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Introduction
Though the broad outlines of retinal networks have been known for decades, no total
subnetwork is known for any retinal neuron. New electron imaging technologies now have
the potential to build complete networks: connectomes. This article addresses connectome
completeness and advances in imaging, data management, data navigation and validation in
connectomics.

The Motivation for Connectomics
Why can’t we infer networks from physiology or modeling? Graph theory [1, 2••] provides
the answer. Retinal and brain networks are multi-edge digraphs (directed graphs):
collections of vertices (cells or cell compartments) connected by directed (synaptic) edges.
The number of possible graphs Nn constructed from n vertices is extremely large even with
aggressive constraints (Fig. 1). Even the simplest 3-vertex labeled digraph admits N3 = 64
networks. The human retina has ≈ 70 classes of cells [3], and the human brain has no fewer
than 250 regions ( ≈ 200 for cortex alone [4]) and likely >1000 classes of neurons.
Topologic complexities such as diverse cell copy numbers and coverages [5], molecular
connection types, and synaptic weights exponentially expand this universe of possible
networks. Inference based on inverse solutions for such high complexity systems is
untenable as provable mappings of physiologic transfer functions onto unique graph
topologies do not exist [6]. Graph theory also clarifies the limits of modeling since
discovering network motifs is one of the most intractable of computational problems: the
subgraph isomorphism or clique decision [7]. The solution space is likely not computable
and computational proof of a motif’s biological role is impossible. The same problems
afflict analyses of genomic, proteomic and metabolic networks [8]. The solution lies in
network ground truth [9•], not inference. Despite heroic efforts, anatomy has built only
small fragments of real networks [10, 11•,12, 13•, 14–17]. The way forward is
connectomics, now feasible because (1) electron microscope platforms have been
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repurposed for high throughput data acquisition and (2) large-scale storage / imaging is
affordable.

Connectomics
A connectome is the complete graph (the adjacency matrix) of a neural volume that
describes all partners and non-partners. Connectomics includes macroscopic analyses such
as the Human Connectome Project [18] and other large-scale initiatives [19, 20] as well as
microscopic analyses of synaptic networks in delimited structures like the vertebrate retina
[21••,22•]. Molecular markers, synapse numbers and synapse sizes can also be used to
weight the adjacency matrix and preselect candidate cells for analysis. Though only
physiology can correctly parameterize the matrix, the key is creating the matrix. The stages
of any synaptic connectome project are sample treatment, sectioning, electron imaging,
tagging, tiling, navigation, annotation, analysis and data sharing.

Sample treatment and molecular tags
Connectomics samples are chemically derivatized for electron imaging, and often
augmented with molecular or functional segmentations inserted by physical or optical
methods. Anderson et al. [9,21] used excitation mapping with organic actions to embed
small molecule light response histories into a retinal sample. Briggmann et al. [22] and Bock
et al. [23••] used registration of optical calcium imaging onto ultra-structural datasets to pre-
identify functional neuron classes. Glutaraldehyde-based fixation followed by metallization
steps are ideal for visualization of neural connectivity by transmission electron microscope
(TEM) imaging, and other marker strategies based on genetically modified organisms [24–
26] are possible. The new “miniSOG” method, an electron-imaging analogue of GFP
labeling, is particularly promising [27••]. In contrast, ablation imaging (see below) permits
only en bloc staining to generate tissue contrast and currently has limited marker options.
Molecular markers are essential for connectomics. Only TEM has proven capable of
incorporating them into routine connectome datasets via small molecules and some proteins
immunoprobed optically on intercalated ultrathin sections, with clustering to classify cells
[9, 28–30]. Another variant of this is array tomography, which uses re-probing methods to
build molecular data volumes into which ultrastructural data can be inserted [31••,32–33].

Sectioning
Ultrastructural connectome datasets are formed by ablation or slicing. Ablation includes in
vacuo serial block-face (SBF) sectioning [34,35] or ion beam surface milling [36], followed
by SEM or scanning TEM (STEM) imaging of surface-backscattered electrons. SEM/STEM
systems only image surfaces. Slicing is dominated by manual ultramicrotomy [9,37] onto
electron-transparent film supports followed by conventional staining and automated TEM
(ATEM) imaging [9]. Primary electron transmission imaging generates projection images of
the section thickness, optimally at 50–70 nm. Manual ultramicrotomy is fast, inexpensive,
and compatible with an extensive repertoire of stains and molecular markers. Automated
sectioning onto electron-opaque supports can also be used, followed by STEM imaging [38],
but these platforms are not widely available. Though ablation methods benefit from coarse
pre-registration of image fields, SEM/STEM imaging imposes limits in resolution, speed,
and molecular tagging. Slicing requires additional computational registration of image tiles,
but that is a solved problem [39].

