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Abstract
Longitudinal data analysis methods are powerful tools for exploring scientific questions regarding
change and are well-suited to evaluate the impact of a new policy. However, there are challenging
aspects of policy change data that require consideration, such as defining comparison groups,
separating the effect of time from that of the policy, and accounting for heterogeneity in the policy
effect. We compare currently available methods to evaluate a policy change and illustrate issues
specific to a policy change analysis via a case study of laws that eliminate gun-use restrictions
(shall-issue laws) and firearm-related homicide. We obtain homicide rate ratios estimating the
effect of enacting a shall-issue law that vary between 0.903 and 1.101. We conclude that in a
policy change analysis it is essential to select a mean model that most accurately characterizes the
anticipated effect of the policy intervention, thoroughly model temporal trends, and select methods
that accommodate unit-specific policy effects. We also conclude that several longitudinal data
analysis methods are useful to evaluate a policy change, but not all may be appropriate in certain
contexts. Analysts must carefully decide which methods are appropriate for their application and
must be aware of the differences between methods to select a procedure that generates valid
inference.
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1 Introduction
1.1 Evaluating a Policy Change

Evaluations designed to generate inference regarding the impact of a policy change are
common in the current literature of several disciplines, including biomedical research, injury
prevention, and econometrics. Examples include contrasting repeated measures among
patients receiving surgical treatment for lumbar spinal stenosis and those receiving non-
surgical treatment [1], evaluating the effectiveness of centerline rumble strips in reducing
opposing-direction automobile collisions [2], and determining the effect of welfare reform
on health insurance coverage for women and children [3].

Even though studies of the impact of a new policy are common, there does not appear to be
a unified approach to formally evaluate a policy change. In fact, the analysis methods
employed vary considerably, from simple to sophisticated. For example, some policy
researchers advocate the use of a simple “difference in differences” method, which involves
calculating differences in the observed outcome, first for each study unit over time and then
between a defined “treatment” and “control” group [3]. The “difference in differences”
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estimator allows different pre- and post-policy temporal trends and exploits the pre-policy
temporal trends in the “control” group to represent the post-policy temporal trends in the
“treatment” group. A simple method popular among medication use researchers is
“segmented regression” analysis of interrupted time series data, which involves treating
observations as a time series, fitting a least squares regression model for each study unit, and
accounting for autocorrelation [4]. Econometricians frequently perform a “regression
discontinuity” analysis, which involves fitting separate kernel-weighted linear regression
models to the data before and after a policy change and forming contrasts based on the left
and right limits of these models at the policy change [5].

More sophisticated methods, which we elaborate upon in this paper, include generalized
estimating equations, generalized linear mixed models, and methods that use empirical
Bayes estimators to form contrasts between observed and expected outcomes. Although
there are important differences between these methods with respect to implementation and
inference, they all utilize longitudinal methodology in some form to attempt to account for
the correlation induced by repeatedly collecting observations over time and/or space.
Surprisingly, there are studies in the current literature that ignore this correlation and
provide inference that may be invalid [6].

Methods for analyzing longitudinal data are well studied, but there are unique aspects of
policy change data with respect to implementation and inference that require careful thought
and consideration. The primary challenge of a policy change analysis is defining groups
between which to compare units with and without the policy change, while using all
available data. Policy change data are typically comprised of outcomes collected over time
on aggregate study units such as health care centers or governmental jurisdictions. Often
some units experience the policy change during the study period, while others do not. This
leads to partial crossover data. In this situation it is possible to exploit both within-unit and
between-unit contrasts to generate inference regarding the policy effect. One approach is to
control for time and contrast the mean outcome among all units with the policy to that
among all units without the policy. Essentially, such an analysis captures the cross-sectional
information regarding the difference in the average outcome with and without the policy.
Another approach is to match on study unit and summarize the mean difference between
outcomes within a unit after policy implementation and outcomes within the same unit prior
to implementation. Such an analysis exploits the within-unit change in policy, but is not
applicable for units that either never implemented the policy or implemented it prior to the
study period.

Secondary challenges include properly separating the effect of time from that of the policy,
accounting for heterogeneity in the policy effect, and accounting for serial correlation within
study units. First, the outcome of interest may vary considerably over time due to a strong
temporal trend. Therefore it is important to ascertain what amount of variability is due to the
temporal trend and what amount is due to the new policy. Otherwise calendar time may
confound the policy effect. Second, study units may be intrinsically different from one
another. Therefore the impact of the policy may vary across units even after controlling for
measured factors. To characterize the average policy effect it may be necessary to model
unit-specific policy effects. Third, correlation may be induced within study units by
repeatedly collecting observations on the same units over time. Failure to accurately account
for longitudinal correlation may result in invalid inference.

In this paper we compare and contrast currently available statistical techniques for analyzing
longitudinal data in the context of evaluating a policy change. Our goals are to explore the
situations in which these methods are appropriate, educate researchers on the challenges of a
policy change analysis, and provide a unified framework for proper analysis of policy
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change data. We describe the theoretical framework for these methods, discuss issues that
are specific to evaluating a policy change, and provide an illustrative example. The goal of
the example is to estimate the effect of state laws that eliminate gun-use restrictions, or
shall-issue laws, on firearm-related homicide [7].

1.2 Evaluating Gun-use Laws
There is considerable debate as to whether eliminating gun-use restrictions increases or
decreases violent crime [8]. Lott and Mustard [6] obtained crime, arrest, income, and
demographic information for every county in the United States from 1977 to 1992 and
determined when each state enacted a shall-issue law. They used ordinary least squares to
estimate the effect of enacting a shall-issue law on the expected log crime rate, weighted by
population size. They concluded that “allowing citizens to carry concealed weapons deters
violent crimes.” However, Lott and Mustard’s conclusions were challenged. Webster and
colleagues [9] discussed several flaws in Lott and Mustard’s statistical model, including
measurement error in the shall-issue explanatory variable and inadequate adjustment for
cyclical changes in crime. Webster and colleagues stated that these problems “are likely to
bias results toward finding crime-reducing effects of shall-issue laws.”

