

variants from the rare variants with true MAF < 0:03. The dichot-

omous phenotypes with 50% cases and 50% controls were simu-

lated from

logitðpiÞ ¼ g0 þ 0:5Xi1 þ 0:5Xi2 þ b1gi1 þ/þ bsgis;

where ðg1;/; gsÞ were selected causal variants. Covariates X1 and

X2 followed the same distribution as in the type I error simulation,

and g0 was chosen to set the disease prevalence as 0.01 under the

null hypothesis.

To study the effects of varying proportions of variants being

causal variants, we considered three different settings, in which

10%, 20%, and 50% of the rare variants were causal variants. For

each setting, we considered three different sign configurations of

the nonzero bs: all bj s were positive, 80% of bj s were positive,

and 50% of bj s were positive. We used
��bj�� ¼ cjlog10ðpjÞj=2, where

pj was the MAF of the jth variant. When 10% of the rare variants

were causal, c ¼ logð7Þ, which gives an odds ratio equal to 7 for

a variant with MAF ¼ 0.01. When 20% and 50% of the rare vari-

ants were causal variants, c ¼ logð5Þ and logð2:5Þ, respectively;

therefore, the powers would not be too close to 1, and we can

distinguish the powers of different methods. For each setting,

1,000 data sets were generated, and the power was estimated as

the proportion of p values smaller than a given a level.
The NHLBI ALI Exome-Sequencing Data
The ALI whole-exome sequencing data were part of the Lung GO

of the NLBLI ESP. We performed exome sequencing of 88 in-

dividuals with ALI32 selected from the extremes of the severity

spectrum. Individuals with ALI and severe hypoxemia (ratio of

partial pressure of arterial oxygen to fraction of inspired oxygen

< 200) were enrolled from the intensive care unit at theMassachu-

setts General Hospital. Those with very high or very low ‘‘venti-

lator-free days’’ (VFD), a composite variable measuring the degree

of dependence on mechanical ventilation in the first 28 days

of hospital admission,33 were selected for sequencing. Exome

sequencing was completed on 88 subjects (n ¼ 43 high severity

ALI [VFD < 2], n ¼ 45 low severity ALI [VFD < 24]) at the North-
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west Genomics Center at the University of Washington. This

study was approved by the institutional review boards of the

Massachusetts General Hospital, the Harvard School of Public

Health, and the University of Washington.

The Genome Analysis Toolkit (GATK) of the Broad Institute was

used for calling SNP variants,34 and approximately 130,000 SNP

variants on 17,755 genes were identified. We subsequently filtered

out variants with high missing rates (missing rate > 0:1) and low

quality-control scores using GATK, i.e, keeping variants with

Qual < 30, QD < 5, AB > 0.75 or SB > �0.10, and % of

missing < 10 %. This yielded a total of 106,736 variants.

For SKAT and the unified test (SKAT-O), we used all the variants.

For the weighted burden test (W) and the counting-based burden

test (N), because of the very small sample size, we usedMAF< 0.05

as the criterion for defining rare variants to be included in the

analysis. Any genes with fewer than four rare variants with

MAF < 0.05 were excluded from the analysis, as these genes

have little information about association with the phenotype

given the small sample size. A total of 6,488 genes remained for

analysis. All six methods discussed in the simulation study were

applied to the data. The first two principal components calculated

with EIGENSOFT35 from all 106,736 variants were used as covari-

ates for adjustment of possible population stratification.
Results

Type I Error Simulation Results

To investigate the type I error rates with exome-wide

a levels, we generated 107 data sets. The results are given

in Table 1. Three different a ¼ 10�3; 10�4, and 2:5310�6

levels were considered. Note that a ¼ 2:5310�6 is Bonfer-

roni-adjusted level a ¼ 0:05 when simultaneously testing

20,000 genes. Table 1 clearly shows that the unadjusted

SKAT and unified test (SKAT-O) had substantially deflated
0, 2012



type I error rates for small sample sizes. The unified test

(SKAT-O) was less conservative than SKAT and had correct

type I error control when the sample size was 1,000. Both

the proposed small-sample-adjusted SKAT and the unified

test (adjusted SKAT and adjusted SKAT-O) performed

much better than their unadjusted counterparts in small

samples. They controlled type I error rates accurately

over all sample sizes and all significance levels. We also

evaluated the type I error rates of the burden tests and

SKAT and SKAT-O tests at a ¼ 0:05 using 10,000 simulated

data sets (Table S1 available online), and the results agreed

with Table 1. Overall, our type I error simulation results

confirm empirically that the proposed small-sample

adjustment methods accurately control type I error rates.

