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Abstract
Vaccination of one person may prevent the infection of another either because the vaccine
prevents the first from being infected and from infecting the second, or because, even if the first
person is infected, the vaccine may render the infection less infectious. We might refer to the first
of these mechanisms as a contagion effect and the second as an infectiousness effect. In the simple
setting of a randomized vaccine trial with households of size two, we use counterfactual theory
under interference to provide formal definitions of a contagion effect and an unconditional
infectiousness effect. Using ideas analogous to mediation analysis, we show that the indirect effect
(the effect of one person’s vaccine on another’s outcome) can be decomposed into a contagion
effect and an unconditional infectiousness effect on the risk-difference, risk-ratio, odds-ratio and
vaccine-efficacy scales. We provide identification assumptions for such contagion and
unconditional infectiousness effects, and describe a simple statistical technique to estimate these
effects when they are identified. We also give a sensitivity-analysis technique to assess how
inferences would change under violations of the identification assumptions. The concepts and
results of this paper are illustrated with hypothetical vaccine-trial data.

Administering a vaccine to one or several persons in a population may protect not only those
vaccinated but also others as well. In the causal inference vaccine literature, the protection
afforded unvaccinated people has been called the indirect effect of vaccination. A number of
papers have considered the methodology of estimating such indirect effects.1–5 Two distinct
mechanisms may contribute to such an indirect effect. Suppose there are two persons in a
household and we vaccinate the first. Vaccinating the first person may prevent the infection
in the first, thus preventing the first from infecting the second. Alternatively, vaccinating the
first person may protect the second because, even if infected, the vaccinated first person may
be less infectious, and not infect the second. This is referred to as an “infectiousness
effect.”6–8 We will refer to the former as a “contagion effect”, following terminology in the
social network literature,9 though we acknowledge that “infectiousness” and “contagion” are
sometimes used interchangeably in the infectious disease literature. Establishing that
vaccination can have indirect effects and estimating the effects of vaccination on reducing
infectiousness for others can have important implications for global vaccine policy.

As an example, consider the individually randomized, double-blind, placebo-controlled trial
of an acellular pertussis vaccine among infants in Sweden in the early 1990s.10 In addition
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to the usual protective effects, the investigators were interested in estimating the indirect
protection of vaccination on siblings and parents in the households of the randomized
infants. Based on person-time at risk, under one case definition, the estimated indirect
effects in younger siblings was 0.61 (95% confidence interval [CI] = 0.15–0.83) and in
parents 0.58 (95% CI 0.20–0.80). Similar “minicommunity” designs have been used to
estimate indirect effects of vaccination for settings including influenza, cholera, and
pneumococcus vaccination.5

Consider now a slightly different vaccine trial setting in which one-year-olds at a day-care
center are randomized to receive pneumococcal conjugate vaccine against a given
pneumococcus serotype. The colonization status with respect to the given serotype of the
one-year-old and one of its parents (the mother, say) is also monitored. Because
pneumococcus is highly prevalent in young children who attend day care, the mother is
much more likely to acquire the pneumococcus from the child than through other
transmission routes. In settings in which it can effectively be assumed that, at least for the
study period, the second person (e.g. the mother) can be infected only from the first (e.g. the
one-year-old), the indirect effect itself can be decomposed into a contagion effect and what
will be defined below as an unconditional infectiousness effect. Understanding what
proportion of an indirect effect is due to decreasing infectiousness can give insight into the
mechanism by which the vaccine protects others.

We draw on theory for causal inference under interference3,4,7,11 and on mediation
analysis12–15 to provide formal counterfactual decompositions for each of these effects. We
show that these decompositions hold for the risk-difference, risk-ratio, odds-ratio and
vaccine-efficacy scales. We discuss assumptions that suffice to identify these effects from
vaccine trial data and propose a simple statistical modeling strategy to estimate these effects.
We describe a sensitivity analysis technique that can be employed to assess the sensitivity of
the estimates to violations in the assumptions.

Many of the methodological developments in this paper are accomplished using ideas from
mediation analysis. Mediation analysis is a set of tools and techniques for assessing the
extent to which an exposure affects an outcome through particular pathways. For example,
one might assess the extent to which the effect of an exposure on an outcome is mediated by
a particular intermediate variable and the extent to which it is “direct” or through other
pathways. Within the context of a vaccine trial, we take the vaccine status of one person as
the exposure variable, the infection status of that person as the intermediate variable, and the
infection status of a second person in the same household as the outcome variable. We
consider effect measures and assumptions to interpret estimates causally within this context.
We illustrate the methodology by analyzing data that might arise from a hypothetical
vaccine trial (cf. Table 1) such as the pneumococcal vaccine trial among one-year-olds
considered above. In the discussion we further consider implications of the methodology for
infectious disease epidemiology.