Lott and Mustard’s inference was also undermined by their estimation method. Ordinary
least squares assumes that observations repeatedly collected on a study unit are independent
and assumes that units are independent of one another. Because Lott and Mustard collected
county-level data from 1977 to 1992, observations collected within a county over time are
temporally correlated. In addition, because a given county may be more similar to an
adjacent county than to a non-adjacent county, county-level observations are spatially
correlated. Ordinary least squares ignores both temporal and spatial correlation. If either one
is non-zero, then standard errors are likely to be underestimated. Therefore confidence
intervals and p-values are anti-conservative, which may provide invalid inference.

In Section 2 we describe statistical models to assess the impact of a new policy. We
introduce two models for the outcome of interest in Section 2.1 and discuss issues related to
specifying a mean model in Section 2.2. In Section 3 we review estimation methods that are
currently available to evaluate a policy change: generalized estimating equations (Section
3.1), generalized linear mixed models (Section 3.2), random effects meta-analysis (Section
3.3), and methods based on empirical Bayes estimators (Section 3.4). We summarize a
recently published evaluation of shall-issue laws and firearm-related homicide in Section 4.
In Section 5 we analyze the data from this study using the methods we introduce. We
provide concluding discussion in Section 6. In the Supplementary Material we detail
variance estimation for empirical Bayes estimators.

2 Statistical Models
2.1 Notation

Let yij denote the observed outcome for unit i = 1, …, n during time period j = 1, …, mi.
Similarly let xij denote the set of covariates collected for unit i during time period j and let
Nij denote population size, or the total number of individuals in unit i during time period j.
We are interested in a cross-sectional model for μij, the expectation of yij given covariates
xij and parameters β to be estimated. We consider this model within two different
frameworks: marginal and conditional.

The outcome of interest in our case study is the number of homicides due to firearms, which
we assume to follow a Poisson distribution. As is standard when analyzing count data, we
model the mean homicide rate instead of the mean number of homicides. We therefore
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include log Nij as an “offset” in both the marginal and conditional model. The marginal
model relates the expectation of yij to xij via a log link function:

The marginal model assumes that the variance of yij is a known function ϕV (μij), where ϕ
represents a dispersion parameter to be estimated. The model also assumes that the
correlation between yij and yij′ (j ≠ j′) is a known function ρ(α), where α represents
correlation parameters to be estimated.

In the marginal model β are fixed parameters. Conversely, the conditional model assumes
that certain effects vary across units. The conditional model includes a set of covariates zij,
which may be equal to xij or a subset of xij, and relates the expectation of yij to xij and zij via
a log link function:

We write β⋆ for the parameters of interest in the conditional model because they may differ
from those in the marginal model. Note that γi are vectors of mutually independent, unit-
specific random effects with a common underlying distribution. These random effects
induce a correlation structure between yij and yij′. The model assumes that given γi, {yi1,
…, yimi} are mutually independent and have an exponential family density. Similar to the
marginal model, the conditional model assumes that the variance of yij given γi is a known

function .

2.2 Modeling the Mean
Perhaps the most important goal of any statistical analysis is to correctly model the mean,
i.e. the systemic variation of yij across covariate values xij. This requires deciding which
variables to include in the model and specifying their functional relationship with the
outcome of interest. There are several features of policy change data that present challenges
to analysts with respect to specifying a mean model.

Figure 1 presents three hypothetical mean models to evaluate the impact of a new policy.
The horizontal axis is time from policy change; a vertical line at zero represents the policy
change. Circles represent the observed outcome during a given time period. Solid lines
represent the estimated association between time and the outcome before and after
implementing the policy. Dashed lines represent the expected association had the policy
change not occurred. Of primary interest is the difference between the observed outcome
after the policy change and the expected outcome had the policy change not occurred.

Figure 1(a) presents a main effect model, which is the simplest and least flexible model. The
main effect model assumes that the policy change is associated with an immediate change in
the expected outcome and that this effect is constant across time. In addition, it assumes that
the temporal trend is the same before and after the policy change. Figure 1(b) presents a
changepoint model, which is more flexible than a main effect model. The changepoint
model assumes that the effect of time is different before after the policy change and that the
policy change is not associated with an immediate change in the expected outcome. Figure
1(c) presents an interaction model, which relaxes the assumptions of the main effect and
changepoint model. The interaction model allows the effect of time to be different before
and after the policy change. It also allows an immediate change in the expected outcome
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associated with the policy change. Proponents of “segmented regression” recommend the
interaction model [4]. Analysts must decide which of these models, if any, most accurately
characterizes the anticipated effect of the policy intervention.

A variation of the main effect model is one in which the binary intervention is treated as
continuous in the analysis. That is, instead of using an indicator variable, analysts could use
a continuous variable, perhaps with a range between 0 and 1. For example, for years without
the policy the continuous variable would be coded as 0. For the first year after the policy
was implemented, the variable would be coded as 0.1, for the second year after as 0.2, and
so on. Coding the intervention in this manner would emulate a more gradual effect of the
policy change and may be more scientifically relevant in certain contexts.