Power Simulation Results

We compared the powers for the burden tests, SKAT, and

the unified test (SKAT-O) and their small-sample adjust-

ments, i.e., all of the six methods considered in the

type I error simulations. The number of observed variants

is given in Table S2. On average, depending on sample

sizes, 20 to 40 variants were observed in each region. We

first considered the scenario that all causal variants were

deleterious variants, i.e., that the effects of the causal

variants were all in the same direction. Figure 1 reports

that by properly controlling the type I error, the small-

sample-adjusted SKAT (adjusted SKAT) was more powerful

than SKAT in every configuration, and the power gap was

large when the sample size was small or when the signi-

ficance level was small. The power for SKAT-O and its

small-sample adjustment (adjusted SKAT-O) showed a

similar pattern. Between the two burden tests, W was

more powerful than N for these simulation configurations,

suggesting that proper weighting can increase power.

When only 10% of the rare variants were causal,

adjusted SKATwas themost powerful test. The burden tests

had the substantially lowest power, indicating that burden

tests are not powerful in the presence of a large fraction of

noncausal variants. When the proportion of causal rare

variants increased, the burden tests performed better.

When 50% of the rare variants were causal, the burden

tests had a higher power than adjusted SKAT.

The optimal unified tests (SKAT-O and adjusted SKAT-O)

consistently performed very well in both settings above.

They behaved like SKAT when SKAT was more powerful

than the burden tests, and they behaved like burden tests

when the burden tests were more powerful than SKAT.

Adjusted SKAT-O outperformed its unadjusted counterpart

(SKAT-O), especially when sample sizes were small, e.g.,

n ¼ 200. When 20% of rare variants were causal, adjusted

SKAT-O was the most powerful test.

We next performed simulations in which 20%/80% and

50%/50% of causal variants were protective/deleterious

variants (Figures 2 and 3). The same odds-ratio functions

from above were used. Similar to the case wherein all

causal variants were deleterious (Figure 1), adjusted SKAT

had higher power than SKAT, and adjusted SKAT-O had
The Americ
higher power than its unadjusted counterpart (SKAT-O).

The presence of mixed protective and deleterious variants

substantially reduced the powers of burden tests, because

the effects of the causal variants canceled out. With 50%/

50% of the causal variants being protective/deleterious,

the powers of the burden tests were less than half those

of SKAT and its small-sample adjustment. The optimal

unified test behaved similarly to SKAT but had better

power than SKAT and the burden test when 50% of the

rare variants were causal and 50%/50% of the causal vari-

ants were protective/deleterious. Small-sample adjustment

for both SKAT and the unified test improved the power. All

tests had lower power relative to the situation in which all

causal variants were deleterious (Figure 1). This is because

for the given low prevalence, the presence of protective

variants resulted in fewer causal variants selected into the

case-control sample (Table S3).

We present the optimal r values estimated by adjusted

SKAT-O in Figure S5. It shows that SKAT-O generally

selects large r values when the percentage of causal vari-

ants is high and all causal variants are deleterious, and

selects small rs when either the percentage of causal vari-

ants is low or some causal variants are protective. The

estimated optimal r varies between different data sets as

it accounts for sampling variation. We also conducted

additional simulations for the extreme situation in which

all rare variants in a region were causal and deleterious

(Figure S6). In this scenario, the theoretical optimal

r ¼ 1. As expected, W has the highest power. The adjusted

SKAT-O has a slightly smaller power than W, because it

assumes r is unknown and searches for the optimal r in

[0,1]. However, the power gap between W and adjusted

SKAT-O is small.

The power simulation results show that the optimal

unified test (SKAT-O) is robust to the proportion of rare

variants that are causal and to the directions of the causal

variant effects (relative to the other tests), it performs very

well in a wide range of situations, and it outperforms SKAT

and the burden tests. The proposed small-sample adjust-

ment increases the power by properly controlling for

type I error rate, especially when the sample size is small

or a is very small.

Analysis of the NHLBI ALI Exome-Sequencing Data

We applied the six methods used in the simulation studies

(burden tests, SKAT, the unified test [SKAT-O], and their

small-sample adjustments) to analysis of the NHLBI ALI

exome-sequencing data of 88 subjects to identify genes

associated with ALI severity. We restricted our analysis

to the genes with at least four variants with MAFs < 0.05.

