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ABSTRACT Directionality in populations of replicating
organisms can be parametrized in terms of a statistical
concept: evolutionary entropy. This parameter, a measure of
the variability in the age of reproducing individuals in a
population, is isometric with the macroscopic variable body
size. Evolutionary trends in entropy due to mutation and
natural selection fall into patterns modulated by ecological
and demographic constraints, which are delineated as follows:
(i) density-dependent conditions (a unidirectional increase in
evolutionary entropy), and (ii) density-independent condi-
tions, (a) slow exponential growth (an increase in entropy); (b)
rapid exponential growth, low degree of iteroparity (a de-
crease in entropy); and (c) rapid exponential growth, high
degree of iteroparity (random, nondirectional change in en-
tropy). Directionality in aggregates of inanimate matter can
be parametrized in terms of the statistical concept, thermo-
dynamic entropy, a measure of disorder. Directional trends in
entropy in aggregates of matter fall into patterns determined
by the nature of the adiabatic constraints, which are charac-
terized as follows: (i) irreversible processes (an increase in
thermodynamic entropy) and (ii) reversible processes (a
constant value for entropy). This article analyzes the relation
between the concepts that underlie the directionality princi-
ples in evolutionary biology and physical systems. For models
of cellular populations, an analytic relation is derived between
generation time, the average length of the cell cycle, and
temperature. This correspondence between generation time,
an evolutionary parameter, and temperature, a thermody-
namic variable, is exploited to show that the increase in
evolutionary entropy that characterizes population processes
under density-dependent conditions represents a nonequilib-
rium analogue of the second law of thermodynamics.

The latter half of the 19th century witnessed in both physics
and biology the emergence of a new paradigm—a mechanistic
analysis of macroscopic behavior. In physics, the new view-
point was advanced by Boltzmann who proposed a mechanistic
model of macroscopic phenomena based on the radically new
notion of molecular heterogeneity: the molecules in any large
sample of inanimate matter differ in terms of their energy
levels. In biology, the revolution was inspired by Darwin who
developed a mechanistic explanation of evolutionary trends
based on the analogous notion of organismic heterogeneity:
the individuals in any large population of replicating organisms
differ in terms of their fecundity and mortality.
The theories of Boltzmann (1), and Darwin (2) each invoke

these equivalent notions of heterogeneity: the former, with its
basis in quantum mechanics; the latter, with its basis in
developmental biology, to provide an account of time asym-

metric behavior of inanimate and living matter in terms of
interactions at elementary levels—molecular and organismic,
respectively. The two theories, however, embody different
conceptual and analytical structures that reflect the profound
rift that existed in the mathematical development of physics
and biology at that time.
Boltzmann’s work, set in the strong mathematical tradition of

19th century physics, drew from this heritage to express the
qualitative property of molecular heterogeneity in terms of a
statistical measure called entropy. This concept has two equiva-
lent expressions; the first, introduced by Boltzmann, and given by

SB 5 klogW, [1]

where W denotes the number of energy levels available to the
system at a given temperature, and k the Boltzmann constant.
The second, introduced by Gibbs, is given by

SG 5 2kOpilogpi, [2]

where pi denotes the probability that a randomly chosen
particle is in the energy state (i).
Macroscopic behavior of inanimate matter can now be

understood in terms of the temporal changes of a well-defined
analytic function of the microscopic states. Boltzmann’s theory
is in essence a quantitative theory that gives a mechanistic
explanation of the evolution of macroscopic behavior in
physical systems.
Thermodynamic theory distinguishes between adiabatic

processes according to the magnitude of their relaxation
time—that is, the time it takes the system to reach its equi-
librium state: processes in which the reactions proceed rapidly
relative to the relaxation time are called irreversible; whereas
processes that occur in times long compared with the relax-
ation time are called reversible. This distinction between irre-
versible and reversible processes is central in the two funda-
mental tenets of the theory: A(1) irreversible adiabatic pro-
cesses (a unidirectional increase in entropy) and A(2)
reversible adiabatic processes (a constant value for entropy).
The coherence and logical completeness of statistical ther-