The mean models presented in Figure 1 raise the central challenge of a policy change
analysis: defining groups between which to compare units with and without the policy
change. In Figure 1 the time scale is time from policy change. This is a convenient time
scale for units that implemented the policy during the study period because each unit has a
meaningful reference point in time. In addition, aligning units by time from policy change
lends to a natural comparison between observed and expected outcomes across units.
However, not all study units may have implemented the policy during the study period and
hence time from policy change is not a meaningful scale for all units. To overcome this
difficulty analysts may decide to only consider units with the policy change. This choice is
often undesirable, however, because the information contained in units without the policy
change is lost. Alternatively, analysts may choose a time scale such as calendar time to
match units with and without the policy change.

A possibly attractive alternative to selecting one of the mean models presented in Figure 1 is
to simply contrast the mean outcome before the policy change ȳB with the mean outcome
after ȳA. However, this approach may be problematic. Suppose that in truth μij is linearly
related to a continuous variable for calendar time tij and a policy indicator pij:

Interest lies in estimating β1, the policy effect. Consider a simple estimate Δ̂ = ȳA − ȳB and
examine its expectation:

Therefore the estimate Δ̂ = ȳA − ȳB is a biased estimator for the policy effect if a linear
temporal trend exists because the mean time after the policy change t̄A is not necessarily
equal to the mean time before t̄B. For non-linear models the absolute difference between ȳA

and ȳB may be an inappropriate summary measure. For example, the ratio of ȳA to ȳB

would be a natural crude estimate associated with a log-linear model.

One approach to remove the bias associated with a temporal trend is to adjust for calendar
time. Suppose that each unit has unique time and policy effects:

We assume that interest lies in estimating the average policy effect Eβ[β1i]. Consider unit-

specific estimates  and examine their expectation with respect to Y:
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Next examine the expectation of EY [Δ̂i] with respect to βi:

Therefore the average of the unit-specific estimates  is a biased estimator for
the average policy effect if unit-specific temporal trends exist. However, Δ̄ is an unbiased
estimator for the average policy effect if and only if Eβ[β2i] = 0. This will occur if the global
temporal trend is negligible, i.e. if the average of the unit-specific temporal trends is
approximately zero. This suggests that analysts should adjust for calendar time to remove
temporal trends and correctly estimate the policy effect.

Another approach to remove the bias associated with a temporal trend is that of the
“difference in differences” estimator. This approach exploits the pre-policy temporal trends
in the “control” (C) group to represent the post-policy temporal trends in the “treatment” (T)
group. Examine the expectation of the “difference in differences” estimator Δ̃:

Therefore the “difference in differences” estimator is an unbiased estimator for the policy
effect assuming that the temporal trends in the “treatment” and “control” group are identical.
The main difficulty of this approach is defining a pre- and post-policy time for the “control”
group. This definition may be arbitrary for most observational data because no specific time
is identified as the time of policy implementation for units without a policy change.

Defining groups between which to compare units with and without the policy change is of
central importance. One simple approach is to contrast the mean outcome before the policy
change with that after via an estimate such as Δ̂. Inference based on this approach assumes
that temporal trends do not exist. Another simple approach is to calculate Δ̄, the average of
the unit-specific estimates. Although this approach accommodates unit-specific temporal
trends, inference based on this approach assumes that the global temporal trend is negligible.
In addition, because a unit-specific estimate is only available for units that implemented the
policy during the study period, this approach may not utilize all available data. Yet another
approach is to calculate differences in the observed outcome, first for each study unit over
time and then between a defined “treatment” and “control” group using the “difference in
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differences” estimate Δ̃. Inference based on this approach assumes that temporal trends in
the “treatment” and “control” group are identical. In addition, this approach may not utilize
all available data because the difference in the observed outcome for each unit over time is
not available for units without a policy change. Therefore more sophisticated methods are
required to allow analysts to specify a mean model of choice, include units without a policy
change, and adjust for temporal trends (via calendar time) and other important factors.

2.3 Modeling Heterogeneity
Once the mean has been correctly modeled, analysts may explore models for the variance of
the outcome of interest and the correlation between observations collected on the same study
unit. This is especially important in longitudinal data analysis, for if the correlation between
repeated measures is not correctly modeled, then the analysis method may be inefficient and
inference may be invalid. There are several popular methods for modeling variance and
correlation that are useful in the context of evaluating a policy change. We review them in
the following section.

3 Estimation Methods
In this section we review existing longitudinal data analysis methods that are appropriate for
assessing the impact of a new policy. We briefly review generalized estimating equations
and generalized linear mixed models, which are standard longitudinal data analysis methods.
We thoroughly review random effects meta-analysis and methods based on empirical Bayes
estimators, which are not as commonly used in a longitudinal context. All of these methods
allow analysts to specify a mean model of choice, include units without a policy change, and
specify a flexible adjustment for temporal trends. However, we show that there are
differences between these methods with respect to implementation and inference that are
important in the context of evaluating a policy change. Table 2 previews these differences.

3.1 Generalized Estimating Equations (GEE)
GEE is a marginal method that estimates an population-level policy effect, which does not
accommodate heterogeneity in the effect across units. GEE models longitudinal correlation
by specifying a working covariance matrix [10]. A basic choice is working independence, in
which observations collected on the same unit are assumed to be independent. Under this
specification the variance estimate of β̂ is appropriately adjusted to account for longitudinal
correlation using the so-called “robust” or “sandwich” variance estimate that is available in
many statistical packages (e.g., Stata). Other popular choices for the working covariance
matrix are exchangeable, in which the correlation between observations collected on the
same unit is constant, and autoregressive, in which the correlation is a function of the time
between observations. We implement GEE via the R package geepack [11]. Chapter 8 of
Analysis of Longitudinal Data [12] provides a general overview of GEE. Carriere, Roos, and
Dover [13] discuss an estimating equation approach to health care utilization data.