A total of 6,488 genes were analyzed (see Material and

Methods).

Figure 4 gives the quantile-quantile (Q-Q) plots of the

pvalues calculatedwith theuseof all the sixmethods.Given

the small sample size, no p value achieved the Bonferroni-

adjusted genome-wide significance of a ¼ 7:7310�6. The

Q-Q plots of the unadjusted SKAT and unified test
an Journal of Human Genetics 91, 224–237, August 10, 2012 229
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Figure 1. Power Estimates for the Six Competing Methods when All Causal Variants Were Deleterious
Empirical power of the six methods for randomly selected 3 kb regions wherein all causal variants were deleterious. From top to bottom,
the plots consider the significance levels 0.01, 10�3, and 2:5310�6, respectively. From left to right, the plots consider settings in which
10% of rare variants were causal, 20% of rare variants were causal, and 50% of rare variants were causal, respectively. For causal variants,
we assumed

��bj�� ¼ cjlog10ðpjÞj=2, where pj was the MAF of the jth variant. A different c was used for the three panels from left to right:
c ¼ logð7Þ; logð5Þ; logð2:5Þ for the percentage of causal variants being 10%, 20%, and 50% respectively. Hence, the powers between
the three panels from left to right are not comparable. Total sample sizes considered were 200, 500, and 1,000, and half were cases in
case-control studies.
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Figure 2. Power Estimates for the Six Competing Methods when 20%/80% of Causal Variants Were Protective/Deleterious
Empirical power of the six methods for randomly selected 3 kb regions wherein 20%/80% of causal variants were protective/deleterious.
From top to bottom, the plots consider the significance levels 0.01, 10�3, and 2:5310�6, respectively. From left to right, the plots
consider settings in which 10% of rare variants were causal, 20% of rare variants were causal, and 50%of rare variants were causal, respec-
tively. For causal variants, we assumed

��bj�� ¼ cjlog10ðpjÞj=2, where pj was the MAF of the jth variant. A different c was used for the three
panels from the left to the right: c ¼ logð7Þ; logð5Þ; logð2:5Þ for the percentage of causal variants being 10%, 20%, and 50% respectively.
Hence, the powers between the three panels from left to right are not comparable. Total sample sizes considered were 200, 500, and
1,000, and half were cases in case-control studies.
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Figure 3. Power Estimates for the Six Competing Methods when 50%/50% of Causal Variants Were Protective/Deleterious
Empirical power of the six methods for randomly selected 3 kb regions wherein 50%/50% of causal variants were protective/deleterious.
From top to bottom, the plots consider the significance levels 0.01, 10�3, and 2:5310�6, respectively. From left to right, the plots
consider settings in which 10% of rare variants were causal, 20% of rare variants were causal, and 50%of rare variants were causal, respec-
tively. For causal variants, we assumed

��bj�� ¼ cjlog10ðpjÞj=2, where pj was the MAF of the jth variant. A different c was used for the three
panels from left to right: c ¼ logð7Þ; logð5Þ; logð2:5Þ for the percentage of causal variants being 10%, 20%, and 50%. Hence, the powers
between the three panels from left to right are not comparable. Total sample sizes considered were 200, 500, and 1,000, and half were
cases in case-control studies.
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Figure 4. Analysis of the ALI Exome-
Sequence Data
�log10 Q-Q plots of observed versus ex-
pected p values for the ALI exome-
sequence data for the six methods: burden
tests (N and W), SKAT, SKAT-O, adjusted
SKAT, and adjusted SKAT-O. The x axis
represents �log10 expected p values, and
the y axis represents �log10 observed
p values. A total of 6,488 genes with at
least four rare variants were tested for asso-
ciations with ALI severity.
(SKAT-O) were skewed downward, suggesting these tests

were conservative. Interestingly, the Q-Q plots of the

burden tests had a slightly anticonservative pattern. The

Q-Q plots of the small-sample-adjusted SKAT and unified

test (adjusted SKAT-O) were close to the 45 degree line,

suggesting that the proposed small-sample adjustment

methods worked well and properly controlled type I error

rates. There were eight genes with p values < 10�3 by the

adjusted SKAT-O. A total of 741 genes had the estimated

optimal r values between 0.1 and 0.9.