Concepts and Definitions
To begin, we consider a setting similar to previous literature7,8 in which there are N
households indexed by i = 1, …, N such that each household consists of two persons
indexed by j = 1, 2. We let Aij denote the vaccine status for individual j in household i,
where Aij = 1 denotes vaccinated and Aij = 0 denotes not vaccinated. We let Yij denote the
infection status of individual j in household i after some fixed follow-up period, with Yij = 1
denoting infection and Yij = 0 denoting no infection.

The counterfactual framework defines causal effects in terms of contrasts of hypothetical
scenarios or interventions, some of which may be contrary to fact. For example, Yij(ai1, ai2)
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denotes the potential infection outcome for person j in household i if the two persons in that
household had, possibly contrary to fact, vaccination status of (ai1, ai2). Thus, Yi2(1, 0)
denotes the potential outcome of person 2 if person 1 receives vaccine and person 2 does
not; and Yi1(0, 0) denotes the potential infection outcome of person 1 if neither person 1 nor
person 2 received the vaccine. For a particular person, say person 1, we have four potential
outcomes in this setting: Yi1(0, 0), Yi1(0, 1), Yi1(1, 0), Yi1(1, 1). We could then consider
various contrasts of these potential outcomes as causal effects. The potential outcomes are
related to the observed data by a consistency assumption that, when the actual vaccine status
(Ai1, Ai2) = (ai1, ai2), the actual observed outcomes Yij = Yij(ai1, ai2). Thus, for a particular
household and particular person we actually observe only one of these four potential
outcomes: the one corresponding to the vaccine status that actually occurred. We thus will
not be able to estimate the causal effects for a particular person and a particular household.
However, if vaccine is randomly assigned, we can hope to estimate a population average
effect. In this paper, we define our average causal effects using this “potential outcomes” or
counterfactual notation, as it allows for precise definitions for contagion and infectiousness
effects.

Under the notation above, the potential outcome for individual 1, Yi1(ai1, ai2) depends on the
vaccine status of both person 1 and person 2, and likewise the potential outcome for
individual 2, Yi2(ai1, ai2) depends on the vaccine status of both persons. Thus, the exposure
status of one person could affect the outcome of another. In the statistics literature, this is
sometimes referred to as interference or spillover effect.3,4,16–19 Most literature in causal
inference assumes there is no interference,16,20 so that one person’s outcome does not
depend on the exposure of others. In the current context this would imply that Yi1(ai1, ai2) =
Yi1(ai1) and Yi2(ai1, ai2) = Yi2(ai2) so that each person’s outcome depends only on his or her
own exposure status. This assumption of no interference is implausible in the infectious
disease context2, and so we do not make it here. We do, however, assume the exposure
status of persons in one household in the study does not affect the outcomes of those in other
study households, sometimes called an assumption of partial interference.3,17 This might be
plausible if the various households are sufficiently geographically separated or do not
interact with one another. In the case of a vaccine trial, where a few households are
randomly sampled from a large city and the cluster is treated as the household, this
assumption is perhaps not unreasonable - but it is unlikely to hold exactly. Importantly, this
assumption pertains to household units in the study, not to all households that might have
been in the study.

Throughout this paper we assume a simple randomized experiment in which one of the two
persons is randomized to receive a vaccine or control and the second person is always
unvaccinated. This could correspond to the hypothetical pneumococcal vaccine trial
described above where we are interested in the effect on the mother of vaccinating the one-
year-old. In the Discussion we consider relaxing these assumptions. We will let j = 1 denote
the individual who may or may not be vaccinated and j = 2 the individual who is always
unvaccinated. The methodology below and the definitions used will still be applicable even
if some persons in the study are immune to infection.

Using the counterfactual notation, the average indirect effect is

i.e. the difference in infection status for person 2 if person 1 is vaccinated versus
unvaccinated.8
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If vaccine status is randomized, this can be estimated by7,8:

Halloran and Hudgens8 also refer to this as the “ITT (intention to treat) indirect effect.”

To proceed with decomposing this indirect effect into the two effects we need to consider
counterfactuals of a different form. From this point onwards, we assume that only person 1,
not person 2, can be infected from outside the household; person 2 can be infected only by
person 1. Thus if Yi1(ai1, ai2) = 0 then Yi2(ai1, ai2) = 0. This could again correspond to a
vaccine trial for pneumococcal conjugate vaccine for one-year-olds at the day-care center.

Suppose that in addition to potentially intervening to give person 1 the vaccine we could
also, at least hypothetically, intervene to infect or not infect person 1. Then Yi2(ai1, ai2, yi1)
would denote the infection status of person 2 if we would set the vaccine status of person 1
and person 2 to ai1 and ai2 and the infection status of person 1 to yi1. This in some sense
formalizes, using counterfactual notation, ideas that were proposed by Halloran and
Struchiner.2

The assumption that individual 2 is always unvaccinated allows a simplified notation.
Counterfactuals Yi1(ai1, ai2) and Yi2(ai1, ai2) can be written as Yi1(ai1) := Yi1(ai1, 0) and
Yi2(ai1) := Yi2(ai1, 0). We are still assuming interference/spillover in that the vaccine of
person 1 affects the outcome of person 2. This simple setting in which person 2 always
remains unvaccinated also allows us to rewrite the counterfactual Yi2(ai1, ai2, yi1) as Yi2(ai1,
yi1) := Yi2(ai1, 0, yi1). We thus consider counterfactuals of the form Yi1(ai1), Yi2(ai1) and
Yi2(ai1, yi1). The direct effect of person 1’s vaccine on person 1’s outcome is E[Yi1(1) −
Yi1(0)]; the indirect effect of person 1’s vaccine on person 2’s outcome is simply E[Yi2(1) −
Yi2(0)]. In the next section we will use these counterfactuals to define contagion and
unconditional infectiousness effects.