Electron Imaging, Tiling and Registration
Connectomics requires tens to hundreds of terabytes of data depending on resolution and
volume subtended [9,21]. In retina, TEM volumes are collections of slices imaged at >1000
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overlapping tiles (Fig. 2). Robust detection of gap junctions and synapses requires ≈ 2 nm
resolution, and validation requires re-imaging at finer resolutions with goniometric tilt,
which is only possible with TEM [9, 21,37]. Typical SEM platforms usually cannot acquire
data at better than 10 nm, suited to coarse-grained connectomics only, and cannot prove
completeness. A recent review of connectome methods by Kleinfield et al. [38], inexplicably
ignored any work with resolutions better than 10 nm, though 2 nm resolution is essential for
completeness [9] and synaptic weighting [37]. As they are based on commercial electron-
imaging cameras and automated acquisition [40••], ATEM platforms can be implemented by
many existing TEM facilities. A more advanced TEM design uses reconfigured columns,
custom phosphor plates, and custom camera arrays [23], producing the fastest connectome
imaging architecture. This approach requires a dedicated TEM and skilled staff. Different
schemes have been used to generate navigable ultrastructural data-sets. Preserving the slice
as a 2D page simplifies data navigation, distribution and sharing [41•]. Fully automated
precision mosaicking and slice-to-slice registrations developed by Tasdizen et al. [39]
exploits image Fourier shift to compute net displacement vectors. Resampled slice-to-slice
alignments, refined by nonrigid grid alignment, are then used to automatically build 2 nm
resolution volumes. These strategies and their derivatives are also applicable to large scale
optical atlases [42].

Navigation, Annotation & Analysis
Terabyte-scale imagery cannot be explored with conventional imaging tools and new tools
are required [41, 43,44]. Several groups have successfully used image pyramids as a data
delivery architecture [41,45]. The open-source Viking environment [41] allows multiuser
remote visualization by converting datasets to web-optimized tiles and delivering volume
transforms to client devices via conventional internet connections. Generation of 3D cell
renderings and mapping of synaptic networks requires integrated annotation and database
architectures. In Viking, disc markers are used to approximate convex hulls and linked to
build 3D representations (Fig. 3) with accurate size scaling for modeling. Relational
structures (presynaptic complexes, postsynaptic densities, gap junctions, adherens junctions)
are located, sized and linked to build adjacency matrices. Annotations also store metadata
and permits bookmarked web-tours of networks. Analysis requires rendering, graphing,
network touring, and informatics. The open-source Viz web services for Viking allow cell
renderings at higher resolutions than optical methods, automated network graphs, navigation
between ultrastructural data and network motifs, and automated statistical summaries. While
significant efforts have been made to achieve automated tracing [43, 46–48], all
connectomes must presently be validated by human annotation [41] and none are currently
practical for connectomics of complex neuropil. Correcting annotation errors has proved
rather straightforward. Completeness ultimately purges errors and metadata parsing can
detect early errors. Errors such as skipping between processes in tracing are flagged as
forbidden switches in molecular signatures, associated synapse type, targets or inputs. One
of the best methods is parsing network graphs for violations.