We next restricted our analysis to the functional

variants that are missense, nonsense, and splicing sites.

Similar to the first analysis, we only considered genes that

have at least four functional variants with MAF < 0.05.
The American Journal of Human Ge
A total of 2,939 genes were used in

the analysis. The Q-Q plots of the six

methods are given in Figure S1. The

patterns of these Q-Q plots are similar

to those in Figure 4. There were five

genes with p values < 10�3 by the

adjusted SKAT-O. Myosin light chain

kinase (MYLK [MIM 600922]), a

gene that was previously found to

be associated with susceptibility to

ALI,36,37 was the second-most signifi-

cant in the adjusted SKAT analysis

and the fourth-most significant in

the adjusted SKAT-O analysis.

We compared the p values ob-

tained using small-sample-adjusted

SKAT (adjusted SKAT) and the adjusted

optimal unified test (adjusted SKAT-O)

with those obtained using the burden

test (W) (Figure S2). These compari-

sons show that the p values obtained

with adjusted SKAT and W are quite

different from each other, indicating

that these two tests evaluate dif-

ferent aspects of association patterns.

In contrast, the p values obtained

with adjusted SKAT-O were more

highly correlated with those obtained

with either adjusted SKAT or W as

p values declined, consistent with
the expectation that the optimal unified test uses the data

to adaptively choose an optimal test to maximize power.

Discussion

In this paper, we present a unified rare-variant test frame-

work that includes both burden tests and the nonburden

SKAT as special cases. The proposed optimal unified test

(SKAT-O) procedure uses the data to adaptively select the

best linear combination of the burden test and SKAT to

maximize test power. Similar to SKAT, the proposed

SKAT-O is computationally efficient and easily adjusts for

covariates such as age, gender, and principal components

for population stratifications. We show in simulation
netics 91, 224–237, August 10, 2012 233



studies that SKAT and burden tests can both lose power

when underlying assumptions are violated. However, the

optimal unified test SKAT-O is more robust in a wide range

of the circumstances we have considered. In the SKAT

package, we also provide power and sample-size calcula-

tions using SKAT, SKAT-O, and their small-sample adjust-

ments to help investigators design sequencing-association

studies.

In whole-exome or whole-genome sequencing studies,

one would expect that some genes or genomic regions

have a high proportion of causal variants with the same

association direction and that other regions have many

noncausal variants or causal variants with different associ-

ation directions. Applying only either a burden test or

SKAT would decrease the chance of detecting all of those

genes. However, the use of SKAT-O is more robust and

will increase the chance of detecting these genes.

Although we have considered in this paper a wide range

of simulation settings that are of practical interest, we note

that simulation results depend on simulation settings.

Thus, our results from comparing different methods

should be interpreted within the context of the range of

simulation settings we have considered. It would be useful

to examine the generality of the results in other simulation

settings in the future.

Due to high sequencing costs, many of the existing

whole-exome sequencing studies have small sample sizes.

As the second goal of this paper, we developed small-

sample adjustment methods to correct p values for SKAT

and SKAT-O to properly control the type I error rate and

increase the power. Using extensive simulation studies

and the NHLBI whole exomes from individuals who devel-

oped ALI, we demonstrated good performance of the

proposed small-sample adjustment methods, both in

terms of type I error control and power increase.

In this study, we only considered dichotomous traits.

However, the application of SKAT-O to quantitative-trait

data is straightforward using Equation 1 with a linear

regression. Furthermore, we note that the small-sample

adjustment is not necessary for continuous traits when

the normality assumption is true, because the small-

sample distributions of SKAT and SKAT-O are the same as

their asymptotic distributions under normality.

We note that the proposed small-sample adjustment

methods are still computationally efficient even though

we estimate the kurtosis using resampling. It only requires

10,000 bootstrap samples to accurately estimate the

kurtosis, which is a substantially smaller computational

burden compared to obtaining permutation or bootstrap

p values, which require 107 or 108 resampled phenotypes

to accurately obtain p values in the 10�5–10�6 ranges.

In simulation and real-data analysis, we used a flexible

beta weight to upweight the influence of rarer variants.

Similar results are obtained with the use of logistic weight

wj ¼ expðða1 � pjÞa2Þ=f1þ expðða1 � pjÞa2Þg for the ALI

exome-sequencing data (see Figures S3 and S4). In addition

to the use of a function of the MAF of variants as weights,
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functional information can also be used for choosing

variants to be tested or for constructing the weight. For

example, only functional variants such as nonsense and

missense variants can be used to test association, or func-

tional information scores such as PolyPhen or SIFT

scores24,25 can be used to construct a weight (an area under

active study).