modynamics, as developed in the works of Gibbs and Boltz-
mann, derives in large measure from the fact that molecular
heterogeneity—one of its basic elements—is a purely geomet-
ric concept that could be analytically expressed within the
mathematical framework of 19th century physics.
Darwin’s theory, by contrast, was developed within the

naturalistic tradition of 19th century biology; a tradition that
was close to its empirical roots and devoid of any mathematical
constructs. The theory of evolution by natural selection, in
sharp contrast to statistical thermodynamics, is in essence a
qualitative theory, which provides a conceptual rather than an
analytic framework for understanding evolutionary dynamics
in populations of living organisms.
The issue of developing an analytical theory of evolution

comparable in explanatory power to the Boltzmann theory
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gradually emerged with the rediscovery of Mendel’s laws of
inheritance in 1910, as a important topic in evolutionary
studies. Fisher’s ‘‘Genetical Theory of Natural Selection’’ (3)
represents the first mathematical synthesis of Darwin’s theory
and the Mendelian laws and provided the dominant paradigm
for subsequent analytical studies of evolutionary processes.
The cornerstone of this work is embodied in the ‘‘fundamental
theorem of natural selection,’’ which asserts: The rate of
increase in the mean fitness at any time of any organism is
equal to its genetic variance in fitness.
It is now generally conceded that Fisher’s theorem and its

manifold extensions bear no consequence on understanding
macroevolutionary changes such as adaptation and extinction
(4–6). The fundamental theorem, and a large body of work in
classical population genetics (7–9), is concerned primarily with
changes in gene frequencies within a population due to
differential viability of the genotypes. The concept mean
fitness, a keystone of the Fisherian theory, describes the
average viability of the genotypes, a property that need not be
related to persistence or stability of the population. Such
properties are in no sense determined by mean viability, but
have now been shown to be functions of demographic vari-
ability, the heterogeneity in fecundity and mortality of indi-
viduals in the population (10–12).
Demographic variability has its origin in the processes that

underlie the ontogeny of the individual. In cellular systems, it
results from the random inequalities between cells, such as
unequal distribution of metabolic components, which occur at
cell division. In multicellular and higher organisms, demo-
graphic variability now derives from the small variations in the
sequence of developmental events that transform the zygote
into an adult. Accordingly, any genetically homogeneous pop-
ulation of organisms will be characterized by demographic
heterogeneity, a condition that much be considered in any
theory which purports to explain the persistence and stability
of populations under different environmental conditions.
Variability in net-reproductive rates in a population of

replicating organisms, in sharp contrast to the variability in
energy levels in an aggregate of inanimate matter, has a
dynamic rather than a purely geometric character. The Boltz-
mann entropy and the related concept due to Gibbs are
essentially measures of geometric complexity, and as such, are
unable to represent the dynamic nature of heterogeneity
inherent in biopopulations.
A dynamical notion of entropy, a far reaching generalization

of the indices due to Boltzmann and Gibbs was introduced in
the context of ergodic theory by Kolmogorov and Sinai in 1950
(see ref. 13). Ergodic theory studies the statistical properties of
mechanical systems in terms of an abstract mathematical
object called a measure preserving transformation of a mea-
sure space (13).
This mathematical object is characterized by a mapping that

assigns to each point in the measure space another point in a
one-to-one, onto, way, so that each measurable set is trans-
formed onto a measurable set of the samemeasure. The metric
or dynamical entropy associates with this abstract dynamical
system, a number that reflects the degree to which themapping
disorganizes the measure space. Two measure preserving
transformations are said to be isomorphic if we can find a
one-to-one correspondence between all (but a set of measure
0) of the points in each measure space, so that corresponding
sets have the same measure, and corresponding points are
transformed in the same way. The metric entropy constitutes
an isomorphism invariant of measure preserving transforma-
tions and consequently it reflects a fundamental statistical
property of the dynamical system.
The work initiated in Demetrius (14) exploited this isomor-

