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Abstract
Background—Blood leukocytes from patients with solid tumors exhibit complex and distinct
cancer-associated patterns of DNA methylation. However, the biological mechanisms underlying
these patterns remain poorly understood. Since epigenetic biomarkers offer significant clinical
potential for cancer detection, we sought to address a mechanistic gap in recently published works,
hypothesizing that blood-based epigenetic variation may be due to shifts in leukocyte populations.

Methods—We identified differentially methylated regions (DMRs) among leukocyte subtypes
using epigenome-wide DNA methylation profiling of purified peripheral blood leukocyte subtypes
from healthy donors. These leukocyte-tagging DMRs were then evaluated using epigenome-wide
blood methylation data from three independent case-control studies of different cancers.

Results—A substantial proportion of the top 50 leukocyte DMRs were significantly
differentially methylated among head and neck squamous cell carcinoma (HNSCC) cases and
ovarian cancer cases compared to cancer-free controls (48 and 47 out of 50, respectively).
Methylation classes derived from leukocyte DMRs were significantly associated cancer case status
(p < 0.001, p < 0.03, and p < 0.001) for all three cancer types: HNSCC, bladder cancer, and
ovarian cancer, respectively and predicted cancer status with a high degree of accuracy (AUC =
0.82, 0.83, and 0.67).
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Conclusions—These results suggest that shifts in leukocyte sub-populations may account for a
considerable proportion of variability in peripheral-blood DNA methylation patterns of solid
tumors.

Impact—This illustrates the potential utility of DNA methylation profiles for identifying shifts in
leukocyte populations representative of disease, and that such profiles may represent powerful
new diagnostic tools, applicable to a range of solid tumors.
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Introduction
Over the past decade, major advances have been made toward the understanding of
pathogenesis by examining DNA methylation signatures between cancer and cancer-free
subjects. This has revealed profoundly aberrant patterns of DNA methylation in cancer and
has contributed to a growing understanding disrupted cellular functioning through epigenetic
mechanisms (1–4). Much of the research in cancer epigenetics however, has focused on
examining profiles of methylation within the target cells of the tumor tissue itself (5–9) and
only recently, has attention been directed toward examining methylation signatures in blood
for non-hematopoietic malignancies (10–15). In the first large-scale epigenome-wide study
of peripheral blood DNA methylation, profiles of blood-derived DNA methylation were
shown to predict active ovarian cancer with considerably high sensitivity and specificity,
AUC=0.80 (11). Subsequent studies involving epigenome-wide assessment of peripheral
blood methylation have revealed similarly impressive prediction performance; AUC = 0.70
in a study of bladder cancer (13), AUC = 0.73 in head and neck squamous cell carcinoma
(HNSCC) (15), and in a two phase study of pancreatic cancer, AUC values of 0.85 and 0.76
in phases 1 and 2, respectively, for differentiating cases and controls (14). These findings
suggest that assessment of DNA methylation in peripheral blood of cancer patients could
offer important new insights into the pathophysiology of cancer while also serving as a
promising new avenue for non-invasive cancer detection and diagnostics. Despite these
highly significant findings however, the biological mechanisms underlying these clinically
important results remains unclear.

Research examining peripheral blood DNA methylation have, through post-hoc
bioinformatic pathways analyses, suggested that profiles of DNA methylation alteration
associated with cancer are over-represented with genes involved in immune system
modulation (11–15), and so alterations in blood-derived DNA methylation may reflect
changes to the white blood cell (WBC) composition in peripheral blood as a mediator or
consequence of tumorigenesis (11). To date, no studies have conclusively, experimentally,
evaluated whether or not the observed differences in DNA methylation profile represent
differences in the underlying population of cells examined. Such a mechanistic
understanding of the observed associations is necessary for applying these novel molecular
diagnostic strategies in clinical practice.