3.2 Generalized Linear Mixed Models (GLMM)
GLMM is a conditional method that accommodates heterogeneity in the policy effect and
estimates an average policy effect via maximum likelihood. Recall that in the conditional
model β⋆ represents the parameters of interest and γi represents unit-specific random
effects, which induce a model for longitudinal correlation. The GLMM framework assumes
that the repeated measures are independent given the random effects and that the random
effects are independent and identically distributed given the covariates. Maximum likelihood
estimation of β⋆ treats γi as unobserved nuisance random variables, which are typically
assumed to follow a Normal distribution with mean zero with covariance matrix D [14]. We
implement GLMM via the R package lme4 [15]. Chapter 9 of Analysis of Longitudinal Data
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[12] provides a general overview of GLMM for longitudinal data. Daniels and Gatsonis [16]
present hierarchical generalized linear models and their application to health care utilization
data. Tooze, Grunwald, and Jones [17] provide a mixed model approach to health policy
data with “clumping” at zero.

3.3 Random Effects Meta-analysis
Meta-analysis is a conditional method that combines information across multiple studies,
which typically involves averaging summary measures obtained via a literature review of
independent studies of a similar comparison [18]. Our implementation is different from a
classic epidemiological meta-analysis in that we treat study units as independent “studies” of
the association between exposure and outcome. We estimate state-specific log homicide rate
ratios β̂i by fitting a single Poisson regression model that includes an interaction between an
indicator variable for a shall-issue law and an indicator variable for each state. We are able
to include units without a policy change by fitting a single model in which all states
contribute information regarding adjustment covariates such as calendar time. We average
the state-specific estimates using the R package rmeta [19] to obtain an estimate of the
average policy effect and a summary of the magnitude of state-to-state heterogeneity in the
policy effect.

When implementing a meta-analysis analysts must decide between a fixed or random effects
model. In the fixed effects model each study-specific estimate β̂i is assumed to arise from a

population of estimates with common mean β and known variance . Each  quantifies

the amount of “within-study” variation. Although robust estimates of  are not computable,

estimation of each  could accommodate correlation structures such as autoregressive. The
model assumes that the fixed effects are independent and follow a Normal distribution:

In the random effects model each β̂i is assumed to arise from a subpopulation of estimates,

each with mean βi and known variance . In addition, each βi is assumed to arise from a
population of parameters with mean β and variance τ2. The parameter τ2 quantifies the
amount of “between-study” variation. The model assumes that the random effects are
independent and imposes a hierarchical structure:

We assume a random effects framework to accommodate state-specific effects and to allow
for both “within-study” and “between-study” variation. We prefer the random effects
framework because the fixed effects framework assumes that there is no “between-study”
variation and it seems unlikely that there would be no variation in the policy effect between
states. Note that rmeta uses the DerSimonian and Laird estimate of τ2 [20].

3.4 Empirical Bayes (EB) Estimators
In previous sections we presented methods based on simple summary statistics such as a
difference in means and more sophisticated regression-based methods such as GEE and
GLMM. An issue with these regression techniques is that time must be modeled
appropriately and we have commented that analysts must carefully consider temporal trends
both before and after a policy change. An alternative method exists that combines the
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sophistication of advanced regression-based methods, which model unit-specific policy
effects and adjust for important covariates, with the attractive simplicity of contrasting post-
policy means with their expectation under the absence of a policy change. This technique is
known as empirical Bayes and is popular among road safety researchers [2].

Although EB estimators represent a broad class of estimators [21], we focus on an EB
procedure specifically designed to generate conditional inference from partial crossover
data. The main idea is to use a hierarchical regression model to characterize the temporal
trends prior to policy implementation and use this model to predict the outcome in time
periods subsequent to the policy change. Thus the flexibility of regression-based methods is
exploited to forecast expected outcomes, but a regression model for outcomes after the
policy change is not required. We graphically summarize this procedure in Figure 2, in
which circles represent hypothetical data observed for two units.

The EB procedure involves fitting a mixed effects model, represented by solid lines in
Figure 2(a), to the data observed before the policy change. We recommend that in addition
to random intercepts, this model include random time effects to account for unit-specific
temporal trends. Units that never implemented the policy can be incorporated into the mixed
effects model, but units that implemented the policy before the study period cannot. The
fixed and random effects estimated from the pre-policy data are used to predict the expected
outcomes after the policy change for each study unit, represented by dashed lines in Figure
2(b). These expected outcomes are contrasted with the data observed after the policy change
for each unit. These contrasts, represented by vertical arrows in Figure 2(c), are averaged
within each unit to estimate unit-specific policy effects. A simple statistic is used to estimate
the average policy effect, such as a between-unit average of the unit-specific estimates. We
are interested in estimating the homicide rate ratio associated with enacting a shall-issue
law. In this case an EB estimate of the average log policy effect is:

An advantage of an EB analysis is that each unit-specific estimate Δ̂i is “shrunk” toward the
average of the unit-specific estimates Δ̄. This tends to draw extreme estimates toward the
rest of the individual estimates. The degree to which each unit-specific estimate is “shrunk”
depends on the amount of data observed for each unit and the overall variability of the
estimated unit-specific effects. If a large amount of data is observed for a study unit, then
there will be little shrinkage in its estimated effect. Conversely, with little overall variability
of the unit-specific estimates, there will be large shrinkage because the model suggests that
there is little real variation in the effect between units.