phism invariant of measure preserving transformations to
provide a mathematical model of the heterogeneity in birth
and death rates that characterizes biopopulations. In later

studies, this model was exploited to develop an evolutionary
analogue of the Boltzmann theory.
Individual birth and death rates are a function of the

physiological state of the organism—a property that can be
parametrized by metabolic energy, size, or age. Of these three
variables, age constitutes the most accessible and reliable index
of physiological condition. Accordingly, in the population
models we consider, the state of an individual in a population
will be parametrized in terms of its age.
Evolutionary entropy H, derived by computing the Kolmo-

gorov–Sinai invariant for a particular measure-preserving
transformation associated with an age-dependent population
process (14), is given by H 5 S̃yT̃, where

S̃ 5 2Op̃jlog p̃j and T̃ 5 Ojp̃j. [3]

Here p̃j now denotes the probability that the ancestor of a
randomly chosen newborn is in age-class j.
The expression S̃, which we will also call evolutionary

entropy (the reference to the nondimensional quantity S̃ and
the dimensional variable H will be clear from the context) is a
measure of the variability in the age of reproduction. The
function T̃ denotes the generation time, the mean age of
parents at the birth of their offspring. Evolutionary entropy,H,
which has the dimension of inverse time, is a measure of
population stability (10, 11, 15)—that is, the rate of decay of
fluctuations in population numbers due to small variations in
the individual birth and death rates.
The mathematical theory of evolutionary dynamics devel-

oped in refs. 16–20 considers evolution as a dual process. The
first phase, which acts on a short time scale, consists of the
production of genetic variability throughmutation. The second
phase, which proceeds on a much longer time scale, refers to
natural selection, which induces changes in the frequency of
the ancestral and mutant types due to differences in their
net-reproductive rates. Our model thus considers a population
at demographic equilibrium, defined by an entropy H. Muta-
tion introduces new types and thus perturbs the equilibrium
state. The selective interaction between the ancestral and
mutant types drives the combined population to some new
equilibrium state with entropy H9. We are concerned with
the global change in entropy, D̃H 5 H9 2 H, as the
population moves from one equilibrium state to the next.
A central point in our analysis of this model is a classification

of populations based on ecological and demographic con-
straints. Ecological conditions impose constraints on popula-
tion growth. We distinguish between density-dependent
growth, in which individual net-reproductive rates are decreas-
ing functions of density; and density-independent growth,
where no such constraints prevail. Under density-dependent
constraints, the equilibrium state, defined by a stable age
distribution, will be characterized by a constant population
size. Under density-independence, the equilibrium state will
now be characterized by exponential increase in population
numbers. Populations subject to density-independent condi-
tions may be further classified according to the relation
between (i) the relaxation time—that is, the recovery time
after a random perturbation of the age-distribution, and (ii)
the generation time. Growth rate is said to be slow if the
generation time exceeds the relaxation time; fast, if the gen-
eration time is inferior to the relaxation time.
Demographic properties impose constraints on the shape of

the net-reproductive function. We distinguish between low
iteroparity, with reproduction concentrated at either the ear-
lier or the later stages in the life cycle, and high iteroparity with
reproduction distributed over most stages of the life cycle.
These distinctions based on ecological and demographic

constraints provide a characterization of trends in evolutionary
entropy as one population replaces another under the dual
forces of mutation and selection. The following relations were
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derived between the demographic–ecological constraints and
trends in evolutionary entropy (17, 20): B(1) Density-
dependent condition (a unidirectional increase in entropy) and
B(2) density-independent condition: (i) slow exponential
growth (a unidirectional increase in entropy); (ii) rapid expo-
nential growth, low iteroparity (decrease in entropy); and (iii)
rapid exponential growth, high iteroparity (random, nondirec-
tional change in entropy).
We should emphasize at this juncture that the directionality