Sharing
Connectomics datasets must be shared [41, 43,49], but distributing raw datasets is
impractical. The solution is open-access via web services. The Viking strategy involves
open source tools and common file formats to accommodate other widely used applications,
e.g. Blender (www.blender.org). Such open-access approaches minimize the overhead for
journals as data gatekeepers, but poses problems of intellectual ownership. We have opted
for full public sharing of our datasets and tools as proposed by Jeong et al. [43]. The next
critical stage is integrating annotated datasets and summary networks with large informatics
frameworks [50, 51].
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Examples of Connectomics Discovery
Ultimately, hypotheses addressing retinal signal processing, network development, network
evolution, and visual behavior will only yield to mapping at resolutions sufficient for
completeness: 2nm or better. Validation involves several levels. First, do connectome
datasets replicate previous reconstructions? An exceptional test case is the AII amacrine cell
(AC), a critical interneuron in mammalian scotopic vision, previously reconstructed by
several different groups [11, 13,52,53]. Fig. 3 shows a stereo pair of AII AC 476 from the
RC1 rabbit retinal connectome and every rod bipolar cell (BC) associated with it.
Connectomics extracts all previously reported features of this cell in over 30 instances,
corrects prior errors and omissions, and extends the network [21] by characterizing
previously undiscovered synaptic partners including wide-field ON cone BCs and unique
sets of GABAergic ACs. A higher level of validation involves building navigable network
graphs with synaptic weighting data such as postsynaptic density areas
(http://connectomes.utah.edu/viz). Such graphs show that scotopic operations are,
unexpectedly, a minor facet of the AII connectome. This suggests that AII cells are central
elements in the evolution of photopic ON → OFF crossover networks later repurposed to
serve rod vision. Fig. 4 displays a condensed 1-hop connectome for the AII AC, showing the
minimum partner set. There may be subclasses within some GABAergic groups. Such
analyses can be applied to every retinal cell class, including glia, microglia and vascular
elements, enabling accurate volumetric adjacency analyses in the retina of every species.
Connectomics at 2 nm resolution also provides insights to important associations [21] such
as heterocellular and homocellular gap junctions [54•,55], fasciculation and glomerular
associations via adherens junctions, new architectures for intercellular contacts, nanoscale
synaptic assemblies, synaptic and gap junction turnover by endocytosis, synaptic ribbon
transport, postsynaptic density assembly, as well as glial and microglial intercalations by
fins as thin as 20 nm, and more. At a coarser resolution, connectomics analysis supports the
preferential association of starburst AC dendrites with the corresponding directional bias of
ON directionally selective ganglion cells [22]. Whether high resolution connectomics of
complete networks will affirm this remains to be seen.

Towards completeness
Completeness requires mapping all contacts and contact patterns across multiple instances of
a cell class. The variance of some metric should be minimized when sampling approaches
completeness, but we are still discovering those metrics. For example, the mean rod BC
ribbon synapse count for four adjacent AII ACs in RC1 is 74 ± 5 (1 SD) with coefficient of
variation (CV) 0.066. The same cells have a mean rod BC contact count of 11.5 ± 3.7 (CV =
0.32), suggesting that neurons normalize synapse number despite varying neurite overlap
geometries. Completeness is also gauged by edge density in network graphs where
submotifs can be extracted and quantitatively compared.

Conclusion
Completeness in connectomics involves three key issues. (1) Resolution at 2 nm or better to
unambiguously mark synapses and gap junctions is absolutely critical for completely
mapping any network [37, 54,55] and, at present, TEM is optimal for such investigations.
(2) Molecular [21, 27] or optical [22, 23] tagging to pre-select cells of interest in complex
neural populations is also essential as an independent test of identity and as a segmentation
strategy. (3) Increasing the number of platforms available to investigators and sharing them
is the only practical way forward for synaptic connectomics [9]. Building artisanal tools is
an important strategy, but inexpensive, high resolution commercial systems must be
developed, mirroring commercial fMRI systems that support macroscale connectomics. The
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next generation of tools should facilitate the emergence of comparative connectomics to
explore the evolution and development of retinal networks and pathoconnectomics of retinal
neurodegenerations [28, 29].

Highlights

• Complete retinal networks must be mapped by connectomics and cannot be
inferred

• Transmission electron microscope imaging provides optimal synaptic resolution

• Many existing electron microscopes can be converted to connectomics imaging

• Ultrastructurally compliant molecular tags are required for fast connectome
assembly

• Retinal neurons thought to be well-understood are proving to be unexpectedly
complex

Acknowledgments
We thank the National Institutes of Health (EY02576, EY015128, and EY014800), the National Science
Foundation (0941717), the Calvin and JeNeal Hatch Presidential Endowed Chair, and Research to Prevent
Blindness for support. Funding for the JEOL JEM-1400 was generously provided by Martha Ann Healy.

References and annotations
1. Diestel, R. Graph Theory. edn 3rd. Heidelberg: Springer-Verlag; 2005.

2. Harary F, Palmer EM. Graphical Enumeration. 1973New YorkAcademic Press. •• This is a classic
collection of analytic and numerical solutions for network graph attributes. Many are difficult to
compute and have been tabulated in a critical mathematics resource: the On-Line Encyclopedia of
Integer Sequences (OEIS, https://oeis.org/). In addition, the Wolfram Alpha Engine provides
computation of numbers exceeding the capacities of conventional processors
(www.wolframalpha.com)

3. Marc, RE. Synaptic Organization of the Retina. In: Levin, LA.; Nilsson, SFE.; Ver Hoeve, J.; Wu,
SM.; Kaufman, PL.; Alm, A., editors. Adler's Physiology of the Eye. Elsevier; 2010. p. 443-458.