Due to the potential clinical utility of new epigenetic biomarkers for early detection of
cancers (16,17), we sought to address this mechanistic gap. We hypothesized that epigenetic
signatures in blood that differentiate cancer cases from controls arise as a result of specific
immune responses represented by shifts in leukocyte populations. To address this
hypothesis, we first examined epigenome-wide DNA methylation in magnetic antibody
sorted, normal human peripheral blood leukocyte subtypes to discern differentially
methylated regions (DMRs) that differentiate leukocyte subtypes. These leukocyte-tagging
DMRs were then investigated using epigenome-wide blood methylation data from three
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independent case-control studies of different cancers: a HNSCC data set (15), an ovarian
cancer data set (11), and a bladder cancer data set (13). Through these analyses, we provide
a more thorough mechanistic understanding for the observed associations between
peripheral blood DNA methylation and the presence of solid tumors.

Methods
Study Population

Sorted, normal, human, peripheral blood leukocyte subtypes were purchased from AllCells
(Emeryville, CA). Leukocytes were isolated from different, anonyomous, non-diseased
individuals’ whole blood (Supplementary Figure 1) by magnetic activated cell sorting
(MACS) using a combination of negative and positive selection with highly specific cell
surface antibodies conjugated to magnetic beads. The samples were obtained from men in
67%, those of white race in 41%, and with a mean age of 29 (SD = 9.0). The purity of
separated cells was confirmed with flow cytometry to be >97% and included NK cells
(n=12), B-cells (n=5), T-cells (n=16), monocytes (n=5), and granulocytes (n = 8). Genomic
DNA was extracted and purified from cell pellets using a commercially available method
(Qiagen, Valencia, CA), treated with sodium bisulfite (Zymo Research, Irvine, CA) and
subjected to methylation profiling using the Infinium HumanMethyation27 BeadArray
(Illumina, San Diego, CA). This same platform was used for the analysis of samples from
the case-control studies described below.

The HNSCC data set has been previously described (15) and consisted of 92 incident cases
from the greater Boston area and 92 cancer-free population-based control subjects from the
same region (18). The clinical characteristics for this study population are contained in
Supplementary Table 2. The ovarian cancer data set (11) is publicly available from Gene
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/, Accession number
GSE19711), and consisted of 266 postmenopausal women diagnosed with primary epithelial
ovarian cancer (131 pre-treatment and 135 post-treatment cases) from the UK Ovarian
Cancer Population Study (UKOPS). Controls (n = 274) were cancer-free postmenopausal
women for which annual serum samples were available. To avoid potential biases due to
therapy, only pre-treatment ovarian cases were included in our analysis. Clinical
characteristics for the ovarian cancer data study population have been previously reported
and can be found in Teschendorff et al. (2009). The bladder cancer data set (13) consisted of
223 incident bladder cancer cases identified from the New Hampshire state cancer registry
and 237 population controls from the same region (19,20). Supplementary Table 3 provides
a summary of the participant characteristics.

Statistical Analysis
Our analytic strategy was aimed toward examining the extent to which peripheral blood
DNA methylation of non-hematopoietic cancers is driven by the epigenetic signatures that
define leukocyte subtypes. Linear mixed-effects models were used to assess differences in
methylation across the leukocyte subtypes, modeling arcsine square-root transformed
methylation as the response for variance stabilization and normality considerations (21),
leukocyte subtype as a fixed effect covariate, and a random effect term for plate/BeadChip.
False discovery rate (fdr) estimation was used to control for the large number of
comparisons and putative leukocyte DMRs were defined as those with false discovery rate
(fdr) q-value < 0.05. Leukocyte DMRs were then ranked based on the resulting q-values.

Methylation differences among the top 50 leukocyte DMRs were examined between cancer
cases and cancer-free controls using a series of unconditional logistic regression models that
were adjusted using available and relevant covariate information (see Figure 1). A leukocyte
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DMR was considered differentially methylated if the nominal p-value from the
unconditional logistic regression model was less than 0.05. Permutation tests were then
applied to each of the three data sets to determine if the number of differentially methylated
leukocyte DMRs was significantly greater than expected by chance. Specifically, samples
were randomly permuted (same permutation across the top 50 DMRs) and an unconditional
logistic regression model was fit to the resampled data. We considered 1000 permutations
for each data set to generate the null distribution of the number of differentially methylated
leukocyte DMRs. Permutation p-values were then obtained by comparing the observed
number of differentially methylated leukocyte DMRs to the respective null distribution.