Contagion and Infectiousness Effects
Consider now the counterfactual contrast

The term Yi2(0, Yi1(1)) considers what the potential infection outcome of person 2 is if
person 1 is left unvaccinated but we set the infection status of person 1 to the level it would
have been if person 1 was vaccinated. The contrast compares this counterfactual to Yi2(0,
Yi1(0)), the potential infection outcome of person 2 if person 1 is not vaccinated, but we set
the infection status of person 1 to the level it would be if person 1 was unvaccinated. For this
contrast to be non-zero, Yi1(1) and Yi1(0) have to differ, i.e. vaccination of person 1 would
have to affect the infection status of person 1, and that change in infection for person 1
would have to change the infection status for person 2, even if person 1 had been left
unvaccinated. Essentially, the contrast is non-zero if the vaccine prevents infection in person
1, and that in turn prevents person 2 from being infected. We refer to this counterfactual
contrast as a contagion effect.9

Consider now the contrast
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This compares the potential infection outcome of person 2 if person 1 had been vaccinated
versus unvaccinated and person 1 had the infection status that would occur if vaccinated.
This contrast will be non-zero only if person 1 is infected when vaccinated (becasuse person
1’s vaccination status will not affect person 2’s outcome unless person 1 is infected). If the
contrast is non-zero, this will be because even when person 1 is vaccinated and infected, the
vaccine itself affects whether person 2 is infected by person 1. This is a novel measure. It is
in some ways analogous to what in infectious disease epidemiology is called an
infectiousness effect.6,21 However, this new measure differs in essential ways from the
ordinary or “conditional infectiousness effect” in that it does not condition on person 1
actually being infected. The standard (conditional) infectiousness effect would, in contrast,
compare outcomes for person 2 when person 1 is, versus is not, vaccinated but conditional
on person 1 actually being infected. Counterfactual formalizations of the standard
infectiousness effect have been proposed previously.7,8 We further discuss the relation of the
conditional and unconditional infectiousness effects in the context of the hypothetical
example and in the discussion section. Until then, however, our discussion will focus on this
new “unconditional infectiousness effect” and we will thus omit the word “conditional”
before “infectiousness effect” unless otherwise needed for clarity.

These counterfactual definitions of the contagion and infectiousness effects have the
desirable feature that we can decompose an indirect effect into a contagion and an
infectiousness effect by taking the indirect effect and adding and subtracting the term
E[Yi2(0, Yi1(1)]]:

where the first term in the sum is the infectiousness effect and the second term in the sum is
the contagion effect. This decomposition is analogous to what in the mediation analysis
literature is sometimes referred to as “natural direct and indirect effects.”12,13 We exploit
this analogy in our discussion of identification, estimation, and sensitivity analysis. The term
“indirect effect” is used differently in mediation analysis than in causal inference with
interference. In mediation analysis, “indirect effect” describes the effect of an exposure on
an outcome for one person that operates through some intermediate or mediator in that same
person, also called a mediated effect. In causal inference in the presence of interference, the
indirect effect (also called a “spillover effect” in the social sciences) of, say, vaccinating
some persons in a population, is a contrast of potential outcomes comparing the outcomes in
those other persons who did not receive the vaccine to what their outcomes would have been
if the vaccinated persons were not vaccinated. Further discussion is given in the Appendix
and a glossary presented in Table 2 is to help guide the reader through the various terms
used in the paper.

Thus far we have been considering measures of effect on a risk-difference scale. However,
risk-ratio, odds-ratio, or vaccine-efficacy measures are more commonly employed in the
vaccine literature. The effects and their decomposition described above have analogs for
ratio and vaccine-efficacy measures. For example, the indirect effect on the risk ratio and

odds-ratio scale could be defined as  or . The decomposition for the risk
ratio is
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Here the first term in the product is the infectiousness effect on the risk-ratio scale and the
second term is the contagion effect on the risk-ratio scale; the indirect effect is the product
of the contagion and infectiousness effects on the risk-ratio scale, rather than their sum. A
similar decomposition holds for odds-ratio measures.