4. Van Essen DC, Glasser MF, Dierker DL, Harwell J, Coalson T. Parcellations and Hemispheric
Asymmetries of Human Cerebral Cortex Analyzed on Surface-Based Atlases. Cerebral Cortex.
2011

5. Reese, BE. Mosaics, Tiling and Coverage by Retinal Neurons. In: Masland, RH.; Albright, T.,
editors. The Senses. Vol. Volume 1. Academic Press; 2008. p. 439-456.

6. Aster, R.; Borchers, B.; Thurber, C. Parameter Estimation and Inverse Problems. NY: Academic
Press; 2005.

7. Karp, RM. Reducibility Among Combinatorial Problems. In: Miller, RE.; Thatcher, JW., editors.
Complexity of Computer Computations. Plenum; 1972. p. 85-103.

8. Wong E, Baur B, Quader S, Huang C-H. Biological network motif detection: principles and
practice. Briefings in Bioinformatics.

9. Anderson JR, Jones BW, Yang J-H, Shaw MV, Watt CB, Koshevoy P, Spaltenstein J, Jurrus E, UV
K, Whitaker R, et al. A computational framework for ultrastructural mapping of neural circuitry.
PLoS Biol. 2009; 7:e1000074. [PubMed: 19855814] . • This paper provides a detailed description of
every workflow stage in building a connectome or any large ultrastructural dataset. The key
developments presented here are software solutions that can be adopted by existing TEM facilities
and include repurposing SerialEM developed by David Mastronarde (see below), the fusion of
optical small molecule immunocytochemistry and TEM imaging via the ir-tweak application,
automatic registration assembly of TEM data volumes with the NCRToolkit, and early navigational
tools. In addition, the authors show that the precision of mosaicking using these tools is better than a

Marc et al. Page 5

Curr Opin Neurobiol. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

https://oeis.org/
http://www.wolframalpha.com


fraction of synaptic vesicle over a 0.25 mm range, an error of less than 0.003%. The key point is
that hardware tools for connectomics are already abundant and the pivotal developments are
software.

10. Stevens JK, Davis TL, Friedman N, Sterling P. A systematic approach to reconstructing
microcircuitry by electron microscopy of serial sections. Brain Res. 1980; 2:265–293. [PubMed:
6258704]

11. Kolb H, Famiglietti EVJ. Rod and cone pathways in the retina of the cat. Invest Ophthal. 1974;
15:935–946.. • This landmark paper began the true analysis of networks in the retina, despite
earlier attempts to use serial section reconstruction. This achievement was realized was partially
because large portions of narrow field cells such as the AII AC could be encompassed in manual
TEM series annotated on paper prints.

12. Kolb H, Nelson R. OFF-alpha and OFF-beta ganglion cells in cat retina: II. Neural circuitry as
revealed by electron microscopy of HRP stains. J Comp Neurol. 1993; 329:85–110. [PubMed:
8454727]

13. Strettoi E, Raviola E, Dacheux RF. Synaptic connections of the narrow-field, bistratified rod
amacrine cell (AII) in the rabbit retina. J Comp Neurol. 1992; 325:152–168. [PubMed: 1460111] .
• This is a classic in the serial section analysis of the AII AC and presaged larger scale
connectomics in its use of digital tools for data review. The quality of preservation and use of
ferricyanide metallization to achieve high membrane contrast remains the gold standard in TEM.
We now know that iron-based metallization space-fills the atomic grid of biological specimens as
deeply as osmium, but, unlike osmium, is not easily removable by oxidation and that it masks
epitopes critical for molecular tagging. Strettoi et al. provided baseline quantification of many
cellular features. The key limitation was that most of the lateral partners, such as wide-field BCs,
were unidentifiable. Similar to prior reconstructions this was due the lack of coverage (1 cell) and
the absence of a multiuser annotation environment like Viking. These incredible efforts were
severely hampered by impoverished computational resources.