We next implemented an analysis that capitalized on the aggregate methylation signatures
across a collection of leukocyte DMRs. Specifically for each cancer data set, we sought to
train classifiers using the top M leukocyte DMRs followed by the validation of those
classifiers in independent testing sets. This involved splitting each of the cancer data sets
into equally sized training and testing sets, where the training sets were used to build the
classifier and the respective testing set was used for the purposes of validation. Samples in
the training set were clustered using the top M leukocyte DMRs, where M was determined
for each training set from the total pool of putative DMRs using a previously described
cross-validation procedure (22). We note that since the cross-validation procedure was
implemented on each of the training data sets independently, there is no guarantee that the
number M will be the same across the training sets. Clustering analysis was achieved using
the Recursively Partitioned Mixture Model (23) (RPMM), a hierarchical model-based
method for clustering that has been extensively used for the clustering of array-based
methylation data (13,15, 24–26). Based on the RPMM fit to the training data, a naive Bayes
classifier, a probabilistic classifier, was used to predict methylation class membership for the
observations in the independent testing set. Associations between predicted methylation
class and cancer case/control status were assessed using permutation χ2 tests and
unconditional logistic regression models adjusted for available and relevant confounders.
Additionally, the classifier performance was investigated using receiver operating
characteristic (ROC) curves and the corresponding area under the curve (AUC).

We computed the pairwise spearman correlation coefficients between the top M leukocyte
DMRs and the CpG loci identified from the corresponding semi-supervised RPMM (22)
(SS-RPMM) analysis of the HNSCC, ovarian, and bladder cancer data sets. A diagram
illustrating the analytic framework for SS-RPMM is provided in Supplementary Figure 1.
Briefly SS-RPMM is a statistical methodology for identifying classes of methylation that are
associated with a phenotype of interest and has been successfully applied in several of
settings (13,15,27).

We used the same training and testing sets for the previously described SS-RPMM analysis
of the HNSCC and bladder cancer data sets (13,15). This was done for the purposes of
comparing the results of the present analysis to previously published results and to provide
additional insight with respect to findings of those studies. For reasons of consistency, we
also analyzed the ovarian cancer data set using the same SS-RPMM strategy and report
those results in the supplementary data. Following the same logic as above, the same
training and sets used for the SS-RPMM analysis were used for the leukocyte DMR profile
analysis of the ovarian data.

All analyses were carried out using the R statistical package, version 2.13 (www.r-
project.org/).
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Results
We began by profiling genome-wide DNA methylation in 46 samples of magnetic antibody
sorted, normal human peripheral blood leukocyte subtypes (including B-cells granulocytes,
monocytes, NK-cells, CD4+ T-cells, CD8+ T-cells, and Pan-T cells; Figure 1a) using the
Infinium HumanMethylation27 BeadArray. To discern leukocyte subtype DMRs, we
examined the association between methylation and leukocyte subtype for each of the 26,486
autosomal CpG loci. This revealed 10,370 significantly differentially methylated CpGs
among the leukocyte subtypes (fdr q-value < 0.05), which we ranked by q-value
(Supplementary Table 4 and Figure 1b). We selected the top 50 DMRs from this ranked list
for use in the case-control analyses. Since the publically available ovarian cancer data set
included both pre- and post-treatment cases, only pre-treatment cases (n = 131) were
considered in subsequent analyses to avoid potential biases resulting from therapy. Using
unconditional logistic regression models, adjusted for available and relevant confounders
(see Figure 1), a substantial proportion of the 50 selected leukocyte DMRs were found to be
significantly differentially methylated between cancer cases and cancer-free controls at the
μ = 0.05 threshold (48, 47, and 8 out of 50, permutation p-values = <0.001, <0.001, 0.085,
for HNSCC, ovarian cancer, and bladder cancer, respectively) (Figure 1c). For the ovarian
data set, the largest difference between the beta-values of controls and cancer cases among
the proposed leukocyte DMRs was 11%, which is the largest difference in methylation
between ovarian cases and controls considering all 26486 autosomal CpGs. A similar
finding was observed for the HNSCC data set, where the largest difference in methylation
between cases and controls among leukocyte DMRs was 10% - which also corresponds to
the largest difference in methylation between cases and controls across the array.