The main difficulty of an EB analysis is calculating the standard error of Δ̄. This difficulty
arises because unit-specific estimates Δ̂i share common fixed effects β̂⋆, implying that their
correlation is non-zero. Standard error computation is simplified by assuming that the unit-
specific estimates are uncorrelated, effectively ignoring variation due to estimation of pre-
policy model parameters. In this case the variance of Δ̄ can be estimated by s2 = Var[Δ̂i], as
in a one-sample t-test. Hence a (1 − α)% confidence interval for the average policy effect is

. In the Supplementary Material we derive a simple estimator for the
variance of Δ̄ that incorporates the variance in and correlation between unit-specific
estimates.
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3.5 Role of the Model
There are several interesting comparisons between a GLMM and an EB analysis. For
example, both accommodate unit-level heterogeneity in the policy effect by conditioning on
unit-specific policy effects, but estimate unit-specific effects differently by explicitly
modeling different portions of the data. Recall our simple estimate, which is a summary
statistic based on a contrast between observed outcomes before and after the policy change:

A GLMM employs a purely model-based approach to estimating unit-specific policy effects
by including a random effect for policy in the model. As we showed in Figure 1, these
estimates can be thought of as a contrast between expected outcomes given a post-policy
model ℳA and expected outcomes given a pre-policy model ℳB that is extrapolated to post-
policy times tA:

An EB analysis combines a model-based approach with a simple summary statistic and
estimates unit-specific policy effects by contrasting observed and expected outcomes after
the policy change for each unit. As we showed in Figure 2, these estimates can be thought of
as a contrast between observed outcomes after the policy change and expected outcomes
given an extrapolated pre-policy model:

Both a GLMM and an EB procedure rely on a pre-policy model ℳB to extrapolate to post-
policy times. A GLMM additionally relies on a post-policy model ℳA, whereas an EB
procedure simply exploits the observed data. Valid inference generated from a GLMM
requires that both models are correct. If these models are correct, then a GLMM may be
superior to an EB analysis. Conversely, if only the pre-policy model is correct, then an EB
analysis may be superior.

3.6 Interpretation
Generally, the interpretation of a conditional parameter estimate is not the same as that of a
marginal parameter estimate. The parameter estimates obtained from a marginal model
estimate population-level contrasts and inference is made on the population level.
Conversely, the parameter estimates obtained from a conditional model estimate unit-
specific contrasts.

There are situations in which the estimates obtained from a marginal and conditional model
both estimate a population-level contrast [22]. Consider an analysis with an outcome
repeatedly collected on units in a sample. Suppose a single covariate is also measured and its
cross-sectional relationship with the outcome is of interest. If the outcome is continuous and
follows a Normal distribution and we fit a linear model with random intercepts and/or
slopes, then β̂⋆ (the regression parameter estimated from the conditional model) estimates a
population-level contrast. Moreover, if the outcome is a count and follows a Poisson
distribution and we fit a log-linear model with random intercepts, then β̂⋆ estimates a
population-level contrast. However, if we fit a log-linear model that includes random slopes,
then β̂⋆ estimates a unit-specific contrast. In addition, if the outcome follows a Binomial
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distribution and we fit a logistic model with random intercepts and/or slopes, then β̂⋆
estimates a unit-specific contrast.

In our case study we assume that the number of homicides due to firearms follows a Poisson
distribution. Therefore if we fit a log-linear model with random intercepts, then we interpret
the estimated effect of enacting a shall-issue law as a population-level contrast. However, if
the model includes random slopes, then we interpret the estimated effect as an average state-
specific effect.

It is important to note that in our case study individual-level data were partially aggregated
for strata defined by gender, race, and age; stratum-specific counts for population size and
firearm-related homicide were available. The data were not fully aggregated into a single
count with corresponding state demographic characteristics. Therefore the effects of these
factors can be interpreted at the individual level and are not subject to the bias incurred from
the ecological fallacy [23].

4 Case Study
4.1 Introduction

Rosengart and colleagues [7] described a study to determine whether state gun laws are
associated with firearm-related homicide and suicide. Yearly deaths due to firearms were
collected from all 50 states and the District of Columbia from 1979 to 1998. During this
period 289,719 firearm-related homicides occurred in the United States. Data were grouped
into gender, race, and age strata and stratum-specific counts for population size and firearm-
related homicide were available. State-specific characteristics were also available, including
measures of unemployment and poverty, and proportion of residents living in a metropolitan
area. Although Rosengart and colleagues studied five state gun laws, we focused specifically
on shall-issue laws, which permit an individual to carry a concealed handgun unless another
statute provides a restriction. We also limited our focus to firearm-related homicide.
Rosengart and colleagues provided additional details regarding this study, including data
collection, covariate adjustment, and comprehensive results.

4.2 Graphical Displays
Figure 3(a) displays the total duration of a shall-issue law for each state in the contiguous
United States. Darker states had a longer duration of a shall-issue law. Figure 3(b) displays
the average unadjusted firearm-related homicide rate for each state. Darker states had a
higher homicide rate. States with a greater duration of a shall-issue law appear to be
clustered in the Northwest and the Upper Midwest, as well as in the Northeast and South.
States with a higher firearm-related homicide rate appear to be clustered in the southern half
of the United States. Comparing Figure 3(a) to Figure 3(b), at least two interesting patterns
emerge. In the Northwest and Upper Midwest several states with greater exposure to a shall-
issue law had a low firearm-related homicide rate (e.g., North Dakota, South Dakota, and
Washington). Conversely, several states in the South with greater exposure to a shall-issue
law had a high firearm-related homicide rate (e.g., Alabama, Georgia, and Mississippi).

We estimated the expected number of homicides using a Poisson regression model with
cubic splines for calendar year and calculated the log ratio of observed to expected
homicides. A log ratio of zero implies that the number of observed and expected homicides
was equal. A log ratio greater than (less than) zero implies a greater (smaller) number of
homicides were observed than would be expected. Figure 4(a) displays the log ratio of
observed to expected homicides for states that never enacted a shall-issue law. Note that 20
states and the District of Columbia never enacted a shall-issue law during the study period.
There do not appear to be noticeable temporal trends after adjusting for the expected number
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of homicides. There is large variation in the response between states, but there appears to be
little variation in the temporal trends.