Similar definitions and a somewhat analogous decomposition holds with a vaccine efficacy
measure. As in Halloran and Hudgens,8 the vaccine efficacy measure for the indirect effect
would be defined as:

We might likewise define vaccine efficacy for the contagion effect and infectiousness effect
as:

Some algebra gives:

and we thus have:

In words, the vaccine efficacy measure for the indirect effect is the sum of the vaccine
efficacy for the contagion effect and that of the infectiousness effect, where the vaccine

efficacy of the infectiousness effect is adjusted by the factor  to account for the
fact that when the infectiousness effect operates, the contagion effect has essentially already
occurred (the infectiousness effect makes the infection less infectious but this infectiousness
effect will not operate if the vaccine in fact prevents person 1 from being infected).

Each of these effect measures could be defined conditional on covariates Ci. For example,
the contagion and infectiousness effects on the risk ratio scale conditional on covariates Ci =

c would be  and .

Identification of Contagion and Infectiousness Effects
We have defined the contagion and unconditional infectiousness effects in terms of
counterfactuals not immediately estimable from the data. Although these effects may be of
substantive interest, we cannot estimate them without further assumptions. Suppose that data
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are available on some set of baseline covariates Ci that may be attributes of person 1 or of
person 2 or of their household. Conditional on the set of covariates Ci we make the
following assumptions:

i. The effect of Ai1 on Yi2 is unconfounded conditional on Ci

ii. The effect of Yi1 on Yi2 is unconfounded conditional on (Ci, Ai1)

iii. The effect of Ai1 on Yi1 is unconfounded conditional on Ci

iv. Given that (ii) holds, there is no confounder of the relationship between Yi1 and Yi2
that is itself affected by Ai1

Under these four assumptions, the contagion and infectiousness effects are identified from
the data. In the appendix we give formal counterfactual statements of these assumptions
(equivalent to (i)–(iv) above on causal diagrams interpreted as in Pearl13), along with proof
of identifiability and empirical formulas for identification. The assumptions can also be
usefully illustrated, as below, using the diagram in the Figure, which assumes the vaccine
status of person 1 is randomized.

We now describe the four assumptions in a bit more detail. If, as assumed, vaccine status of
person 1 is randomized, then assumptions (i) and (iii) will hold by randomization. In an
observational setting, assumptions (i) and (iii) would hold only if a sufficiently rich set of
covariates Ci were available such that vaccination was effectively randomized within strata
of covariates Ci.

Assumption (ii) effectively requires that within the set of available covariates Ci we have all
variables that are common causes of person 1’s infection status and person 2’s infection
status (see the Figure). Such common causes might include, for example, environmental
factors related to the sanitary, spatial and nutritional characteristics of the household.
Assumption (ii) is a strong assumption. It can perhaps be made more plausible by attempting
to control for such variables, but in general it will not be possible to verify assumption (ii).
Assumption (iv) by contrast is arguably somewhat weaker: it requires that of all the common
causes of person 1’s and person 2’s infection status, none is affected by the vaccine itself,
i.e., there is no arrow from Ai1 to Ci in the Figure. Because most of these common causes
are likely to be characteristics of the household environment, it seems reasonably plausible
that such characteristics would not be changed by the vaccine.

The key to identifying the contagion and infectiousness effects thus arguably lies with trying
to ensure the validity of assumption (ii): trying to adjust for covariates that may be common
causes of person 1’s and person 2’s infection status.

Statistical Models to Estimate Contagion and Infectiousness Effects
Now we consider two logistic regression models to estimate these effects when they are in
fact identified. Suppose the following two logistic regression models are fit to the observed
data, (i) for the probability of infection for person 1 conditional on person 1’s vaccine status
a1 and the covariates c and (ii) for the probability of infection for person 2, conditional on
person 1’s vaccine status a1, person 1’s infection outcome and the covariates c:

The model for person 2’s infection status allows for potential statistical interaction between
the effects of the vaccine status and infection status of person 1. Such interaction is likely
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because the vaccine status of person 1 is unlikely to have an effect on whether person 2 is
infected unless person 1 is in fact infected.

The following results suppose that the infection outcome for person 2 is rare enough for the
odds ratios to approximate risk ratios and the logistic link to approximate a log link. If the
infection outcome for person 2 is not rare, then the results given below will hold if the
logistic regression model for Y2 is replaced by a log-linear model while the model for Y1 is
kept as a logistic model. No rare-outcome assumption or log-linear model is needed for Y1.

If covariates Ci satisfy assumptions (i)–(iv), and the models above are correctly specified,
then, as shown in the Appendix, the contagion effect on the risk-ratio scale conditional on
the covariates Ci = c is given by:

(1)

and the infectiousness effect on the risk-ratio scale conditional on the covariates is given by:

(2)

These expressions can be obtained directly from the estimates of the logistic regression
parameters. In the Appendix we discuss adapting SAS and SPSS macros for mediation
analysis15 to compute these contagion and infectiousness effects together with their standard
errors and confidence intervals.

