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Abstract
In ligand-based screening, retrosynthesis, and other chemoinformatics applications, one of-ten
seeks to search large databases of molecules in order to retrieve molecules that are similar to a
given query. With the expanding size of molecular databases, the efficiency and scalability of data
structures and algorithms for chemical searches are becoming increasingly important.
Remarkably, both the chemoinformatics and information retrieval communities have converged on
similar solutions whereby molecules or documents are represented by binary vectors, or
fingerprints, indexing their substructures such as labeled paths for molecules and n-grams for text,
with the same Jaccard-Tanimoto similarity measure. As a result, similarity search methods from
one field can be adapted to the other. Here we adapt recent, state-of-the-art, inverted index
methods from information retrieval to speed up similarity searches in chemoinformatics. Our
results show a several-fold speed-up improvement over previous methods for both thresh-old
searches and top-K searches. We also provide a mathematical analysis that allows one to predict
the level of pruning achieved by the inverted index approach, and validate the quality of these
predictions through simulation experiments. All results can be replicated using data freely
downloadable from http://cdb.ics.uci.edu/.

Introduction
One of the most fundamental problems in chemoinformatics is to be able to search large
databases of small molecules, such as PubChem1 or ChemDB,2 for molecules that are
similar to a given query. Such searches are routinely performed in tasks ranging from
ligand-based screening to retrosynthesis. Search efficiency is becoming increasingly
important with the ongoing expansion of these databases due to the inclusion of newly
synthesized molecules or even virtual molecules. A linear search comparing a query
molecule to all the molecules in the databases one-by-one is often too slow and unnecessary.
A number of data structures and algorithms have been developed over the years to speed up
this process by pruning the search, i.e. by rapidly discarding molecules that are not similar to
the query, without computing their similarity to the query.
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At a high level of conceptualization, the chemoinformatics similarity search problem
appears to be analogous to the similarity search problem in information retrieval, for search
engines and other applications, where a piece of text or a series of keywords are used to
retrieve articles or web pages that are similar or pertinent to a given query. Upon close
examination, however, this vague analogy becomes much more: an almost exact match, due
to convergent evolution in the methods and data structures of two largely independent
communities, the chemoinformatics community and the information retrieval community.
This almost exact match suggests immediately that any procedure used in chemoinformatics
can potentially be adapted to information retrieval, and vice versa. In particular, similarity
searches in text retrieval are also carried using a pruning approach, but where the pruning is
based on a particular data structure called the inverted index. As a result, it is natural to
wonder whether the inverted index approach could be adapted to speed up chemical
searches.

To investigate this question, here we first briefly review the representations and algorithms
that are used for chemoinformatics searches. We then show how these are precisely
connected to the representations and algorithms used in text retrieval and describe the
inverted index approach. We then apply the inverted index approach to chemical searches
and analyze its performance both analytically and through simulations.

Molecular Searches, Representations, and Similarity Scores
For clarity, it is useful to distinguish different kinds of database searches, which apply
equally to databases of molecules, text, or other data. In exact searches, one is interested in
finding out whether a database contains an entry identical to the query. Here we are
primarily interested in similarity searches where one is interested in retrieving all the items
in the database that are similar to the query, for some properly defined measure of similarity.
A threshold similarity search retrieves all the items whose similarity to the query is above a
given threshold, while a top-K similarity search retrieves the top K items most similar to the
query. A threshold or top-K similarity search algorithm is approximate if it allows a small
but non-zero false negative rate (i.e. some of the speed-up is obtained by missing a small
fraction of the true positives3), otherwise it is said to be exact. Here we are primarily
interested in exact threshold or top-K similarity search algorithms.

For databases of small molecules, several representations have been developed over the
years, from one dimensional SMILES strings to 3D pharmacophores,4 and different
representations can be used for different purposes. To search large databases of molecules
by similarity, most modern chemoinformatics systems use a binary fingerprint vector
representation4–10 whereby a molecule is represented by a vector whose components index
the presence/absence of a particular feature, such as a functional group or substructure in the
molecular graph. We use to denote a molecule, A⃗ = (Ai) to denote the corresponding
fingerprint of length N, and A to denote the number of features, or 1-bits, present in the
fingerprint A⃗ (A = |A⃗|).