theorems expressed in B(1) and B(2) are different in character
from Fisher’s theorem. Fisher is concerned with changeswithin
populations of average fitness properties, fitness being mea-
sured by viability, an individual property. Evolution, in these
models, is considered as due to a single process, natural
selection. The ‘‘fundamental’’ theorem is a statement about
variations in mean viability as gene frequencies in the popu-
lation change due to differences in viability of the genotypes.
The directionality theorems, by constrast, describe changes
between populations of average fitness properties, fitness now
being measured by entropy, a population property. Evolution
in these models is now considered a dual process: mutation and
natural selection. Entropy is defined at demographic equilib-
rium. The directionality theorems are statements that pertain
to global changes in entropy, as mutation perturbs the equi-
librium state and selection drives the perturbed population to
a new equilibrium state.
Evolutionary entropy is a measure of both the complexity of

the life cycle as described by the variability in age of repro-
duction, and population stability as measured by the decay rate
of fluctuations in population numbers due to perturbations in
individual net-reproductive rates. The theory predicts: (i) an
increase in complexity and stability under conditions of sta-
tionary or slow population growth, (ii) a decrease in complex-
ity and stability under conditions of rapid exponential growth
and a low degree of iteroparity, and (iii) random, nondirec-
tional changes in complexity and demographic stability under
the conditions of rapid exponential growth and a high degree
of iteroparity.
This article has three main aims. First, I provide an account

of the main ideas that underlie the statistical mechanics
formalism and its application to evolutionary dynamics. Sec-
ond, I consider an energetics-life history population model and
show that the entropy S̃ defined by Eq. 3 is isometric to the
macroscopic variable, body size,

S̃ 5 aW, [4]

where a denotes a constant. I then exploit the scaling relation
(Eq. 4) to predict evolutionary trends in body size under
different ecological constraints. Finally, I restrict this analysis
to cellular populations and invoke a phenomenological model
to derive an analytic relation between generation time T̃, the
mean cycle time of replicating cells, and temperature T,
namely,

T̃ 5
ch
kTS1rD . [5]

Here h is Planck’s constant; k, Boltzmann’s constant; and r 5
exp(2DF#yRT), where DF# is an effective free energy of
activation and R the gas constant. The constant c is a function
of the concentration of the cellular reactants, enzymes, and
substrates. We use this relation between the evolutionary
parameter, generation time, and the thermodynamic variable,
temperature, to show that the increase in evolutionary entropy
under stationary growth constraints represents a nonequilib-
rium analogue of the Second Law of Thermodynamics.
Efforts to elucidate a connection between thermodynamic

processes and evolutionary dynamics have generated a large
literature (see, for example, refs. 21–24). The models proposed

in these works are largely based on a phenomenological
thermodynamic theory. These studies stand in sharp contrast
to the ergodic theory and statistical mechanics methods inte-
grated in the work reviewed in this article.

Intrinsic Heterogeneity in Replicating Organisms

Heterogeneity in birth and death rates is a fundamental
property of replicating organisms. It has its origins in the
instability of the ontogenetic process: the small variation in
timing and in the sequence of development events that trans-
late the genetic program into the adult state. This instability
entails that any genetically homogeneous population of organ-
isms will be characterized by variability in their phenotypic
states—size, age, metabolic energy—and hence variability in
terms of their demographic properties.
This inherent heterogeneity can be formally expressed in

terms of the concept evolutionary entropy, denoted H. The
population process which the parameter H characterizes is
described by the graph given in Fig. 1.
Each node in the graph corresponds to an age-class. The

transition (i) 3 (i 1 1) represents the aging process, the
transition (i) 3 (1) describes the reproduction process. The
weights (bi) describes the probability that an individual in state
(i) survives to state (i 1 1). The weights (mi) represents the
mean number of newborns produced by an individual in state
(i).
The mathematical properties of H, and its significance as a

measure of the complexity of the life cycle and population
stability, can be elucidated by showing that H is in effect the
dynamical entropy of the measure preserving transformation
associated with the population process that is described by the
graph in Fig. 1. The concept of a genealogy provides a basis for
making this connection explicit.
Genealogies and Evolutionary Entropy. A path, denoted x, of

the life cycle graph described in Fig. 1, can be represented by

x 5 ~ . . . x21, x0, x1, x2, . . . !