Sensitivity Analysis for Contagion and Infectiousness Effects
Identification and estimation of the contagion and infectiousness effects depend critically on
assumptions (i)–(iv). Unfortunately, these are fairly strong assumptions, especially
assumption (ii). In this section we give a relatively straightforward sensitivity analysis
technique that can be employed to assess how vulnerable one’s estimates and conclusions
are to violations of assumption (ii). The technique assumes there is an unmeasured binary
confounding variable U that is a common cause of the infection status of person 1 and
person 2, and that assumptions (i)–(iv) would hold conditional on (Ci, U ) but not on the
measured covariates Ci alone. The investigator can then specify sensitivity parameters
corresponding to (i) the effect of the unmeasured confounding U on the infection status of
person 2 conditional on the vaccine status of person 1, the infection status of person 1, and
the observed covariates Ci and (ii) the prevalence of U within each stratum defined by the
vaccine status of person 1 and the infection status of person 1, conditional on the observed
covariates Ci. The technique then uses the estimates obtained by controlling only for
observed covariates Ci, along with these sensitivity parameters, to calculate the corrected
estimates that would have been obtained had it been possible to control for the unmeasured
confounding variable U as well. The sensitivity-analysis parameters can be varied across a
range of plausible values to assess how sensitive the conclusions and estimates are to a
potential unmeasured common cause of the infection status of person 1 and person 2.

The technique assumes that the effect of U on the infection status of person 2 is constant
across the vaccine status of person 1 and the infection status of person 1, and is given by
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The sensitivity analysis parameter γ thus captures the effect of U on the infection status of
person 2. The investigator also specifies the prevalence of U in each stratum defined by the
vaccine status of person 1 and the infection status of person 1 conditional on the observed
covariates Ci:

From these sensitivity analysis parameters the following can be calculated

It follows from derivations in VanderWeele22 that if we let

and replace (θ1, θ2, θ3) with ( ) in formulas (1) and (2), this gives corrected
contagion and infectiousness effect estimates corresponding to what would have been
obtained had we been able to adjust for U and Ci rather than only the observed covariates Ci
alone. In general we will not know the true values of the sensitivity-analysis parameters;
however, varying the parameters γ and π00, π10, π01, π11 will give some sense as to how
sensitive the results are to potential unmeasured common causes of the infection status of
person 1 and person 2. The sensitivity technique is of course also limited by the assumptions
made, which are (i) a single unmeasured binary confounder and (ii) the effect of U on the
infection status of person 2 is constant across vaccine status of person 1 and infection status
of person 1.

Illustration
Consider data from a hypothetical vaccine trial in Table 1 in which one-year-olds (j = 1) are
randomized to pneumococcal conjugate vaccine with follow-up for both the one-year-olds
and their mothers (j = 2). In this example, pneumococcus is assumed to be highly prevalent
in children in day care, so that the mother is much more likely to acquire the pneumococcus
from the child than through other transmission routes. It is assumed that during the study
period the mother is infected only from the one-year-old. Suppose we fit a logistic model for
the probability of infection for person 1 conditional on person 1’s vaccine status a1 and the
covariates c and a log-linear model for the probability of infection for person 2, conditional
on person 1’s vaccine status a1, person 1’s infection outcome and the covariates c. Using
expressions (1) and (2) above for the contagion and infectiousness effects, and setting the
covariate to its mean value, we obtain, on the risk-ratio scale, under assumptions (i)–(iv), an
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overall estimate of the indirect effect of 0.63 (95% CI: 0.56, 0.70), an estimate of the
contagion effect of 0.80 (95% CI: 0.74, 0.85) and an estimate of the infectiousness effect of
0.79 (95% CI: 0.71, 0.87). The indirect effect on the risk-ratio scale decomposes into the
product of the contagion and infectiousness effects: 0.63 = 0.80 × 0.79. On the vaccine-
efficacy scale, we would have an overall indirect effect of 1 − 0.63 = 37%, a contagion
effect of 1−0.80 = 20%, an infectiousness effect of 1−0.79 = 21%, and vaccine-efficacy
component due to the infectiousness effect of (0.80)(21%) = 17% (essentially taking into
account the fact that the infectiousness effect will operate only if the contagion effect has
not). We can then decompose the indirect effect on the vaccine efficacy scale into the sum of
the contagion effect and the component due to infectiousness: 37% = 20% + 17%. In this
hypothetical example, roughly equal portions of the indirect effect of person 1’s vaccine on
person 2’s infection status appear to be due to the contagion effect versus the infectiousness
effect.