In early chemoinformatics systems, fingerprint vectors were relatively short, containing
typically a few dozen components selected from a small set of features, hand-picked by
chemists. In most modern systems, however, the major trend is towards the combinatorial
construction of extremely long feature vectors with a number of components N that can vary
in the 103 – 106 range, depending on the set of features. Examples of such combinatorial
features include all possible labeled paths or labeled trees (circular substructures) up to a
certain length or depth. In many chemoinformatics systems, the resulting long and sparse
fingerprint vectors are further compressed to much shorter and denser binary fingerprint
vectors. A widely used method of compression is a lossy compression method based on the
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application of the logical OR operator to the binary fingerprint vector after modulo wrapping
to 512, 1,024, or 2,048 bits.7 Other more efficient loss-less methods of compression have
recently been developed.10 The inverted index approach to be described and the
corresponding analytical results apply to all the different kinds of binary finger-prints.
Extension of the method to non-binary fingerprints, such as fingerprints based on counts or
weighted fingerprints, is possible and a matter of ongoing research that will not be discussed
here. The particular fingerprints and features used in our experiments are described in the
Empirical Results section.

Several similarity measures have been developed for molecular fingerprints.11,12 The most
widely used similarity measure for chemical database searches is the Tanimoto-Jaccard (or
just Tanimoto) similarity. Given two molecules and ℬ, the Tanimoto similarity is given by

(1)

Here A ∩ B denotes the size of the intersection, i.e. the number of features present in both A⃗
and B→, and A ∪ B denotes the size of the union, i.e. the number of features present in A⃗ or
B→. In the remainder of this article we focus on the Tanimoto similarity, although it should
be clear that the same ideas apply immediately to the other similarity measures described
in11 since these are based on the same intersection and union ingredients, which are at the
root of the inverted index approach.

Previous Chemoinformatics Work
To improve search speed, previous methods exploit various data structures and bounds on
the Tanimoto similarity to prune the search space. For clarity, the data structures can be
separated into hashing and tree data structures. The essence of the pruning is to note that any
bound on the intersection of two fingerprints derived from the data structures, results
immediately into a bound on their Tanimoto similarity, since whenever we have A ∩ B < T
then S(A⃗,B→) < T/(A + B − T). When favorable, the bounds eliminate database molecules
that are guaranteed not to be in the desired list, thereby reducing the number of pair-wise
similarity computations between database molecules and the query. Thus in these methods
the pruning is done “by molecules” (rows), whereas in the inverted index approach we are
about to present the pruning is done “by features” (columns).

Hashing Data Structures
The basic idea in this class of methods is to pre-compute for each fingerprint in the database
a short signature which can be used to rapidly bound the Tanimoto similarity. This is done
by first partitioning the components of the fingerprints into M (1 ≤ M ≤ N) fixed sets and
then using a simple function f to summarize the complement of 1-bits that are observed in
each set for each molecule. While the M sets do not need to be of the same size and could be
chosen according to some specific strategy, in most cases one uses sets of equal size and
randomly selected, which is equivalent to randomly permuting the fingerprint components
and putting all the components from the same class modulo M in the same set. For instance,
if M = 2 all the even components are in one set, and all the odd components are in the other
set. During a search, the query fingerprint’s signature is constructed as determined by M and
f, and bounds on the Tanimoto similarity are calculated as a function of the query signature
and the pre-computed database signatures.

Examples of specific implementations in this class include:

1. When f is the logical OR operator capturing whether there is at least one 1-bit in a
given set (with, for instance, M = 1,024), one obtains the lossy OR-compressed
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fingerprint used in the Daylight system7 and the Tanimoto similarity computed on
these compressed fingerprints can be used to search the database directly, although
even better results can be obtained with a systematic correction.13

2. When f is the logical XOR operator capturing whether the total number of 1-bits in
a given partition is odd or even (with, for instance, M = 128), one obtains the
approach described in Baldi et al.14 and the corresponding bounds to prune the
database.

3. When f is the sum operator, the signature corresponds to the total number of bits
equal to 1 in each of the M sets, and one then can use the bounds15–19 on the
Tanimoto similarity to prune the database. When M = 1, the signature simply
represents the total number of 1-bits in the corresponding fingerprint. We refer to
this special case as the BitBound method. The case M = 1 and the general case are
studied in Swamidass et. al15 and Nasr et al.19 respectively.