Figure 4(b) displays the log ratio of observed to expected homicides for the 23 states that
enacted a shall-issue law during the study period. The time scale is time from
implementation, i.e. the number of years before or after a law was enacted. Large variation
in the response between states is evident in Figure 4(b). There are noticeable temporal trends
for several states, but there does not appear to be substantial variation in the temporal trends.
Interestingly, firearm-related homicides appear to increase for most states after a shall-issue
law was enacted. In addition, there are several states for which firearm-related homicides
appear to decrease before a law was enacted and increase afterward. Figure 4(c) displays the
log ratio of observed to expected homicides for the 7 states that enacted a shall-issue law
before 1979. As in Figure 4(a), there do not appear to be a noticeable temporal trends after
adjusting for the expected number of homicides.

5 Results
5.1 Simple Summaries

We calculated the unadjusted homicide rate ratio Δ̂ as the mean homicide rate after shall-
issue laws were enacted divided by that before. The unadjusted homicide rate ratio
associated with enacting a shall-issue law was 0.748, 95% CI: (0.668, 0.836). Hence shall-
issue laws were associated with a significant 25.2% decrease in firearm-related homicide
rates. However, this estimate is biased if temporal trends exist. This estimate is also likely
biased because it does not adjust for other factors that are associated with firearm-related
homicide.

For the 23 states that enacted a shall-issue law during the study period, we first calculated Δ̂i
as the mean homicide rate after a shall-issue law was enacted divided by that before. We
adjusted these estimates for temporal trends by dividing the observed number of homicides
by the expected number of homicides (estimated from a Poisson regression model with

cubic splines for calendar year). We then calculated , the average state-
specific homicide rate ratio. The homicide rate ratio associated with enacting a shall-issue
law was 0.948, 95% CI: (0.911, 0.988). Hence shall-issue laws were associated with a
significant 5.2% decrease in firearm-related homicide rates. Although this estimate adjusts
for temporal trends, it is likely biased because it does not adjust for other important factors.
It also does not utilize all available data because states without a policy change do not
contribute any information.

5.2 Generalized Estimating Equations
We implemented GEE to estimate the population-level effect of enacting a shall-issue law.
We adjusted for calendar year using a cubic spline to allow for a thorough, flexible
adjustment for time. We also adjusted for demographic characteristics (gender, race, and age
category) using indicator variables, for state-specific characteristics (proportion
unemployed, proportion living in poverty, proportion living in a metropolitan area) using
linear splines, and for other state gun laws using indicator variables. We included an offset
for log population size and allowed for over-dispersion. The regression formula was:

This model generated inference for exp β1, the population-level effect of enacting a shall-
issue law.
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We defined states as clusters and assumed an independence correlation structure. Because
states defined the clusters in the covariance calculation, state-specific estimates of homicide,
of enacting a shall-issue law, and of temporal trends were not estimable. The adjusted
homicide rate ratio associated with enacting a shall-issue law was 0.915, 95% CI: (0.814,
1.029). Hence shall-issue laws were associated with an 8.5% decrease in firearm-related
homicide rates, although this decrease was not statistically significant (p = 0.140). We
obtained similar results via marginal quasi-likelihood, which induces a correlation model
using unit-specific random effects, but provides a point estimate with a population-level
interpretation.

Assuming an exchangeable correlation structure the adjusted homicide rate ratio was 0.903,
95% CI: (0.785, 1.039). Hence shall-issue laws were associated with an 9.7% decrease in
firearm-related homicide rates, although this decrease was not statistically significant (p =
0.154). These results are similar to those obtained assuming an independence correlation
structure. If we ignored within-state correlation and used the naïve standard error estimate,
then the confidence interval for the homicide rate ratio was (0.899, 0.932), indicating that
the reduction in homicide rates was highly significant (p < 0.001). However, this confidence
interval is invalid because it ignores within-state correlation.

5.3 Generalized Linear Mixed Models
We implemented GLMM with increasing levels of complexity. In each model we allowed
for over-dispersion and correlated random effects. In each model we adjusted for calendar
year, demographic characteristics, state-specific characteristics, other state gun laws, and log
population size. First, we considered a model that included random intercepts, which
allowed the homicide rate to vary across states. This model estimated the population-level
effect of enacting a shall-issue law. Second, we considered a model that included random
intercepts and random effects of time, which allowed the homicide rate and the effect of
time to vary across states. Third, we considered a model that included random intercepts and
random effects of enacting a shall-issue law, which allowed the homicide rate and the effect
of enacting a shall-issue law to vary across states. Fourth, we considered a model that
included random intercepts, random effects of time, and random effects of enacting a shall-
issue law. Each of these three models estimated an average state-specific effect. The
regression formulae were:

(1)

(2)

(3)

(4)

A key distinction is that (1) and (2) assumed a fixed shall-issue law effect, whereas (3) and
(4) explicitly allowed random shall-issue law effects.

Table 1 provides adjusted homicide rate ratios associated with enacting a shall-issue law.
These results provide conflicting inference. According to (1) shall-issue laws were
associated with a significant 3.1% decrease in firearm-related homicide rates (p = 0.036).
According to (2) and (3) shall-issue laws were not significantly associated with firearm-
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related homicide rates (p = 0.355 and 0.926, respectively). According to (4) shall-issue laws
were associated with a 5.8% increase in firearm-related homicide rates, although this
increase was not statistically signficant (p = 0.059). Results obtained via a conditional
Poisson model were similar to those from (1).

The confidence intervals obtained from (1) and (2) are substantially tighter than other
GLMM confidence intervals. We are skeptical of these two confidence intervals because
both these models ignore state-level heterogeneity in the law effect, which our other
analyses show to be important. Therefore we believe that these two confidence intervals are
likely to be anti-conservative.