14. Calkins DJ, Tsukamoto Y, Sterling P. Microcircuitry and mosaic of a blue-yellow ganglion cell in
the primate retina. Journal of Neuroscience. 1998; 18:3373–3385. [PubMed: 9547245]

15. Calkins DJ, Sterling P. Absence of spectrally specific lateral inputs to midget ganglion cells in
primate retina. Nature. 1996; 381:613–615. [PubMed: 8637598]

16. Calkins DJ, Sterling P. Microcircuitry for two types of achromatic ganglion cell in primate fovea. J
Neurosci. 2007; 27:2646–2653. [PubMed: 17344402]

17. Klug K, Herr S, Ngo IT, Sterling P, Schein S. Macaque retina contains an S-cone OFF midget
pathway. J Neurosci. 2003; 23:9881–9887. [PubMed: 14586017]

18. Marcus DS, Harwell J, Olsen T, Hodge M, Glasser MF, Prior F, Jenkinson M, Laumann T, Curtiss
SW, Van Essen DC. Informatics and Data Mining Tools and Strategies for the Human
Connectome Project. Front Neuroinform. 2011; 5

19. Sporns O, Tononi G, Kötter R. The Human Connectome: A structural description of the human
brain. PLoS Computational Biology. 2005; 1:e42. [PubMed: 16201007]

20. van den Heuvel MP, Sporns O. Rich-Club Organization of the Human Connectome. The Journal of
Neuroscience. 2011; 31:15775–15786. [PubMed: 22049421]

21. Anderson JR, Jones BW, Watt CB, Shaw MV, Yang J-H, DeMill D, Lauritzen JS, Lin Y, Rapp
KD, Mastronarde D, et al. Exploring the retinal connectome. Molecular Vision. 2011; 17:355–379.
[PubMed: 21311605] . •• This is the first large scale connectomics dataset in the public domain.
The authors describe the assembly, molecular tagging and functional tagging, and visualization of
critical reference neurons such as rod BCs, ON and OFF cone BCs, and the AII AC, assembly of
extended networks and validation of re-imaging. In addition the authors introduce open-access
tools (Connectome Viz, Vikingplot) that allow users to independently explore and render data
from RC1.

22. Briggman KL, Helmstaedter M, Denk W. Wiring specificity in the direction-selectivity circuit of
the retina. Nature. 2011; 471:138–188.. • The authors demonstrate large-scale reconstructions of
ON directionally selective ganglion cells visualized by calcium imaging and registered to the SBF
dataset. While the quality of synaptic visualization was limited by SEM imaging, the authors were
able to trace the preferential alignment of single oriented dendritic domains of starburst amacrine
cells with the nominal bias direction of an associated ganglion cell. Such ganglion cells likely have

Marc et al. Page 6

Curr Opin Neurobiol. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



inputs from other, yet unknown, amacrine cell classes and it remains unclear how much of the
directionally selective bias can be attributed exclusively to starburst amacrine cells. Higher
resolution datasets will be essential.

23. Bock DD, Lee W-CA, Kerlin AM, Andermann ML, Hood G, Wetzel AW, Yurgenson S, Soucy
ER, Kim HS, Reid RC. Network anatomy and in vivo physiology of visual cortical neurons.
Nature. 471:177–182. [PubMed: 21390124] . •• In this tour-de-force, Bock and colleagues
describe using their state-of-the art TEM camera array (TEMCA) system to reconstruct the
ultrastructure of a set of calcium imaged orientation-selective cortical neurons. The TEMCA
system is based on an elevated column with increased projection length, custom vacuum chamber
and phosphor scintillation plate and a 2×2 camera array with a capture speed of 5–8 megapixels/
sec. Custom LabView software was used for stage control. The 10 TB volume was a 50 µm thick
vertical slice of mouse primary visual cortex 350 µm tall (spanning all cortical layers) and 450 µm
wide. While this was an exceptional effort, the resolution was still slightly poorer (< 5nm) than
completeness will require in neuropil containing gap junctions and small synapses. The key
finding was the unexpected convergence of orientation-tuned neurons onto shared nearby
inhibitory cells. Indeed it appears that survey of larger networks will be critical to understand the
synaptic graphs underlying tuning.

24. Hoffmann C, Gaietta G, Zürn A, Adams SR, Terrillon S, Ellisman MH, Tsien RY, Lohse MJ.
Fluorescent labeling of tetracysteine-tagged proteins in intact cells. Nat Protoc. 2010; 5:1666–
1677. [PubMed: 20885379]

25. Gaietta G, Deerinck TJ, Adams SR, Bouwer J, Tour O, Laird DW, Sosinsky GE, Tsien RY,
Ellisman MH. Multicolor and electron microscopic imaging of connexin trafficking. Science.
2002; 296:503–507. [PubMed: 11964472]

26. Lichtman JW, Smith SJ. Seeing circuits assemble. Neuron. 2008; 60:441–448. [PubMed:
18995818]

27. Shu X, Lev-Ram V, Deerinck TJ, Qi Y, Ramko EB, Davidson MW, Jin Y, Ellisman MH, Tsien
RY. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues,
and organisms. PLoS Biol. 2011; 9:e1001041. [PubMed: 21483721] . •• Green fluorescent protein
transformed optical analysis of protein distribution in cells, but has not easily translated to TEM
use. This paper describes a major advance in genetic models by using a plant flavoprotein (termed
miniSOG) that generates single oxygen upon photoactivation (after glutaraldehyde fixation) that
oxidizes diaminobenzidine to an osmiophilic polymer, forming a high-resolution, highly focal
optical and electron dense target. The miniSOG method requires photoconversion prior to
osmication but has exceptionally high substantivity and does not diffuse significantly from the
conversion site.