Tree Data Structures
The problem of exact search in a database of binary vectors is typically addressed by
organizing the database into a binary tree, with splits that are roughly even at each step to
maximize the entropy of the corresponding decision. The same idea can be applied to
similarity search where it is called the MultiBit Tree method.20 In the pre-processing steps,
starting with all the fingerprints assigned to the root node, the algorithm recursively
partitions the fingerprints into two sets. Each fingerprint is assigned exclusively to one of the
child nodes according to the following criterion. For each fingerprint B→ in the parent
node, the algorithm inspects a feature position s and assigns B→ to one child node if Bs = 1,
and to the other child if Bs = 0. The feature position s is chosen by maximum entropy to
keep the tree as balanced as possible i.e. there should be roughly as many fingerprints with
Bs = 1 as those with Bs = 0. Along any branch, the splitting process stops whenever the
number of fingerprints in a node falls below a preset level. After each split, the algorithm
records the list of all components that have constant value 0 or 1 among all the remaining
fingerprints. Specifically, after each split, the algorithm records the list = (o1, o2, …, oj, …
o| ) of all the columns where all the remaining fingerprints have all bit positions equal to 0
(Boj = 0), and the list ℐ = (i1, i2, …, ik, …, i|ℐ|) of all the columns where all the remaining
fingerprints have all bit positions equal to 1 (Bik = 1). By definition, the splitting bit position
s belongs to for one child node and to ℐ for the other child node. During a search, the
algorithm visits the nodes in depth-first traversal. At each node, a bound on the Tanimoto
similarity is computed as a function of  ℐ, and the query fingerprint. This bound becomes
tighter with the depth of each branch, allowing pruning entire subtrees of molecules from the
search when the bound becomes favorable.

Convergent Evolution Between Chemoinformatics and Information
Retrieval

In information retrieval, one is typically interested in searching a database of text documents
(e.g. articles, web pages, strings) for documents that are related to a query string, consisting
for instance of keywords. While molecules are sometimes represented by strings, in the form
of SMILES strings, it is even more remarkable that documents are most of the time
represented by fingerprints. When the features are the words of the dictionary, one obtains
the well-known “bag of words” representation, which discards any sequential information.
Alternatively, when the documents are viewed as strings, one can use n-grams–sequences of
n symbols from the alphabet (which can include space, punctuation marks, and other
symbols)–as the dictionary of features. An English dictionary of relatively common words
can have 104 – 106 words, and all possible n-grams over an alphabet of 50 characters when n
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varies from 3 to 4 cover a range of 125 × 103 to 6,250 × 103. Thus the ranges of N for
molecule and document fingerprints are comparable. Finally, the similarity measure of
choice in many information retrieval systems is also the Jaccard-Tanimoto similarity
measure. There are of course some differences between the two fields. For example,
although the size of the databases are generally also comparable, document databases can be
larger than the databases of commercially available compounds since, for instance, the total
number of existing web pages is in the range of many billions whereas the total number of
commercially available compounds is at most a few tens of millions. Similarly, hyperlinks
or other referential connections between documents are well developed and used in the well-
known PageRank algorithm in information retrieval, whereas a system of connections
between molecules is less used or well-established. Nevertheless, it is remarkable that the
two fields have independently converged onto identical representations and similarity
measures.

The inverted index is a data structure routinely used in information retrieval which inverts
the fingerprint vector representation by associating each feature with the list of documents in
the database containing that feature21,22 (Figure 1). The notion of an inverted index, or
inverted file, or inverted search is natural and of course not new. It has been used in
computer science23 and other sciences, including chemistry,24–26 for several decades. The
inverted index can be constructed for molecular fingerprints as easily as for documents.
However, past applications of the inverted index to chemoinformatics (for example, see27),
have been very simple, and have not used the most sophisticated methods that have been
developed for text data and search engines in information retrieval. [As a side note, the
inverted index approach for text data can also be applied directly to SMILES string
representations for molecules. Kristensen28 did so after being introduced to the inverted
index in our laboratory]. Here we focus on applying the state-of-the-art inverted index
algorithms from information retrieval to speed up fingerprint similarity searches.