Recently, several adaptive methods have been proposed

to increase the power. For example, the VT test11 tries to

find the optimal MAF threshold of rare variants by varying

the threshold, and EREC20 estimates a regression coeffi-

cient of each variant and uses them as the weight. Those

approaches could improve the power compared to the

burden tests. However, the VT test makes similar assump-

tions to those of the burden tests; i.e, it requires a majority

of rare variants under the optimal threshold to be causal

and have effects in the same direction. The EREC method

requires estimation of regression coefficients, which are

difficult to estimate stably for rare variants. Addition of a

stabilizing constant in EREC can reduce the power rela-

tive to asymptotic calculations and make the test behave

more like burden tests. Furthermore, these methods are

computationally intensive when applied to large-scale

sequencing studies, e.g., whole-exome and whole-genome

sequencing studies, because they rely on a large number of

permutation or bootstrap samples to compute p values and

are difficult to control for covariates, such as population

stratification. In contrast, SKAT-O and its small-sample

adjustment compute p values efficiently and can be easily

applied to whole-exome and whole-genome sequencing

studies.

With the rapid advance of biotechonology, new biolog-

ical knowledge will become available, and new sequencing

technology and study designs will be developed. In the

fast-moving next-generation-sequencing era, it is of signif-

icant importance to incorporate this new information to

improve statistical and computational tools for detecting

rare variants associated with complex diseases.
Appendix A. Mean and Variance of QS under the

Null Hypothesis
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where ~yi is the ith element of ~y, and uij is the ith element

of uj. Therefore,
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(Equation A.2)

Because Eð~yi
��pÞ ¼ 0, the elements in the second term

in Equation A.2 can contribute to the overall sum only

when (1) i1 ¼ i2 ¼ l1 ¼ l2, (2) i1 ¼ i2 and l1 ¼ l2, (3)

i1 ¼ l1, and (4) i2 ¼ l2 or i1 ¼ l2 and i2 ¼ l1. Therefore
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(Equation A.3)

We can calculate the second moment of QS by com-

bining Equations A.2 and A.3.
Appendix B. Null Distribution of Small-Sample

SKAT-O

Define Z ¼ D�1=2GW and z ¼ ðz1;.; znÞ0, where zi ¼Pm
j¼1zij=m. Additionally, we let M ¼ zðz0zÞ�1z0 and

jðrÞ ¼ m2rz0zþ 1� r

z0z

Xm
j¼1

�
z0z:j

�2
;

where z:j is the jth column of Z. Following the same argu-

ment in Lee et al.,21 it can be shown thatQr is equivalent as
The Americ
ð1� rÞk1 þ jðrÞk2; (Equation A.4)
where
k1 ¼ ð1� rÞ~y0ðI�MÞZZ0ðI�MÞ~y
þ 2ð1� rÞ~y0ðI�MÞZZ0M~y

and

k2 ¼ ~y0zz0~y
z0z

:

It can be shown that k2 asymptotically follows the c2
1

distribution, and k1 is asymptotically the same as

Xq
k¼1

lkhk þ z;

where fl1;.lqg are nonzero eigenvalues of Z0ðI�MÞZ,
hkðk ¼ 1;.; qÞ are independent and identically distributed

c2
1 randomvariables, and z satisfies the following conditions:

EðzÞ ¼ 0; VarðzÞ ¼ 4traceðZ0MZZ0ðI�MÞZÞ;
Corr

�Pq
k¼1

lkhk; z

	
¼ 0; and Corrðk2; zÞ ¼ 0:

We note that asymptotic p values can be obtained

through the one-dimensional integration. When the

sample size is small, however, the asymptotic moments

of k1 and k2 can be larger than small-sample moments.

Thus, we apply the same small-sample adjustment proce-

dure to null distributions of k1 and k2. We first compute

the small-sample variance and kurtosis of k1 and k2 and

apply the moment-matching approximation to obtain

their adjusted asymptotic distribution. To obtain a p value,

we apply the algorithm in Lee et al.21 with the adjusted

null distribution k1 and k2.
Supplemental Data

Supplemental Data include six figures and three tables and can be

found with this article online at http://www.cell.com/AJHG/.
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