28. Jones BW, Watt CB, Frederick JM, Baehr W, Chen CK, Levine EM, Milam AH, LaVail MM,
Marc RE. Retinal remodeling triggered by photoreceptor degenerations. Journal of Comparative
Neurology. 2003; 464:1–16. [PubMed: 12866125]

29. Jones BW, Kondo M, Terasaki H, Watt CB, Rapp K, Anderson J, Lin Y, Shaw MV, Yang J-H,
Marc RE. Retinal degenerative disease and remodeling in a large eye model. J Comp Neurol.
2011; 19:2713–2733. [PubMed: 21681749]

30. Marc RE, Liu W. Fundamental GABAergic amacrine cell circuitries in the retina: nested feedback,
concatenated inhibition, and axosomatic synapses. Journal of Comparative Neurology. 2000;
425:560–582. [PubMed: 10975880]

31. Micheva KD, Busse B, Weiler NC, O’Rourke N, Smith SJ. Single-synapse analysis of a diverse
synapse population: proteomic imaging methods and markers. Neuron. 2010; 68:639–653.
[PubMed: 21092855] . •• Molecular markers for segmenting TEM imagery is a critical aspect of
speeding analysis. While small molecule immunocytochemistry is robust for TEM, few proteins
have proven to be expressed at both high enough levels and have detectable epitopes to be
compliant with electron imaging. Further, classical protein immunocytochemistry involves thick
sections and penetration strategies such as freeze-thaw fracturing and detergents. Based on their
earlier work, Micheva and co-workers demonstrate that serial probing/reprobing methods using
ultrathin sections and optical capture can multiplex extremely high-density datasets into nanoscale
structures like synapses. The use of clustering tools then richly segments the densely labeled
dataset. Ultimately, as immunoprobes for proteins are engineered or opportunistically discovered

Marc et al. Page 7

Curr Opin Neurobiol. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



to be glutaraldehyde and osmium tolerant, this technology will become the standard rather than the
exception.

32. Micheva KD, Bruchez MP. The gain in brain: novel imaging techniques and multiplexed
proteomic imaging of brain tissue ultrastructure. Current Opinion in Neurobiology. 2011

33. Micheva KD, Smith SJ. Array tomography: A new tool for imaging the molecular architecture and
ultrastructure of neural circuits. Neuron. 2007; 55:25–36. [PubMed: 17610815]

34. Briggman KL, Denk W. Towards neural circuit reconstruction with volume electron microscopy
techniques. Current Opinion in Neurobiology. 2006; 16:562–570. [PubMed: 16962767]

35. Denk W, Horstmann H. Serial block-face scanning electron microscopy to reconstruct three-
dimensional tissue nanostructure. PLoS Biol. 2004; 2:e329. [PubMed: 15514700]

36. Knott G, Marchman H, Wall D, Lich B. Serial section scanning electron microscopy of adult brain
tissue using focused ion beam milling. J Neurosci. 2008; 28:2959–2964. [PubMed: 18353998]

37. Bourne JN, Harris KM. Nanoscale analysis of structural synaptic plasticity. Current Opinion in
Neurobiology. 2011; 22:1–11.

38. Kleinfeld D, Bharioke A, Blinder P, Bock DD, Briggman KL, Chklovskii DB, Denk W,
Helmstaedter M, Kaufhold JP, Lee WC, et al. Large-Scale Automated Histology in the Pursuit of
Connectomes. J Neurosci. 2011; 31:16125–16138. [PubMed: 22072665]

39. Tasdizen T, Koshevoy P, Grimm B, Anderson JR, Jones BW, Whitaker R, Marc RE. Automatic
mosaicking and volume assembly for high-throughput serial-section transmission electron
microscopy. J Neuroscience Methods. 2010; 193:132–144.