Using the Inverted Index for Similarity Search
In a similarity threshold search with threshold t, given a query molecule one is interested
in finding all the molecules ℬ in the database such that

(2)

Given the values of A and B, the bound on the similarity is equivalent to a bound on the
intersection

(3)

Thus, given the values of A and B, the similarity threshold problem is equivalent to the T
occurrence problem, finding all fingerprints with an intersection of size at least T with the
fingerprint query, to which the inverted index can be applied.29

In our setup, we first perform a preprocessing step such that all molecules ℬ are binned
according to the fingerprint size B.15,19 During a search, we first prune the search space by
discarding bins corresponding to B ≤ tA or B ≥ A/t. This first pruning step is a result of the
BitBound method15 introduced above. Within each of the remaining bins (tA < B < A/t), we
then find molecules, ℬ, that satisfy Equation Eq. (3) using an inverted index data structure
for each bin of fingerprint sizes. Thus the inverted index feature lists are created within each
bin during the preprocessing steps.
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During a search, within the bins that pass the first pruning step, only the feature lists that
correspond to the features present in the query fingerprint are kept. For each bin, we
calculate T from Equation Eq. (3) using three fixed parameters: B is fixed within the bin, t is
the given Tanimoto threshold, and A is the query fingerprint size. The direct advantage of
binning is two-fold: (1) the first pruning step narrows the search space; and (2) fixing B
within each bin allows the calculation of T. Several algorithms have been developed to
compute the solution to the T-occurrence problem efficiently for text data.29 Here we focus
on DivideSkip, the algorithm that performs the best on the chemical fingerprint data.

Inverted index algorithm
As part of our pre-processing steps, we sort the molecular identifiers in each feature list
(Figure 1) and order the feature lists by their sizes (the number of identifiers they contain)
(Figure 2). Only the A features associated with 1-bits in the query are retained. The number
A of retained features must be greater or equal to T otherwise no molecule can have an
intersection of size at least T with the query. The algorithm then splits the feature lists into 2
sets: a set of L (0 ≤ L ≤ T) longest lists (£Long), and a set (£Short) containing the remaining A
− L shorter lists. The two sets are created to take advantage of efficient search algorithms
whose efficiency depends on the list sizes. Note that a molecule can occur at most L times in
£Long. Therefore a molecule with an intersection with the query greater than T must occur at
least T − L times within £Short. Thus in the next phase the algorithm first searches for
molecular identifiers that occur at least T − L times in £Short, and then uses these identifiers
to search £Long. More specifically, the algorithm uses a Heap data structure to search for
molecular identifiers that occur at least T − L times in £Short and for each one of them counts
the number of its occurrences. The Heap keeps track of the top elements of the sorted feature
lists and efficiently skips elements that are guaranteed not to occur at least T − L times
(Figure 3). The resulting molecules and their counts are then used to search the long lists in
£Long using binary search and their counts are further updated. Only those with counts
greater or equal to T are retained. The parameter L discussed in the Results must be chosen
to optimize the tradeoffs between the Heap algorithm of £Short and the binary search
algorithm of £Long.

In the case of top-K searches, T cannot be fixed as in threshold searches because it depends
on the query and K. The algorithm we use in this case starts with T = 0 occurrences, and
updates T as it fills a sorted array of size K. This one-pass algorithm returns the K most
similar results using a variant of DivideSkip. Detailed descriptions and evaluations of the
top-K algorithm and DivideSkip can be found in29,30 for text data.

Theoretical Results: Pruning Rate Prediction
The approach we have described has three pruning steps and in order to analytically predict
the overall pruning, one needs to predict the amount of pruning associated with each step.
The first pruning step is a direct consequence of binning fingerprints and discarding bins
corresponding to B ≤ tA or B ≥ A/t as described in previous work.15,19 Analytical results
that predict the pruning at the first pruning step, given the mean and standard deviation of B
and the threshold t, are described in.15,19 The second pruning step comes from retaining only
molecules associated with features that are present in the query molecule. For fingerprints
based on a large basis of combinatorial features, such as the labeled paths or trees
considered here, the amount of pruning coming from this step is negligible. This is because
some basic features (e.g. a path containing only carbon atoms) are found in almost all
molecules and therefore are not discriminative. Thus here we do not consider this pruning
step any further, although it could become significant when other basis of features are used,
in which case the amount of pruning could be predicted using the same techniques used
below to estimate the amount of pruning associated with the third step. The third pruning
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step is the most novel and relevant for this paper and is a direct consequence of the inverted
index DivideSkip algorithm described above. We have seen that when searching for
molecules with at least T occurrences in the ranked feature lists associated with the query,
the algorithm splits these lists into two subsets £Short and £Long. Any molecule that does not
occur at least T − L times in £Short is pruned from the search. Thus to estimate the amount of
pruning resulting from the third step we need to estimate how many molecules occur less
than T − L times in £Short, as a function of A, B, T, L, and the size D of the database. The
analysis proceeds in four steps:

1. Choosing a probabilistic model of fingerprints.

2. Selecting query feature lists using the probabilistic model.

3. Approximating the distribution of occurrences in the selected feature lists.

4. Deriving the probability of pruning.

Choosing a probabilistic model of fingerprints
The simplest probabilistic model of fingerprints is a sequence of N independent identically
distributed Bernoulli trials (coin flips) with probability p of producing a 1-bit.14,15,19,31 This
corresponds to a Binomial model ℬ(N, p), with only two parameters N and p, where N is the
number of possible features in a fingerprint. The bits in this model are statistically
exchangeable and independent. While such a model can be useful to derive a number of
approximations, fingerprint features are not exchangeable since the individual bit
probabilities p1,…, pN are not identical and equal to p, but vary significantly.10 The strong
exchangeability assumption of the Binomial model directly affects the sizes of the feature
lists. Using a single probability p for all bits “flattens” the individual bit probabilities,
thereby resulting in exchangeable equally-sized feature lists. As a consequence, the
Binomial model does not produce a realistic approximation of the long and short feature lists
of the DivideSkip algorithm.

The statistical model at the next level of approximation is that of a sequence of non-
stationary independent coin flips where the probability pi of each coin flip varies. This
Multiple-Parameter Bernoulli model has N parameters: p1, p2, …, pi, …, pN. These
parameters can be obtained from the entire database, or from the fingerprints that have B 1-
bits when dealing with the corresponding bin. The latter case is expected to give more
accurate results at the expense of having multiple sets of parameters, one for each B. Figure
4 shows how the N parameters vary with different values of B for the fingerprints described
in the Empirical Results section. Furthermore, query and database fingerprints can be
modeled with different bit probabilities. To distinguish the two models in the derivations, we
use p̄1, p̄2, …, p̄i, …, p̄N to denote the parameters of the Multiple-Parameter Bernoulli model
for the query. Similarly, the p̄i parameters can be conditioned on A, the number of 1-bits in
the query. We choose to use the Multiple-Parameter Bernoulli model as it provides a better
approximation of the long and short feature lists. Although the Multiple-Parameter Bernoulli
model ignores the weak correlations between the fingerprint components, it has been shown
in previous publications to perform quite well in a variety of calculations.20,31

Selecting feature lists using the probabilistic model
During a search, only the feature lists that correspond to features present in the query
fingerprint are selected as input to the DivideSkip algorithm. Hence, if the query fingerprint
A⃗ has A 1-bits, A feature lists are selected, and one can continue the analysis with these
features if the goal is to estimate the pruning associated with this particular query. However,
it is more interesting to estimate the average amount of pruning across many queries.
Integrating over all possible queries is not tractable analytically. Thus here we seek to obtain

Nasr et al. Page 7

J Chem Inf Model. Author manuscript; available in PMC 2013 June 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



an estimate of the expectation by looking at what happens in the case of a typical molecule.
To model the A feature lists that are used in the DivideSkip algorithm, we need to reduce the
N probabilities, p̄1, p̄2, …, p̄i, …, p̄N characterizing the typical query to A typical
probabilities, r1, r2, …, rj, …, rA that are representative of the selected feature lists. This can
be done with the following two-step approach.

Without any loss of generality, assume that the probabilities p̄i are arranged in increasing
order (as shown in Figure 4). A first step is to divide the sorted probabilities, p̄i, into A
equally sized and consecutive sets, and calculate rj as the mean of the p̄i’s in each set.
However, having equally sized sets ignores the non-uniformity of bit probabilities in the
query fingerprint: p̄1, p̄2, …, p̄i, …, p̄N. To demonstrate this point, consider for example the
Ath set which contains the highest N/A probabilities of the Multiple Parameter Bernoulli
model. A typical query molecule contains multiple features that correspond to the high
probabilities in this set, yet this approach under-represents them with one mean value.
Conversely, the equally sized sets over-represent the low probabilities for low values of j.
Thus a better approach, corroborated by our experiments, is to use a second subsequent step
to divide the p̄i probabilities into A sets, where for every j the size of set j is inversely
proportional to the value of rj computed in the first step, and then re-estimate each rj by the
mean of the p̄i’s in the corresponding set. Features corresponding to high values of p̄i occur
frequently in query fingerprints. As a result, this second step groups high p̄i’s into smaller
sets, associating a larger number of such small, large-average-probability, sets with the rj’s.
Likewise, this approach associates a smaller number of large, small-average-probability, sets
with the rj’s. In the simulations, for simplicity we assume that the query is generated from
the same probabilistic model as the entire databases. Thus we use this two-step approach
with p̄i = pi (i = 1,…,N) to generate the values of ri (i = 1,…, A).