Of the leukocyte DMRs that were significantly differentially methylated in cancer cases
compared to controls, eight were common to all three cancer types (Figure 1c). In HNSCC
and ovarian cancer, 7 of these 8 leukocyte DMRs were hypomethylated in cases relative to
controls, whereas all 8 DMRs were hypermethylated in bladder cancer cases relative to
controls (Table 1).

To capitalize on the aggregate methylation signatures across a collection of leukocyte
DMRs, we developed and tested classifiers based on profiles of leukocyte DMRs obtained
from the subset analysis and subsequently assessed the performance of these classifiers for
successfully discriminating cancer cases from cancer-free controls. Supplementary Figures
2–4 diagram the workflow of our DMR methylation profile analysis. For each of the three
cancer data sets, a cross-validation procedure (22) was implemented on the training sets only
to determine the number of top leukocyte DMRs (M) for subsequent clustering analysis of
the training sets. Based on the respective cross-validation procedures using the 10,370
putative DMRs initially identified, the top 50, 10, and 56 leukocyte DMRs were selected to
cluster the observations in the HNSCC, ovarian cancer, and bladder cancer training sets
respectively. The resultant clustering solutions were then used to predict methylation class
membership for the subjects within the respective independent testing sets. Figures 2a,3a,4a
depict heat maps of the respective testing sets by predicted methylation class for each cancer
data set. Methylation classes derived from leukocyte subtype DMRs were significantly
associated with cancer case status within each cancer type (permutation χ2 p-values
<0.0001, <0.0001, 0.03, HNSCC, ovarian cancer, and bladder cancer data sets respectively),
supporting the phenotypic relevance of predicted methylation classes based on leukocyte
DMRs.

For the HNSCC testing set, subjects predicted to be in the right most classes of the
dendrogram (classes beginning with R) were 6 times as likely to be HNSCC cases compared
to subjects in the left most classes (classes beginning with L) (OR = 5.99; 95% CI [1.96,
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18.36]), controlling for age, gender, smoking, alcohol consumption, and HPV serostatus.
Assessing the classifier performance demonstrated that methylation classes derived from the
top 50 leukocyte DMRs were highly predictive HNSCC case/control status (area under the
curve (AUC) = 0.82 95% CI [0.74, 0.91]), which increased to 0.92 (0.87, 0.98 with age,
gender, smoking, alcohol consumption, and HPV serostatus included in the model (Figure
2b). For ovarian cancer, subjects predicted to be in the right most classes were
approximately 10 times as likely to be ovarian cancer cases compared to subjects in the left
most classes (OR = 9.87, 95% CI [4.63, 21.10]), controlling for age. Additionally, the
predicted methylation classes in the ovarian cancer data demonstrated remarkably high
sensitivity and specificity for predicting ovarian cancer case/control status (AUC = 0.83
95% CI [0.77, 0.89]), which increased to AUC = 0.86 95% CI [0.81, 0.92] with age included
in the model (Figure 3b). In the bladder cancer data, subjects in the right most classes were
nearly 2 times as likely to be cases compared to subjects in the left most (OR = 1.94 95% CI
[0.95, 3.98], adjusted for age, gender, smoking and family history of bladder cancer), a
somewhat less robust association than that observed for HNSCC and ovarian cancers. The
classifier performance in the bladder cancer data was lower than that observed for HNSCC
and ovarian cancer (bladder AUC = 0.67 95% CI [0.60, 0.73] and adjusted AUC = 0.77 95%
CI [0.71, 0.83] with age, gender, smoking, and family history in the model) (Figure 4b).

Utilizing leukocyte-derived DMRs to differentiate cases and controls results in methylation
profiles that are consistent, and in the case of HNSCC and ovarian tumors, considerably
better in terms of their prediction performance compared to previously published results
using the same datasets (11,13,15). For the HNSCC and ovarian data sets there was a high
degree of correlation in the methylation status of leukocyte DMRs and CpG loci identified
by previous analytic strategies (11,15) (mean absolute spearman correlations = 0.68 and
0.75, respectively; Figure 5). In contrast, the top 56 DMRs in the bladder data set were
found to be less correlated with the CpG loci used to form the methylation classes in a
previous study using the same data set (mean absolute spearman correlation = 0.11; Figure
5).