where xi belongs to the set of integers (1, 2, . . . n). Such a path
is called a genealogy as it represents a recording of successive
ancestors of a particular individual which at time 0 is in age
class x0.
The set of all genealogies, denoted V, represents the set of

all paths x of the life cycle graph. Consider the transformation
t:V3 V, which shifts each sequence of descendants one step,
and defined by (tx)k 5 xk11. The steady state of the population
can be described in terms of a Markov probability measure m,
which is invariant with respect to the transformation t. We can
therefore consider the abstract dynamical system (V,m,t), as
completely describing the population process at steady state.
The dynamical or metric entropy of the abstract dynamical

system (V,m,t) can be defined as follows (13). Consider a
partition a 5 {A1,A2, . . . ,An} ofV into finite measurable sets.
The entropy of the partition is defined by H(a) 5
2•m(Ai)logm(Ai). The entropy of the transformation t with
respect to the partition a is

h~a,t! 5 lim
k3`

1
k
H~a ~ t21a ~ . . . ~ t2k11a!.

FIG. 1. The life cycle of a population.
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The quantity h(a,t) is a measure of the uncertainty per unit
time we have about which element of the partition a the
genealogy x will enter (as it is moved by t) given its preceding
history. The metric entropyHm(t) is defined to be the maximal
uncertainty over all the finite state processes associated with t :

Hm~t! 5 sup
a

h~a,t!.

Now in the case of the population process described by the
graph in Fig. 1, m is a Markov measure. The quantity Hm(t),
which can now be explicitly computed, becomes (14),

Hm~t! 5 2O
i

O
j

pi pijlogpij,

where pij denotes the probability that an individual in age-class
(i) at time t is transformed into an individual in age-class (j) at
time t 1 1, and p 5 (pi) denote the stationary distribution of
the Markov matrix P 5 (pij). On account of the special
structure of the graph given by Fig. 1, we now obtain, (14),

Hm~t! 5 2
Op̃jlog p̃jOjp̃j ,

where p̃j, which is now a function ofmj and bj, is the probability
that a randomly chosen newborn is in age-class ( j).
We observe that the above expression for the metric entropy

Hm(t) is precisely the evolutionary entropy H defined by Eq. 3.

The Population Dynamics

The dynamical system that describes the population process,
characterized by the graph in Fig. 1, can be represented in
terms of changes in the vector u#(t) 5 [u1(t), u2(t), . . . , un(t)],
where ui(t) denotes the number of individuals in age-class (i)
at time t.
The changes in the age-distribution are given by

ū~t 1 1! 5 A~t!ū~t!, [6]

where A(t) is the Leslie population matrix with age-specific
fecundity rates (mj) in the top row, age-specific survival
probabilities (bj) along the subdiagonal, and zero elsewhere.
Inmodels where birth rates and death rates are independent of

density (mj) and (bj) are constants. In density-dependent models,
the quantities are functions of total population numbers.
It is known that when certain natural demographic condi-

tions on the age-specific fecundity and mortality rates obtain
(14, 17), the system represented by Eq. 6 will converge to a
steady state described by a stable age-distribution, with a
population growth rate r 5 0, when the birth and death rates
are density-dependent, and r . 0, when the density-
independent conditions prevail.
Statistical Mechanics of Populations. The dynamical system

(Eq. 6) describes the trajectory of the age-distribution of the
population. The statistical mechanics model, as developed in
ref. 16, is concerned with the genealogical history of living
individuals in the population. To analyze this history we
consider the steady state of the process defined by Eq. 6. At
steady state, the age-specific fecundity and mortality is now
determined by the matrix Ã 5 (ãij), whose elements are now
time-independent. We use this matrix defined at steady state,
to determine a new configuration space as follows. Let

X 5 P
k50

`

$1, . . . , n%,

VÃ5 $x [ X:ãxk11,xk . 0 for k [ N%.