5.4 Random Effects Meta-analysis
We used a Poisson regression model, allowing for over-dispersion, to estimate state-specific
homicide rate ratios and incorporated them into a meta-analysis. We adjusted for calendar
year, demographic characteristics, state-specific characteristics, other state gun laws, and log
population size. To allow the effect of time to vary across states, we included an interaction
between a linear term for calendar year and indicator variables for each state. This two-stage
model mirrored (4).

Recall that 23 states enacted a shall-issue law between 1979 and 1998. In a traditional meta-
analysis only states with variation in the exposure, i.e. states that enacted a law during the
study period, would be available to estimate the effect of enacting a shall-issue law. In our
meta-analysis we included the 7 states that previously enacted and the 21 states that never
enacted a law, which substantially increased the sample size. In addition, we were able to
pool information across states to estimate the effect of adjustment variables. This and the
increased sample size increased the power of our meta-analysis.

Figure 5 displays the estimated homicide rate ratio associated with enacting a shall-issue law
for each state that enacted a law between 1979 and 1998. Estimated homicide rate ratios are
represented by squares with size proportional to their inverse variance and confidence
interval end-points are represented by vertical dashes. A diamond represents the summary
homicide rate ratio. It appears that for most states enacting a shall-issue law was associated
with an increase in firearm-related homicides. For several states the increase was statistically
significant. The adjusted homicide rate ratio associated with enacting a shall-issue law was
1.101, 95% CI: (0.993, 1.220). Hence shall-issue laws were associated with a 10.1%
increase in firearm-related homicide rates, although this increase was not statistically
significant (p = 0.068). The estimated between-state heterogeneity in the policy effect was
0.045. There was strong evidence to suggest that the true between-state heterogeneity in the
policy effect was not equal to zero (p < 0.001).

5.5 Empirical Bayes Estimators
We fit a GLMM to the data observed before shall-issue laws were enacted, which included
the 23 states that enacted a shall-issue law between 1979 and 1998 and the 21 states that
never enacted a law. We allowed for over-dispersion and correlated random effects. We
adjusted for calendar year, demographic characteristics, state-specific characteristics, other
state gun laws, and log population size. In addition, we included random intercepts and
random time effects in the model. This model was similar to (2) with pij = 0. We used the
estimated fixed and random effects from this model to calculate expected log homicide rates
for each state after a shall-issue law was enacted. We subtracted these expected log rates
from the observed log homicide rates for each state and averaged the differences to estimate
state-specific log homicide rate ratios. We averaged the state-specific estimates and
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exponentiated the result to obtain an estimate of the average effect of enacting a shall-issue
law.

The adjusted homicide rate ratio associated with enacting a shall-issue law was 1.097, 95%
CI: (0.987, 1.220). Hence shall-issue laws were associated with a 9.7% increase in firearm-
related homicide rates, although this increase was not statistically significant (p = 0.083).
We obtained this confidence interval and p-value by assuming that state-specific log
homicide rate ratios were uncorrelated. The variance and covariance calculations derived in
the Supplementary Material yielded slightly more conservative inference. The confidence
interval was (0.956, 1.258) and the p-value was 0.199.

6 Discussion
6.1 Evaluating Gun-use Laws

As discussed in Section 1.2, researchers continue to debate whether eliminating gun-use
restrictions increases or decreases firearm-related homicide. Indeed, our results provide
evidence for both conclusions. We summarize our main results in Figure 6, which displays
the estimated homicide rate ratio and 95% confidence interval obtained from each analysis.
Diamonds represent estimated homicide rate ratios and vertical dashes represent confidence
interval end-points.

The differences between our results beg the question, which analyses are appropriate in our
context? Given the observed heterogeneity in state-specific estimates of homicide over time
(see Figure 4) and of enacting a shall-issue law (see Figure 5), we believe that an appropriate
analysis includes state-specific time and law effects. Other gun-use researchers share this
view [8]. The GEE analysis is limited in this respect because state-specific estimates are not
available due to the clustering defined in the standard error computation. GLMM (4), meta-
analysis, and EB accommodate state-level heterogeneity in time and law effects. Based on
these analyses we conclude that enacting a shall-issue law is associated with a weak but non-
significant increase in firearm-related homicide rates.

A more subtle and perhaps more important question is, how does the target of inference
differ between our analyses? Table 2 contains a summary of the direct target of inference for
each estimation method. A GEE generates inference to a population of individuals (“Level
1”); in our case study, residents of the United States. A random effects meta-analysis
generates inference to a population of units (“Level 2”); in our case study, the 50 states and
the District of Columbia. GLMM and EB are given a +/− for both “Level 1” and “Level 2”
inference because, as we discussed in Section 3.6, a conditional model may generate
inference to either a population of individuals or a population of units (depending on the
distribution of the outcome and the choice of random effects). For example, of the GLMMs
we presented in Section 5.3, model (1) generates inference to a population of individuals,
whereas models (2), (3), and (4) generate inference to a population of states. Although these
latter models rely on different assumptions regarding the homogeneity or hetereogeniety in
the policy effect across states, their target of inference is the same. Because the intervention
in our case study is at the state level, we are perhaps more interested in generalizing to a
population of states rather than to a population of individuals.

A characteristic of the data that we did not consider in our analyses is spatial structure (see
Figure 3). Because a given state may be more similar to an adjacent state than to a non-
adjacent state, correlation may be induced between neighboring states. Ignoring spatial
correlation is likely to produce standard error estimates that are too small. Therefore our
inference may be anti-conservative. In our application it may be difficult to properly address
the issue of spatial correlation because of the small number of geographic units. However, in
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applications with a richer spatial structure there are options for incorporating it into an
estimating equation [24] or mixed model approach [16].