Discussion
In this paper we have considered how an indirect effect of vaccination of one person on the
outcome of another can be decomposed into two components: one corresponding to the
vaccine preventing the infection in person 1, which then protects person 2 (the contagion
effect), and another corresponding to the fact that even if person 1 is infected the vaccine
may render the infection less infectious (the unconditional infectiousness effect). A
conditional infectiousness effect has been considered in other work in the vaccine
literature.6,21,23 Within causal inference, Halloran and Hudgens8 and VanderWeele and
Tchetgen Tchetgen7 define causal estimands for the conditional infectiousness effect by
examining the effect of the vaccine of person 1 on the infection status of person 2 in the
principal-stratum24 in which person 1 would be infected irrespective of vaccine status.
Issues of inference for this conditional infectiousness effect are described elsewhere.7,8 This
infectiousness effect based on principal strata is different than that considered here:
essentially the “principal stratum” infectiousness effect is a conditional effect (it conditions
on the subgroup for which person 1 would be infected irrespective of vaccine status), and
the traditional infectiousness effect conditions on person 1 being infected regardless of
principal stratum. However, the infectiousness effect considered here is an unconditional
infectiousness effect - it averages over also those clusters for whom person 1 is uninfected
(for which any potential infectiousness effect of the vaccine would not have the opportunity
to operate).

These issues are important in the interpretation of these effects; both types of infectiousness
effects (conditional and unconditional) could potentially be reported. Using the methodology
and assumptions of VanderWeele and Tchetgen Tchetgen,7 an upper bound on the
conditional infectiousness effect on the risk-ratio scale from the data in Table 2 would be
0.57 (a lower risk ratio implies a stronger protective effect). This is lower than the
unconditional infectiousness effect risk ratio of 0.79 reported above. Again, this is in part
because the conditional infectiousness effect already conditions on person 1 being infected,
whereas the unconditional infectiousness effect essentially includes in the denominator those
households in which person 1 is not infected. The advantage of the infectiousness effect
given in this paper (the unconditional version) is that it can be used to decompose the overall
effect into the contagion and infectiousness components.

Our work here could be extended in a number of directions and is also subject to various
limitations. First, we have considered the setting in which there are two persons per cluster
and only one person is randomized to vaccination. However, in settings in which both are
randomized to vaccination, the analysis could be pursued separately for households in which
person 2 is or is not vaccinated. Another simple extension to the work here might involve
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settings in which only one person in each household is randomized to vaccine but outcome
data are collected on numerous additional persons per household. In such cases the outcome
Yi2 in this paper could be replaced with the proportion in the household who are infected
(other than the person randomized); the logistic regression would then have to be replaced
with a linear or log-linear regression, but similar methods from the mediation-analysis
literature could potentially be adapted and applied.15 If the numbers in each household vary
across households, this number could also be controlled for in the analysis.

One limitation of the approach described here is that the analysis assumes that the regression
models have been correctly specified. In settings with a large number of covariates this may
be a difficult assumption to make plausible. Future research could consider adapting robust
statistical methods from the mediation analysis literature25 to help deal with this issue of
model specification. Another limitation is that we have assumed that only person 1, not
person 2, can be infected from outside of the household. While this may be plausible in
some situations, in many other settings the assumption would likely not hold. Future
research could consider extending the current methodology to settings in which both persons
can be infected outside the household by using data on the timing of infections, as in
Halloran and Hudgens.8

In some individually randomized, controlled vaccine trials, it may be straightforward to
enroll households of trial participants for follow-up. A similar suggestion, called the
augmented study design,26,27 was made to estimate vaccine efficacy for infectiousness in
HIV vaccine trials. Such studies would be relatively cost-effective and allow for estimating
indirect effects and infectiousness effects. In some settings they would allow one to carry
out the decomposition described in this paper. Estimates of indirect effects and vaccine
effects on infectiousness can influence global vaccine policy decisions. Moreover,
understanding what proportion of an indirect effect is due to decreasing infectiousness can
give insight into the mechanism by which the vaccine protects others, and could perhaps
also allow for further vaccine refinement and development. It is thus important to consider
collecting outcome data on other household members in vaccine trials. Such studies would
allow estimation of a number of the effects described in this paper.
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Appendix

Formalizations and Derivations
In this appendix we give a formal statement of the identification assumption (i)–(iv) in the
text, provide non-parametric empirical expressions for the contagion and unconditional
infectiousness effects when they are identified, and derive closed form expressions for these
when logistic or log-linear regression models are used to model the probabilities of infection
and provide a sensitivity analysis technique when the identification assumptions are
violated. Most of this is accomplished by noting an analytic relation between the contagion
and infectiousness effects defined in the text and what are sometimes called “natural direct
and indirect effects” in mediation analysis12–15,22. In mediation analysis, interest lies in
assessing the extent to which the effect of an exposure A on outcome Y is mediated by some
intermediate M. If we take the exposure as person 1’s vaccine status, the mediator as person
1’s infection status, and the outcome as person 2’s infection status, then the contagion and
unconditional infectiousness effects defined in this paper correspond to the “total” natural
direct effect and the “pure” natural indirect effect in mediation.12,14,28

We use X ⫫ Y |Z to denote that X is conditionally independent of Y given Z. In
counterfactual notation, identification assumptions (i)–(iv) in the text can be formally stated
as:

i. Yi2(ai1, yi1) ⫫ Ai1|Ci

ii. Yi2(ai1, yi1) ⫫ Yi1|(Ci, Ai1)

iii. Yi1(ai1) ⫫ Ai1|Ci

iv.

where  is simply a different value of Ai1 than ai1. Drawing the analogy mediation analysis,
the interpretation of (i)–(iv) above is essentially (i)–(iv) in the text13,14.