40. Mastronarde DN. Automated electron microscope tomography using robust prediction of specimen
movements. J Struct Biol. 2005; 152:36–51. [PubMed: 16182563] . •• SerialEM is one of the most
effective, flexible and widely used software applications for electron microscopy. Originally part
of a suite of tools for electron tomography, SerialEM was designed to control stage translation,
stage tilt, specimen focus and image acquisition on both JEOL and FEI TEMs fitted with a wide
range of phosphorimagingand some new electron-sensitive CCD cameras. Using predictive and
computed sample position, SerialEM can be scripted to acquire many thousands of focused,
overlapping image tiles daily. Importantly, it enables multi-use systems where connectomics
projects do not prevent other users from using the same platform for other advanced imaging
projects. It is freely available from the Boulder Laboratory for 3-D Electron Microscopy of Cells
(http://bio3d.colorado.edu/SerialEM/).

41. Anderson JR, Grimm B, Mohammed S, Jones BW, Spaltenstein J, Koshevoy P, Tasdizen T,
Whitaker R, Marc RE. The Viking Viewer: Scalable multiuser annotation and summarization of
large connectomics datasets. J Microscopy. 2011; 241:13–28.. • Among the various data viewers
for TEM data, Viking stands apart in ease of installation, use, flexibility and its capacity to rapidly
populate databases for graphical and statistical queries. Viking delivers connectome imagery over
the internet using HTTP and scales to large volume sizes for connectomics, and applies image
transformations in real-time to that many different viewing strategies are possible. It readily
intercalates optical molecular imagery onto TEM imagery. With an easily extensible user
interface, Viking allows insertion of various visualization and morphometrics tools and readily
passes data between network graph applications (Connectome Viz) and the ultrastructural volume.

42. Berlanga ML, Phan S, Bushong EA, Wu S, Kwon O, Phung BS, Lamont S, Terada M, Tasdizen T,
Martone ME, et al. Three-dimensional reconstruction of serial mouse brain sections: Solution for
flattening high-resolution large-scale mosaics. Frontiers in Neuroanatomy. 2011; 5

43. Jeong WBJ, Hadwiger M, Blue R, Law C, Vazquez A, Reid C, Lichtman J, Pfister H. IEEE
Computer Graphics and Applications V. SSECRETT and NeuroTrace: Interactive Visualization
and Analysis Tools for Large-Scale Neuroscience Datasets. IEEE Computer Graphics and
Applications. 2010; 30:58–70. p.58–70, (2010). [PubMed: 20650718]

44. Fiala JC. Reconstruct: a free editor for serial section microscopy. J Microsc. 2005; 218:52–61.
[PubMed: 15817063]

45. Mikula S, Trotts I, Stone JM, Jones EG. Internet-enabled high-resolution brain mapping and virtual
microscopy. Neuroimage. 2007; 35:9–15. [PubMed: 17229579]

46. Jurrus E, Paiva ARC, Watanabe S, Jorgensen EM, Anderson J, Jones B, Whitaker R, Marc R,
Tasdizen T. Detection of neuron membranes in electron microscopy images using auto-context.
Medial Image Analysis. 2010; 14:770–783.

Marc et al. Page 8

Curr Opin Neurobiol. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://bio3d.colorado.edu/SerialEM/


47. Narayanaswamy A, Wang Y, Roysam B. 3-D image pre-processing algorithms for improved
automated tracing of neuronal arbors. Neuroinformatics. 2011; 9:219–231. [PubMed: 21537877]

48. Luisi J, Narayanaswamy A, Galbreath Z, Roysam B. The FARSIGHT trace editor: an open source
tool for 3-D inspection and efficient pattern analysis aided editing of automated neuronal
reconstructions. Neuroinformatics. 2011; 9:305–315. [PubMed: 21487683]

49. Amari SI, Beltrame F, Bjaalie JG, Dalkara T, Schutter ED, Egan GF, Goddard NH, Gonzalez C,
Grillner S, Herz A, et al. Neuroinformatics: The integration of shared databases and tools towards
integrative neuroscience. Journal of Integrative Neuroscience. 2002; 1:117–128. [PubMed:
15011281]

50. Akil H, Martone ME, Van Essen DC. Challenges and opportunities in mining neuroscience data.
Science. 2011; 331:708–712. [PubMed: 21311009]

51. Martone ME, Tran J, Wong WW, Sargis J, Fong L, Larson S, Lamont SP, Gupta A, Ellisman MH.
The cell centered database project: an update on building community resources for managing and
sharing 3D imaging data. J Struct Biol. 2008; 161:220–231. [PubMed: 18054501]