The set VÃ represents the genealogies generated by the birth
and death process. The phase space VÃ coincides with V, the
set of all paths x of the life cycle graph given in Fig. 1 (14).
Let M denote the set of all t-invariant probability measures

on V, and let Hm(t) denote the metric entropy for the shift t
with respect to m [ M.
By invoking the thermodynamic formalism described in ref.

25, it was shown in ref. 16 that the asymptotic growth rate r,
defined at the stable age distribution, satisfies a variational
principle that is formally analogous to the minimization of the
free energy in statistical mechanics. We write

r 5 sup
m
FHm~t! 1 E logax1x0dmG . [7]

Also, we have that the supremum in Eq. 7 is obtained at a
unique m which we denote by m̂. We write

r 5 Hm̂~t! 1 E logax1x0dm̂. [8]

The probability measure m̂ can be explicitly described in terms
of the elements of the stochastic matrix p 5 (pij) obtained by
the canonical normalization of the population matrix Ã5 (ãij).
The two terms which constitute the above sum can be explicitly
computed. These two expressions which we call, evolutionary
entropy H, and the reproductive potential F, are given, in the
case of the density-independent models, by

H 5 2
Op̃jlog p̃jOjp̃j ; F 5

Op̃jlogVjOjp̃j . [9]

where

p̃j 5
Vj
erj
; Vj 5 ljmj with lj 5 P

k51

j21

bk.

The expression (Eq. 8) now assumes the form

r 5 H 1 F. [10]

Demographic Parameters. The quantity r describes the rate
of increase in total population numbers for the system whose
dynamic is represented by the matrix Ã 5 (ãij). We can derive
a new family of demographic variables by considering the
Taylor expansion of the function r(d) associated with the
matrix Ã(d) 5 (ãij)11d.
We have (ref. 11)

r~d! 5 r~0! 1 dr9~0! 1
d2

2!
r0~0! 1

d3

3!
r-~0! 1 . . . ,

where r9(0)[ F, r0(0)[ s2, r-(0)[ k. The function F is given
by Eq. 9, s2 and k are given by Eqs. 11 and 12, respectively.

s2 5
O~Wj!2p̃jOjpj [11]

k 5 O~Wj!3p̃j 2 3
O~Wj!3p̃jzOjWjp̃jOjp̃j 1 2O~Wj!2p̃j, [12]

where

Wj 5 jH 1 log p̃j.

The quantities r and s2 will be shown to determine condi-
tions for the invasion-extinction of new mutants. The param-
eters F and g, where g is given by g 5 k 1 2s2 will play an
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important role in our classification of populations according to
ecological and demographic constraints.
The parameter F provides a means of classifying popula-

tions in terms of the magnitude of their growth rate. We
observe from Eq. 10 that F 5 r 2 H. Hence F , 0f r , H;
F . 0 f r . H. Thus the condition F , 0 implies a slowly
growing population, whereas the relation F . 0 corresponds
to a rapidly increasing population.
The function s2 is called the demographic variance; it

describes the variance in the age of parents at the birth of their
offspring. The parameter g is a measure of the skewness of the
net-fecundity distribution and thus constitutes an index of the
degree of iteroparity: the condition g , 0 describes a popu-
lation whose reproductive activity is concentrated at either the
earlier or the later stages of the life cycle, whereas g . 0
represents a population whose reproductive activity is distrib-
uted over the complete life cycle of the organism (20).