Assumptions (i) and (iii) will hold if Ai1, the vaccine status of person 1, is randomized.
Assumptions (ii) and (iv) are substantial and would have be to determined on subject matter
grounds. Under assumptions (i)–(iv), the contagion and infectiousness effects are identified
from the vaccine trial data. To see this, note that:

where the first equality holds by iterated expectations, the second by assumption (iv), the
third by assumptions (i) and (iii), the fourth by assumption (ii) and the final equality holds
by a consistency assumption. The final expression is given in terms of the observed data. If

we first let ai1 = 0,  and then ai1 = 0, , the contagion effect conditional on Ci is
given by E[Yi2(0, Yi1(1)) − Yi2(0, Yi1(0))|c] =
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If we first let ai1 = 1,  and then ai1 = 0,  the infectiousness effect is given by
E[Yi2(1, Yi1(1)) − Yi2(0, Yi1(1)|c] =

The contagion effect then contrasts the observed expectation E[Yi2|Ai1 = 0, y1, c] as
standardized by the distribution of the infection status of person 1 among the households
with person 1 vaccinated versus unvaccinated. The infectiousness effect is the observed
expectation contrast E[Yi2|Ai1 = 1, y1, c] − E[Yi2|Ai1 = 0, y1, c] standardized by the
distribution of the infection status of person 1 among the households with person 1
vaccinated.

Likewise on a risk ratio scale the contagion effect is given by:

and the infectiousness effect is given by:

Suppose the following two models were fit to the data:

and that the infection outcome Y2 for person 2 is sufficiently rare so that odds ratios
approximated risk ratios (and the logit link approximated a log-link). Using these models for
the conditional predicted probabilities for Y1 and Y2 gives, for the contagion effect:

and for the infectiousness effect:
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If the infection outcome for person 2 is not rare then the results above will hold if the
logistic regression model for Y2 is replaced by a log-linear model but the model for Y1 is
kept as a logistic model. No rare outcome assumption or log-linear model is needed for Y1.
Standard errors and confidence intervals for these expressions can be obtained via the delta
method as in Valeri and VanderWeele.15 In fact, the SAS and SPSS macros in Valeri and
VanderWeele15 can be directly adapted to estimate these effects and their standard errors
and confidence intervals by: specifying the exposure as the vaccine status of person 1, the
mediator as the infection status of person 1, the outcome as the infection status of person 2,
the outcome model as logistic (or log-linear if the infection outcome for person 2 is not
rare), the mediator model as logistic and requesting the option that the full output be given.
The estimates reported for the “pure natural indirect effect” can then be taken as a measure
of the contagion effect on the conditional risk ratio scale and that reported for the “total
natural direct effect” can be taken as the measure of the unconditional infectiousness effect
on the conditional risk ratio scale. The macro provides standard errors and confidence
intervals for these estimates. The formal analytic relation between natural direct and indirect
effects and the contagion and unconditional infectiousness effects also allows us to adapt
sensitivity analysis techniques for natural direct and indirect effects22 to apply to contagion
and infectiousness effects as in the text.

A few further technical comments merit attention. VanderWeele and Tchetgen Tchetgen7

provided an alternative definition of the infectiousness effect on a ratio scale as E[Yi2(1,
Yi1(1))|Yi1(1) = Yi1(0) = 1]/E[Yi2(0, Yi1(0))|Yi1(1) = Yi1(0) = 1] i.e. the effect of the
vaccine of person 1 on the infection status of person 2 in the principal stratum24 in which
person 1 would be infected irrespective of vaccine status. This infectiousness effect is
“conditional” in the sense that it is conditional on the subgroup for which person 1 would be
infected irrespective of vaccine status, whereas the infectiousness effect in the text is an
unconditional infectiousness effect - it averages over also those households for whom person
1 is uninfected. Yet another definition of an infectiousness effect could be given as E[Yi2(1,
1)|c]/E[Yi2(0, 1)|c] i.e. the effect of the vaccine of person 1 on the outcome of person 2,
intervening to set person 1’s infection status to positive. This effect is analogous to the
“controlled direct effect”12,13 in the mediation literature. Under assumptions (i) and (ii)
above it is identified by E[Yi2|Ai1 = 1, Yi1 = 1, Ci = c]/E[Yi2|Ai1 = 0, Yi1 = 1, Ci = c]. It is a
marginal effect insofar as it is for the entire population for which Ci = c; however it is
“conditional on infection” in the sense that it considers a hypothetical contrast in which, in
all house-holds, person 1 is infected. Under the logistic regression models given above
(assuming rare outcome or using a log-linear model rather than logistic model for Yi2), this
would be eθ1+θ3. It should also be noted that under the exclusion restriction that the vaccine
of person 1 does not affect the infection status of person 2 unless person 1 is infected we
would have E[Yi2(1, 0)|c]/E[Yi2(0, 0)|c] = 1. Under assumptions (i) and (ii) and the two
regression models we then have 1 = E[Yi2(1, 0)|c]/E[Yi2(0, 0)|c] = E[Yi2|Ai1 = 1, Yi1 = 0, Ci
= c]/E[Yi2|Ai1 = 0, Yi1 = 0, Ci = c] = eθ1 i.e. θ1 = 0. This implication of the exclusion
restriction can be tested empirically.
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A Note on Terminology
In this paper we have exploited relations between what we have defined as the “contagion
and unconditional infectiousness effects” on the one hand and “natural direct and indirect
effects” on the other. Because of the terminological overlap, the language employed can be
somewhat confusing. In mediation analysis13, “indirect effect” is used to describe situations
in which the effect of an exposure on an outcome for one person operates through some
intermediate or mediator for that individual. The “contagion effect” and “infectiousness
effect” in this paper are, analytically somewhat analogous to the “natural indirect effect” and
“natural direct effect”, respectively, in mediation analysis. The “contagion effect” is
essentially the effect of person 1’s vaccine on person 2’s infection outcome mediated by
person 1’s infection outcome. The “ unconditional infectiousness effect” is essentially the
effect of person 1’s vaccine on person 2’s infection outcome not mediated by person 1’s
infection outcome.