52. Famiglietti EVJ, Kolb H. A bistratified amacrine cell and synaptic circuitry in the inner plexiform
layer of the retina. Brain Res. 1975; 84:293–300. [PubMed: 1111833]

53. Tsukamoto Y, Morigiwa K, Ueda M, Sterling P. Microcircuits for night vision in mouse retina. J
Neurosci. 2001; 21:8616–8623. [PubMed: 11606649]

54. Kamasawa N, Furman CS, Davidson KG, Sampson JA, Magnie AR, Gebhardt BR, Kamasawa M,
Yasumura T, Zumbrunnen JR, Pickard GE, et al. Abundance and ultrastructural diversity of
neuronal gap junctions in the OFF and ON sublaminae of the inner plexiform layer of rat and
mouse retina. Neuroscience. 2006; 142:1093–1117. [PubMed: 17010526] . • In this definitive and
elegant freeze-fracture analysis, Rash and his colleagues show that many gap junctions in the
mammalian retinal inner plexiform layer are suboptical and that linear gap junctions are prevalent
as well. This means that any technology that lacks the ability to resolve gap junctions and permit
extremely high resolution re-imaging (e.g. ablation methods) will be unable to fully build retinal
networks. This is a critical issue as virtually every superclass of retinal cell displays members with
either homocellular or heterocellular coupling, especially many ganglion cell classes [55]. But
these findings also challenge high-throughput TEM which will not detect linear junctions except in
very rare, fortuitous orientations with optimized goniometric imaging. The appropriate solution
will be to characterize the partners in such junctions by freeze-fracture immunolabeling: a
challenging and low throughput method.

55. Massey, SC. Circuit Functions of Gap Junctions in the Mammalian Retina. In: Masland, RH.;
Albright, T., editors. The Senses. Vol. Volume 1. Academic Press; 2008. p. 457-472.

Marc et al. Page 9

Curr Opin Neurobiol. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1. Network Enumeration
Graph enumeration for networks. A three vertex (n=3) network (ABC) can form different
numbers of motifs if the connections are undirected U(n), directed D(n) (solid arrows), or
directed with re-entrant loops R(n) (dotted arrows). Networks can be limited to vertex
clusters of size k [C(n,k)]. Directed (D) and combinatoric (C) networks in retina (n=70),
brain regions (n=250) and brain neurons (n=1000) were calculated using the Wolfram Alpha
engine (www.wolframalpha.com).
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Fig. 2. Connectome RC1 slice 001
Connectome RC1 slice 001 composed of >1000 high-resolution TEM tiles. The slice is
augmented with a multispectral transparency mapping simultaneously displaying GABA
(red), glycine (green, glutamate (blue), and a logical AND of glutamine and taurine signals
as a dark gold alpha channel. GABA+ (red) neurons are amacrine cells, while glycine+
(green) neurons are either amacrine or an ON cone bipolar cell subset. Glutamate+ (blue)
neurons are largely bipolar cells. Image width, 243 µm. From Anderson et al., 2011,
Molecular Vision 17:355–379 by permission of the authors.
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Fig. 3. Stereo pair rendering
A stereo pair of 3D volumetric constructions. AII amacrine cell 476 (dark red) is shown with
all of the rod bipolar cells that drive it and an adjacent microglial cell (5016). Each of the
bipolar cells is numbered with the total number of ribbon synapses it makes with cell 476 in
parentheses. The cells were rendered using the Vikingplot application, calling the open-
access RC1 database.
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Fig. 4. Summary network
The complete connectome for class AII glycinergic ACs in the mammalian retina. The
connectome shows four modes of excitation (solid arrows), three modes of coupling (lines),
five modes of GABA inhibitory input (open arrows), and four glycine inhibitory output
modes (double arrows). CBa, OFF cone BCs; CBb, ON cone BCs; WF, wide field ON cone
BCs; RB, rod BCs; TH1, class 1 dopaminergic axonal cells; α, alpha GCs; δ, delta GCs;
pAC, peptidergic GABAergic AC; OFF AC1, dominant monostratified OFF cone AC
population; OFF AC2, minor monostratified OFF cone AC population; ON AC, dominant
monostratified ON cone AC population; ON SAC, ON starburst amacrine cell; AI-S2
subclass S2 class AI rod-dominated GABAergic AC. Some of the groups can be further
weighted. For example, though ON cone BCs classes (there are at least five) are coupled to
AII cells via gap junctions, they differ in their gap junction areas and one class (WF ON
cone BCs) is also pre-synaptic via ribbon synapses.
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