Approximating the distribution of occurrences in the selected feature lists
In the DivideSkip algorithm, the A selected feature lists are split into £Long (L longest lists)
and £Short (remaining A − L lists). Molecules occurring less than T − times in £Short are
pruned. In order to predict the pruning, we need to approximate the distribution of the
number of occurrences of a molecule in £Short. Let M denote the number of occurrences of a
molecule in £Short. The probabilities of the £Short lists (r1, r2,…, rj,…, rA − L) can be used to
derive the expected value of M. Assuming independence between the feature lists, the
expectation of M is given by

(4)

and the variance by

(5)

The distribution of M can be approximated by a Gaussian distribution with parameters E[M]
and Var[M] or, even better in the regime of rare events typically associated with the sparse
columns of £Short, by a Poisson distribution with λ = E[M] = Var[M]. Using the Poisson
approximation gives: P(M = k) = e−λ λk/k!

Deriving the probability of pruning
The probability of pruning a molecule at a given T and L is given by the cumulative
probability of obtaining less than T − L occurrences:
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(6)

the last equality resulting from the Poisson approximation. The expected total number of
molecules being pruned is thus DP(M < T − L) or DBP(M < T − L) depending on whether
one is applying the analysis to the entire database of D fingerprints, or the bin containing DB
fingerprints of size B.

Empirical Results
Implementation and experimental setup

In the simulations, for completeness we use both fingerprints based on labeled paths up to
depth 8, and fingerprints based on labeled circular substructures of depth up to 2, with
Extended Connectivity (EC) labeling.32,33 The paths and EC features are among the most
used in chemoinformatics databases. We conduct simulations with both uncompressed
fingerprints10 and with compressed fingerprints using the lossy OR compression modulo
1024 (similar to the Daylight fingerprints7). Table 1 shows the empirical mean and standard
deviation of the number of 1-bits for different kinds of fingerprints.

In all experiments, DivideSkip is run in comparison to the Hashing method19 and the
MultiBit Tree method20 from previous work. The value of L that optimizes the various
tradeoffs and results in close-to-minimal search time can be estimated as a function of T and
two other parameters:

(7)

where M is the size of the longest feature list and μ is a query independent and data set
dependent coefficient.29 As described in the previous section, the amount of pruning can
also be predicted analytically as a function of L without the need for multiple empirical runs.
The Hashing method has a single parameter, the hash size M, which is set at 128 in the
experiments.19 The MultiBit Tree method also has a single parameter, the maximal number
of fingerprint associated with a leaf, which is set to 10 fingerprints.20 The parameter values
above result from a parameter sweep to identify values that optimize speed. All the search
methods and the testing framework are implemented in the C/C++ language.

The timing experiments are obtained by running 100 threshold and top-K search queries
against a sample of 100,000 database molecules. The query and database molecules are
randomly sampled from ChemDB. The time of each threshold search is recorded at multiple
Tanimoto thresholds between 0 and 1, and of each top-K search at multiple typical values of
K: [1,5,10,20,50,100]. All the experiments are carried out on a Intel® Xeon™ 3.00 GHz
processor with 1 Gbytes of RAM.