In the infectious disease and vaccine literature, the “indirect effect of vaccination” has one
more general usage and also a more technical meaning.1 In general, an “indirect effect of
vaccination” is used to describe settings in which vaccination of one person affects the
outcome of another individual. This is a specific case of the dependent happenings described
by Sir Ronald Ross29 wherein the number of events depends on how many others are
already affected. However, in the causal inference literature for vaccine effects, there are
several effects of vaccination strategies due to the interference between individuals2,
wherein the treatment assignment of one person affects the potential outcomes of other
persons.16,19,20 In this literature, the indirect effect of vaccination is the effect of a
vaccination strategy in a population in those individuals, or a subpopulation of those
individuals, who were not vaccinated. The total effect of vaccination is the effect of a
vaccination strategy in a population in those individuals, or a subpopulation of those
individuals, who were vaccinated. There have been a number of more recent formal papers
on these indirect and total effects in the presence of interference3,4,11. In other statistical and
causal inference literature effects due to interference are sometimes called “spillover
effects”.17

In this paper, we have decomposed the “indirect effect of a vaccination” in the literature on
causal inference in the presence of interference into the “natural indirect effect” and “natural
direct effect” of mediation analysis. Because these two literatures, causal inference in the
presence of interference on the one hand and causal inference mediation analysis on the
other hand - use the same terms for different concepts, and moreover because, as we have
seen in this paper, these concepts are not entirely unrelated, it is important to clarify in each
instance specifically the various terms being employed.
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Figure.
Vaccine trial in which person 1 is randomized to vaccine and person 2 does not receive the
vaccine. Ai1 denotes the vaccine status of person 1; Yi1 denotes the infection status of
person 1; Yi2 denotes the infection status of person 2; Ci denotes individual and household
covariates for household i.
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Table 1

Numbers infected, (Yi1, Yi2), from a hypothetical randomized trial of pneumococcal conjugate vaccine with
2000 households, where person 1 (one-year-old) was randomized to 1:1 to vaccine or control, and person 2
(the mother) was not vaccinated (vaccination status (Ai1, Ai2)) and half the households have either low or high
socioeconomic status (SES)

Yi1 = 0, Yi2 = 0 (n=1200) Yi1 = 1, Yi2= 0 (n=416) Yi1 = 1, Yi2= 1 (n=384) Total (n=2000)

Low SES: Ai1 = 0, Ai2 = 0 200 120 180 500

 Ai1 = 1, Ai2 = 0 350 96 54 500

High SES: Ai1 = 0, Ai2 = 0 250 125 125 500

 Ai1 = 1, Ai2 = 0 400 75 25 500
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Table 2

Glossary of main terms used in this paper. (Note that the relation of the terms used in this paper to what is
standard in the mediation analysis is detailed in the “Note on Terminology” in the Appendix and also in the
main text.)

Indirect Effect /Spillover Effect: The effect the vaccine status of other people on a particular individual’s outcome

Contagion Effect: The effect of one person’s vaccine on another’s outcome by preventing the first from being infected; analytically somewhat
analogous to the natural indirect effect of mediation analysis.

(Conditional) Infectiousness Effect: The effect of a vaccine on rendering the infection of an infected person less infectious

(Unconditional) Infectiousness Effect: An infectiousness effect that averages over also those households for whom person 1 is uninfected;
analytically somewhat analogous to the natural direct effect of mediation analysis.

Direct Effect: The effect of a person’s vaccination status on his or her outcome

Interference: The phenomenon whereby the exposure (vaccination) of one person can affect the outcome of another.

Epidemiology. Author manuscript; available in PMC 2013 September 01.