Discussion
Our novel investigation into the biological underpinnings of disease-associated, blood-
derived DNA methylation signatures in patients with solid tumors, suggest distinct, well
defined immune-mediated responses to individual cancers. The motivation for our approach
stems from the fact that blood-based assessments of DNA methylation are typically carried
out using total WBC, therefore the methylation signatures responsible for distinguishing
cancer cases and controls represent the aggregate methylation signatures across a complex
cellular mixture of WBCs. As tumorigenesis elicits a distinct immune response (28–31), the
result is a hematopoietic shift in WBC populations, which may be discerned by applying the
unique epigenetic signature of differing lineages. Hence, the driving principle of this work is
that the aggregate methylation signature in blood that distinguishes cancer cases from
controls may in large part be due to the epigenetic signatures that define leukocyte subtypes.
Given the chronic nature of cancer, it is possible that immune responses to co-morbid
conditions and treatment may be contributing to the methylation patterns reported here. We
attempted to address the later by restricting our analysis to pre-treatment cases, however
such information was not available for the HNSCC and bladder data sets. It is also important
to note that a prospective study with repeated DNA methylation assessments would be
fundamental to conclusively determine whether altered methylation profiles occur as a result
of an immune response to the tumor or are in some way promoting tumor growth and
proliferation. At the same time, as a screening tool, even a methodology, which detects an
early cancer, would hold clinical utility.
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To understand the role of immune-mediated responses to tumorigenesis in defining distinct
signatures of blood-based DNA methylation between cancer cases and cancer-free controls,
we studied the epigenetic landscape of WBCs by identifying DMRs among leukocyte
subtypes. This analysis revealed that nearly all of the top 50 leukocyte DMRs were
differentially methylated between cases and controls for HNSCC and ovarian cancers, with a
smaller fraction differentially methylation between bladder cancer cases and controls.
Among the eight overlapping CpG loci that were found to be significantly differentially
methylated between cancer cases and controls across the three data sets, the direction of the
relationships was similar for HNSCC and ovarian cancer cases compared to controls
opposed to that observed between bladder cancer cases and controls. These findings suggest
that HNSCC and ovarian cancer may elicit similar shifts in leukocyte compositions in the
hematopoietic system. Indeed, this finding is supported by recent work indicating an
overabundance of regulatory T cells (Tregs) in the tumor microenvironment of several types
of cancer, including HNSCC and ovarian cancer (32–35). More specifically, it has been
suggested that Tregs play a crucial role in the suppression of anti-tumor immune responses
and thus participate in HNSCC progression and the immune escape process (36–39).
Similarly, ovarian carcinoma cells are capable of producing TGFβ (40), a protein that
regulates cellular proliferation and differentiation that is not only important for the
functional integrity of Tregs, but also inhibits the proliferation and functional differentiation
of T lymphocytes, NK cells, and macrophages (41,42). Thus, it is possible that the tumor
microenvironment may be contributing to the peripheral blood shifts we are observing using
leukocyte DMRs.

Of the eight overlapping DMRs (C20orf135, PACAP, FGD2, SLC22A18, GSTP1, NFE2,
ASGR2, and SLC11A1) several are located within genes with either established or alleged
involvement in immune differentiation or function (43–48) (SLC11A1, PACAP and FGD2).
SLC11A1 is expressed in monocytes, the circulating precursors of dendritic cells and
macrophages (43,44), which represent important antigen-presenting cells in the immune
system. Additionally, SLC11A1 has been shown to suppress IL-10 production (45), an anti-
inflammatory cytokine that strongly enhances B cell survival and proliferation (46).
Moreover, PACAP has been implicated as an intrinsic regulator of regulatory T cell
abundance after inflammation (47) and FGD2 has been shown to play a role in leukocyte
signaling and vesicle trafficking in cells specialized to present antigen in the immune system
(48).