Pruning results
Simulations show that the analytical formula for predicting the amount of pruning of the
inverted index algorithm (Eq. (6)) is quite accurate, over a wide range of parameters. For
instance, Figure 5 shows the predicted (dotted line) and empirical (solid line) pruning rates
at multiple values of L, for a typical bin with B = 200 and a typical query with A = 200, for
T = 100 and T = 140. In general, the predicted values deviate by less than 0.1 from the
empirical values over a wide range of L.
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Timing results
For the timing experiments, we report the mean and standard deviation for each of the 100
search queries against the 100,000 ChemDB molecules. Showing the results for 100 queries
proves sufficient as the mean and standard deviations are similar for larger query sets.
Figure 6 shows the results of the threshold search. The DivideSkip method outperforms the
previous approaches in all fingerprint cases: with paths and tree features, and with or
without lossy compression. It performs up to 8 times faster than the Hashing method in the
case of EC labeling on uncompressed fingerprints (top right panel of Figure 6) and up to 3
times faster than the MultiBit Tree in paths labeling on uncompressed fingerprints (bottom
right panel of Figure 6). The performance of DivideSkip is only 1.8 times better than that of
the Hashing method in the case of paths labeling on uncompressed fingerprints (bottom right
panel of Figure 6), and only 1.3 times better than that of the MultiBit Tree in paths labeling
on compressed fingerprints (bottom left panel of Figure 6). As can be expected, the
differences in timing become small as the threshold approaches one, since most molecules in
the database are pruned from the search in all the approaches. More importantly, the results
of the top-K search are shown in Figure 7. The inverted index method once again
outperforms the previous approaches in all fingerprint cases. It performs up to 5 times faster
than the Hashing approach and up to 4 times faster than the MultiBit Tree approach in the
case of EC labeling on uncompressed fingerprints (top right panel of Figure 7), and between
2 to 3 times faster than the best alternative in all other cases.

Table 1 demonstrates the effect of the feature basis and compression algorithm on the
number of features per fingerprint. As expected, lossy compressed fingerprints contain less
features than uncompressed fingerprints. Also, there are more features per fingerprints with
paths labeling than with EC labeling. As a consequence, there are more and longer feature
lists in the input when using paths labeling versus EC labeling, and more feature lists when
using uncompressed fingerprints versus compressed fingerprints. This is reflected in the
timing results of Figure 6 and Figure 7. In both figures the performance of DivideSkip on
EC-labeled compressed fingerprints and EC-labeled uncompressed fingerprints are very
similar (top left and top right panels), as is the corresponding number of features per
fingerprints in Table 1. Note that uncompressed fingerprints with EC labeling lose less
information under lossy compression than paths because they do not contain as many
features per fingerprint.

Discussion and Conclusion
The chemoinformatics and information retrieval communities have worked for decades on
the same basic problem, similarity search of large datasets, but with different data:
molecules in one case, text in the other. Remarkably, these two communities have
converged independently onto the same binary fingerprint representations, and the same
Tanimoto-Jaccard similarity measure. Thus methods developed by one community may be
applicable to the other, as shown in this paper by applying an inverted index approach
originally developed for text data to chemical data. Theoretical analyses and simulations
presented here establish the efficiency of the inverted index algorithm for chemical
fingerprint data.

The parameters of the fingerprint representations and databases vary in each field and each
application but by and large remain in comparable ranges. For example, Table 2 compares
the number of distinct grams of size 3 empirically observed in various text data sets29 to the
number of paths and EC features empirically observed in the ChemDB dataset used here.
Note that these numbers, which depend on the size of the data set, are much lower than the
total number of possible grams and chemical features (it is estimated that the number of
possible EC labels with depth up to 3 exceeds four billion (4 × 109)32,33).
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Another important parameter that turns out to be comparable in many cases is the typical
number of 1-bits in the fingerprints. The number of grams per string is a direct consequence
of the string’s length as grams are obtained by sliding a window over the string. In text
searches, strings are typically small which results in a small number of grams per string. For
example, the average size of strings is ~ 20 characters in the case of proper names in the
IMDB data set,29 or slightly higher in other data sets such as addresses or paper titles, which
indicates that the number of grams per string is also small. For chemical fingerprints, the
number of features that occur in a molecule is also small (and only weakly coupled to the
size of the molecule), resulting also in sparse fingerprint vectors.