A critical aspect of any statistical analysis is evaluating the assumptions of the model used to
generate inference, such as verifying the correct functional form of adjustment variables. In
the context of longitudinal data additional assumptions must be evaluated. In an estimating
equation approach analysts must verify that the sample size is large enough to ensure
consistent sandwich variance estimation; n ≥ 40 is usually sufficient [25]. In a mixed model
approach analysts should consider the distribution of the random effects and verify that the
variance-covariance model is correct. Distributional assumptions may be evaluated using
quantile-quantile plots of the estimated random effects, although it may be difficult to detect
violations in certain situations [26]. The variance model may be evaluated by plotting the
squared normalized residuals versus the fitted values and including a lowess smoother. The
covariance model may be evaluated by calculating the empirical semi-variogram or sample
autocorrelation function [12]. Several chapters in Linear Mixed Models for Longitudinal
Data [26] provide details on methods to assess model fit.

Another important model assumption concerns missing data. Biased estimation may result
from various missingness mechanisms. A likelihood-based mixed model approach
accommodates data that are missing at random, i.e. missingness depends only on the
observed data. An estimating equation approach more rigidly requires that data are missing
completely at random, i.e. missingness does not depend on either the observed or
unobserved data. There are well-researched options for extending these complete-case
approaches to accommodate missing data. These options include modeling the missingness
mechanism and weighting by the estimated probability of missingness, or imputing the
missing data using methods such as multiple imputation [27]. Chapter 13 of Analysis of
Longitudinal Data [12] provides details on several approaches for addressing missing values
in longitudinal data. In our application there was no missing data.

6.2 Evaluating a Policy Change
We conclude that existing longitudinal data analysis methods are well-suited to assess the
impact of a new policy: commonly used methods such as generalized estimating equations
and generalized linear mixed models, as well as less commonly used methods such as
random effects meta-analysis and methods based on empirical Bayes estimators. We have
shown that these methods should be used only after considering the primary challenge of a
policy change analysis: defining groups between which to compare units with and without
the policy change, while using all available data. Central to this definition is selecting a
mean model that most accurately characterizes the anticipated effect of the policy
intervention.

We also conclude that secondary challenges of a policy change analysis warrant careful
consideration. First, analysts must properly separate the effect of time from that of the policy
by thoroughly adjusting for temporal trends. Second, analysts must account for
heterogeneity in the policy effect by selecting methods that accommodate unit-specific
policy effects. Third, analysts must account for serial correlation within study units by
selecting a model for the correlation between observations collected on the same unit. We
have shown that failure to address these challenges may result in misleading and invalid
inference.

We recommend the following steps as a outline from which to approach a policy change
analysis:
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1. Exploratory Longitudinal Analysis: Form a contrast (such as a difference or ratio,
as appropriate) between observed and expected outcomes adjusted for calendar
time. Plot these estimates versus time from policy change for units with a change
and versus calendar time for units without, as in Figure 4.

2. Unit-specific Summaries: Calculate unit-specific estimates of the policy effect Δ̂i
adjusted for calendar time and average these estimates to obtain Δ̄, a crude estimate
of the average policy effect. A confidence interval may be obtained via bootstrap
[28].

3. Effect Heterogeneity: Create a meta-analysis plot of unit-specific policy effects
adjusted for calendar time and other covariates, as in Figure 5.

4. Average Effect: Generate inference for the average policy effect using either GEE,
GLMM, meta-analysis, or EB, remaining mindful of the important differences
between these estimation methods with respect to implementation and inference.
Table 2 summarizes these differences.

Analysts may be drawn to simple methods such as “difference in differences,” “segmented
regression,” and “regression discontinuity.” These methods are useful in certain contexts,
but have several limitations. “Difference in differences” assumes that unit-level
heterogeneity is constant across time and that temporal trends are identical in the
“treatment” and “control” groups [3]. “Segmented regression” relies on the rigid assumption
of linearity and does not allow adjustment for covariates [4]. “Regression discontinuity”
may be sensitive to choice of kernel and bandwidth [5].

After deciding on an appropriate mean model, correlation model, and target of inference,
another challenge for analysts is obtaining software to fit the model. The methods we
described are available in most statistical programs. We used R [29] and several packages
therein. Standard software such as Stata [30] is also available to implement these methods.
Sophisticated methods for analyzing policy change data such as those accommodating both
temporal and spatial correlation are difficult to implement, even in specialized software.
However, software continues to evolve and will simplify detailed policy change evaluations
in the future.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Hypothetical mean models to evaluate a policy change
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Figure 2.
Summary of empirical Bayes procedure
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Figure 3.
Total duration of a shall-issue law and average unadjusted homicide rate
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Figure 4.
Log ratio of observed to expected homicides
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Figure 5.
Homicide rate ratios for states that enacted a shall-issue law
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Figure 6.
Summary of case study analyses
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Table 1

Adjusted homicide rate ratios estimated via GLMM

Model Homicide Rate Ratio 95% Confidence Interval

Random intercepts 0.969 (0.941, 0.998)

+ Random time effects 1.017 (0.982, 1.053)

+ Random law effects 0.996 (0.911, 1.089)

+ Random time and law effects 1.058 (0.998, 1.121)
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Table 2

Relative merits of methods to evaluate a policy change

Criterion GEE GLMM Meta EB

Allow flexible adjustment for time + + + +

Model heterogeneity in policy effect − + + +

Model longitudinal correlation + + − +

Provide direct inference to:

  “Level 1” (e.g., U.S. population) + +/− − +/−

  “Level 2” (e.g., states) − +/− + +/−
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