Using our model containing the DNA methylation profile for the top 50 leukocyte DMRs,
patient age, gender, smoking status, smoking pack years, weekly alcohol consumption, and
HPV serological status, HNSCC cancer was predicted with high degree of sensitivity and
specificity. Similarly high prediction performance was obtained for ovarian cancer using the
DNA methylation profile for the top 10 leukocyte DMRs and patient age group. Although
the prediction performance for bladder cancer, based on the methylation profile of the top 56
DMRs, patient age, gender, smoking status, smoking pack years, and family history of
bladder cancer, was less than that observed for HNSCC and ovarian cancer, the AUC is
consistent with a previous report (13). One explanation for the differences in magnitude for
discriminating cancer cases and controls among cancer types is underlying differences in the
magnitude of shift in leukocyte subtypes. Cancers characterized by a pronounced
immunologic response such as HNSCC and ovarian cancer (49–53), may correspond to
more discernable shifts in leukocyte sub-populations compared to bladder cancer (54), thus
resulting in greater discrimination of blood-derived DNA methylation using leukocyte
DMRs.

We also observed substantial correlation in methylation of the loci identified via the SS-
RPMM analyses (15) (Figure 5 and Supplementary Figure 5) and the leukocyte DMRs that
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defined the methylation classes discovered for the HNSCC and ovarian data sets. Given that
the SS-RPMM procedure is specifically designed to construct methylation classes that are
based on an optimal number of informative features (loci whose methylation is most
strongly associated with cancer case/control status), our findings support the assertion that
the methylation classes identified through SS-RPMM analyses of the HNSCC (15) and
ovarian data sets (Supplementary Figure 5) are in large part due to systematic hematopoietic
changes in WBC populations in response to tumorigenesis. Contrary to the high correlation
in methylation that was observed for the HNSCC and ovarian analyses, the 56 leukocyte
DMRs used in the bladder profile analysis were notably less correlated with the 9 CpG loci
identified via the previously reported SS-RPMM analysis of this data set (13). This may
indicate a role for an alternative biological mechanism in bladder cancer, where in addition
to the epigenetic signatures characteristic of leukocyte subtypes, other epigenetic
mechanisms independently contribute to the blood-derived differences in DNA methylation
between bladder cancer cases and controls. Alternatively, it is also possible that our method
for identifying leukocyte DMRs did not yield DMRs that are most important for bladder
cancer immunobiology. More comprehensive profiling approaches across larger panels of
leukocytes subpopulations is a high priority for future research.

Taken together, our results provide evidence that observed differences in blood-derived
DNA methylation in cancer cases can be largely explained by systematic differences in the
methylation signatures of leukocyte sub-populations. These findings signify that different
cancers elicit a discernible immune response evident in peripheral blood. We believe these
results have important implications for research into the immunology of cancer. Further, our
approach provides a completely novel tool for the study of the immune profiles of diseases
where only DNA can be accessed; that is, we believe this approach has utility not only in
cancer diagnostics and risk-prediction, but also can be applied to future research (including
stored specimens) for any disease where the immune profile holds medical information. The
approach described here is not capable of delineating the precise contributions of shifting
leukocyte subpopulations to cancer-specific patterns in blood-based DNA methylation.
However, work from our group has begun to address this issue (55).