Finally, the distribution of the list sizes is also an important consideration for the inverted
index approach. For both text and chemical data, it is well known that the distribution of the
feature frequencies follows approximately a power-law distribution.34,35 Thus the
parameters and distributions similarities between chemical and text data explain in part why
the inverted index approach works so well in two fields that are so different. The approach is
also flexible with respect to the growth of a given database. As long as the feature basis
remains the same, when a new molecule is added to the database the inverted index can be
updated easily by appending the new molecule to the end of the corresponding feature lists.
Thus, while many other considerations may enter into the implementation of a specific
chemoinformatics database, the inverted index data structure and algorithmic approach
provide considerable speed and flexibility and ought to be considered as prime candidates
for the similarity search component of the implementation.
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Figure 1.
Inverted Index Data Structure. Each column corresponds to a feature. Each row on the left
correspond to a fingerprint. Molecules are numbered from 1 to 8.
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Figure 2.
Diagram of Main Steps of the DivideSkip Algorithm with T = 4 and L = 2. Given a query
fingerprint (upper left) and the list of all features ranked by increasing numbers of
molecules, only the feature lists corresponding to 1-bits in the query are selected (in gray).
The selected feature lists are split into two sets: a set of L longest lists (£Long), associated
with the features fn−2 and f3, and a set (£Short) containing the remaining shorter lists,
associated with the features f2, f1, and fn. Any molecule can occur at most L = 2 times in
£Long, and therefore it must occur at least T − L = 2 times in £Short to have an intersection of
size T or greater with the query. A heap data structure is used to efficiently search for these
molecules in £Short. In this case, the heap ought to return molecule 1 with 2 counts, molecule
2 with 2 counts, and molecule 3 also with 2 counts. Molecules 1, 2, and 3 and their counts
are then used in a binary search of £Long to retrieve the final answer: molecules 1 and 2 are
the only molecules with an intersection of size greater or equal to T = 4 with the query
molecule. In this particular case, both intersections have size exactly equal to T = 4. Note
that the diagram references step numbers from the pseudocode in Figure 3.
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Figure 3.
Pseudocode for the Heap Portion of the DivideSkip Algorithm.
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Figure 4.
Fingerprint Component Probabilities. The horizontal axis shows the sorted bit positions i
and the vertical axis shows the probability pi. Each curve corresponds to results of
fingerprints sampled with different sizes B, i.e. with different total number of 1-bits. See
Empirical Results for a description of the fingerprints used.

Nasr et al. Page 17

J Chem Inf Model. Author manuscript; available in PMC 2013 June 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Comparison of Theoretical and Empirical Probability of Pruning. The curves correspond to a
typical query molecule with A = 200, in the bin corresponding to B = 200, with intersection
size T = 100 on the left and T = 140 on the right. The horizontal axis shows different values
of L, and the vertical axis shows the fraction of pruned fingerprints. The solid curve
corresponds to the empirical pruning results with a ±1 standard deviation error bars, and the
dotted black line represents the theoretical predictions associated with the Poisson
distribution (Equation Eq. (6)). The empirical results are obtained from simulations that use
100 queries searched against a 100,000 database sample.
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Figure 6.
Timing Results for Threshold Searches. The results correspond to 100 threshold searches
against a sample of 100,000 molecules from ChemDB. The means and standard deviations
(error bars) of the time in milli-seconds is shown as a function of the Tanimoto threshold. In
all sub-figures, the DivideSkip method is shown in green, and previous methods, Hashing
and MultiBit Tree, are shown in blue and red respectively. Each sub-figure shows a different
combination of features/fingerprints: EC labeling with 1024-modulo-OR fingerprints in the
top left, EC labeling with uncompressed fingerprints in the top right, path labeling with
1024-modulo-OR fingerprints in the bottom left, and path labeling with uncompressed
fingerprints in the bottom right.
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Figure 7.
Timing Results for Top-K Searches. The results correspond to 100 top-K searches against a
sample of 100,000 molecules from ChemDB. The means and standard deviations (error
bars) of the time in milli-seconds is shown as a function of K. In all sub-figures, the
DivideSkip method is shown in green, and previous methods, Hashing and MultiBit Tree,
are shown in blue and red respectively. Each sub-figure shows a different combination of
features/fingerprints: EC labeling with 1024-modulo-OR fingerprints in the top left, EC
labeling with uncompressed fingerprints in the top right, path labeling with 1024-modulo-
OR fingerprints in the bottom left, and path labeling with uncompressed fingerprints in the
bottom right.
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Table 1

Mean and Standard Deviation of the Number of Features Present in a Fingerprint. These results correspond to
a sample of 100,000 fingerprints from ChemDB. Note that the values differ depending on the type of feature/
fingerprint used. Compressed fingerprints contain less features than the uncompressed fingerprints, and
fingerprints based on paths labeling are denser than those based on EC.

Feature type paths EC

Fingerprint type 1024-modulo OR uncompressed 1024-modulo OR uncompressed

# of features per fingerprint 218.3 ± 97.7 254.9 ± 136.0 47.0 ± 12.0 48.2 ± 12.5
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