In summary, our approach represents a simple, yet powerful and important new tool for
medical research and may serve as a catalyst for future blood-based disease diagnostics.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Results from the DMR subset analysis
(a) Hierarchy for the leukocyte subtypes. (b) Heat map of the methylation status for the top
50 leukocyte DMRs by leukocyte subtype. (c) Plot depicting the −log10(p-values) for the
top 50 leukocyte DMRs across the three cancer data sets (blue - HNSCC; green - Ovarian;
purple - Bladder;). P-values capture methylation differences between cancer cases and non-
cancer controls and were obtained from individual unconditional logistic regression models
fit to each of the 50 leukocyte DMRs. For the HNSCC data set, logistic regression models
were adjusted for patient age, gender, smoking status (never, former, current), smoking pack
years, weekly alcohol consumption, and HPV serology status. The bladder cancer data set
was adjusted for patient age, gender, smoking status, smoking pack years, and family history
of bladder cancer and the ovarian cancer data set was adjusted for patient age group (55–60,
60–65, 65–70, 70–75 and >75 years). The horizontal dashed line represents −log10(p =
0.05).
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Figure 2. Figures depicting the results from the DMR profile analysis of the HNSCC data set
(a) Heat map of the HNSCC testing data set. Rows represent subjects, which are grouped by
predicted methylation class membership. Columns represent the top 50 leukocyte DMRs
that were used to generate the methylation classes for the HNSCC testing set. The right
column of (a) represents a bar-plot depicting the percent cancer case/control across the
predicted methylation classes in the HNSCC testing set. (b) ROC curves based on the
predicted methylation classes only in the HNSCC testing set (blue) and methylation classes
including patient age, gender, smoking status (never, former, current), smoking pack years,
weekly alcohol consumption, and HPV serostatus (orange).
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Figure 3. Figures depicting the results from the DMR profile analysis of the Ovarian data set
(a) Heat map of the ovarian testing data set. Rows represent subjects, which are grouped by
predicted methylation class membership. Columns represent the top 10 leukocyte DMRs
that were used to generate the methylation classes for the ovarian testing set. The right
column of (a) represents a bar-plot depicting the percent cancer case/control across the
predicted methylation classes in the ovarian testing set. (b) ROC curves based on the
predicted methylation classes alone in the ovarian testing set (blue) and methylation classes
plus patient age group (55–60, 60–65, 65–70, 70–75 and >75 years) (orange).
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Figure 4. Figures depicting the results from the DMR profile analysis of the bladder data set
(a) Heat map of the bladder testing data set. Rows represent subjects, which are grouped by
predicted methylation class membership. Columns represent the top 56 leukocyte DMRs
that were used to generate the methylation classes for the bladder testing set. The right
column of (a) represents a bar-plot depicting the percent cancer case/control across the
predicted methylation classes in the bladder testing set. (b) ROC curves based on the
predicted methylation classes alone in the bladder testing set (blue) and methylation classes
plus patient age, gender, smoking status (never, former, current), smoking pack years, and
family history of bladder cancer (orange).
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Figure 5. Image plots representing the pairwise spearman correlation coefficients
(a) The 6 CpG loci identified by HNSCC analysis reported in (ref. 15) and the top 50
leukocyte DMRs used in the present analysis, (b) the 7 CpG loci identified by the alternative
ovarian analysis (Supplementary Figure 5) and the top 10 leukocyte DMRs used in the
present analysis, and (c) the 9 CpG loci identified by the bladder analysis reported in (ref.
13) and the top 56 leukocyte DMRs used in the present analysis.
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Table 1
Methylation differences between cancer cases and controls for the eight overlapping
differentially methylated leukocyte DMRs

Mean delta-beta refers to the difference in mean methylation between cancer cases and controls (i.e. βcases –
βcontrols).

Mean delta-beta (95% CI)

Gene Loci HNSCC Ovarian Bladder

C20orf135 −0.05 (−0.07, −0.03) −0.06 (−0.08, −0.05) 0.02 (0.0, 0.04)

PACAP 0.02 (0.00, 0.04) 0.04 (0.02, 0.05) 0.02 (0.0, 0.04)

FGD2 −0.05 (−0.07, −0.03) −0.06 (−0.07, −0.04) 0.02 (0.01, 0.04)

SLC22A18 −0.05 (−0.07, −0.04) −0.05 (−0.06, −0.04) 0.02 (0.01, 0.04)

GSTP1 −0.05 (−0.07, −0.04) −0.06 (−0.07, −0.05) 0.02 (0.01, 0.04)

NFE2 −0.04 (−0.05, −0.03) −0.04 (−0.05, −0.03) 0.02 (0.0, 0.03)

ASGR2 −0.06 (−0.08, −0.04) −0.05 (−0.07, −0.04) 0.02 (0.01, 0.04)

SLC11A1 −0.05 (−0.07, − 0.04) −0.05 (−0.04, − 0.06) 0.02 (0.0, 0.04)
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