The Evolutionary Dynamics

Biological evolution—the change in diversity and adaptation
of populations over time—involves two complimentary pro-
cesses: mutation and selection. Mutation generates genetic
variability. Selection orders this variability through competi-
tion between the ancestral and mutant types. The unfolding of
these two processes can be analytically described in terms of
the formalism introduced in the previous section.
The Mutation Event. A mutation consists of a genetic change,

an alteration which will induce changes in the life-history char-
acteristics of the individuals who carry the mutant gene.
The mathematical model that describes the dynamical con-

sequences of the mutation event assumes that the ancestral
population is described in terms of the abstract dynamical
system (V,m̂,t), and the potential function w on the phase space
V, given by w(x) 5 logãx1x0 (see refs. 11 and 14). A mutation is
analytically represented by a perturbation of w giving rise to a
new potential function w*, where w*5 w 1 dc. The magnitude
d of the perturbation is assumed small and the potential
functions w and c are assumed to satisfy the condition *wdm 5
*cdm. The biological basis for this requirement is discussed in
ref. 11.
Let Dr, DH, and Ds2 denote the changes in the demographic

variables induced by the mutation event. We have shown (see
refs. 11 and 20) that for small absolute values of d the following
relations hold

Dr 5 Fd, DH 5 2s2d, Ds2 5 gd.

Since s2 . 0, these expressions entail the following series of
implications that I call the mutation relations

F , 0 f DrDH . 0; F . 0 f DrDH , 0; [13a]

g , 0 f DHDs2 . 0; g . 0 f DHDs2 , 0. [13b]

I can assert from Eq. 13a that the changes Dr and DH are
positively correlated when growth is stationary or slow, (F ,
0); and negatively correlated when growth is rapid (F . 0).
The implications (Eq. 13b) can be interpreted in terms of the
demographic constraints that characterize the population: the
changes DH and Ds2 are positively correlated when life history
is weakly iteroparous (g , 0); and negatively correlated when
the life cycle is highly iteroparous (g . 0).
Invasion–Extinction. The invasion–extinction dynamics of

the mutant gene, that is, its ultimate establishment in the
population, is analyzed in terms of a stochastic model (20). The
ideas we exploit go back to Feller (26) who provided a general
review of diffusion processes in genetics. Subsequent devel-
opments analogous to the work described here include, among
others, the work of Gillespie (27), Karlin (28), and Kimura

(29). Parameters analogous to our notion of demographic
variance appear in all these models, see in particular (27)
where diffusion equations analogous to Eq. 14 were derived.
These models, however, are concerned with populations de-
scribed by nonoverlapping generations and do not address the
phenomenon of demographic heterogeneity which character-
izes this study.
Mymodel appeals to the ergodic theorems established in Eq.

16 to study the dynamics of mutant and ancestral population
when the mutant is rare, that isN*(t),,N(t), whereN*(t) and
N(t) denote the population size of the mutant and ancestral
type, respectively. The stochasticity in the invasion process
derives from chance fluctuations, which are modelled by a
white noise process, in the age-specific birth and death rates.
The probability density c(p, t) of the stochastic process which
describes the change in frequency of the mutant, denoted p, as
a function of time t, was shown (see ref. 20) to satisfy the
equation

­c

­t
5 2a~ p!

­c

­p
1
1
2

b~ p!
­2c

­p2
, [14]

where

a~ p! 5 p~1 2 p!FDr 2
1
M

Ds2G ,
b~ p! 5

p~1 2 p!
M

@s2 1 Ds2~1 2 p!#,

and M denotes the total population size. New mutants are
assumed to be initially rare, and the invasion is assumed to
occur on a sufficiently small time scale that the total popula-
tion numbersM during the invasion process can be considered
constant.
The analysis of Eq. 14 shows that the selective advantage, s,

the parameter that describes the invasion and extinction of a
mutant, is given by (20),

s 5 Dr 2
1
M

Ds2. [15]

This expression for the selective advantage enables us to
characterize the invasion–extinction criteria in terms of the
quantities Dr and Ds2.
In view of the relations given by Eq. 13, and the expression

(Eq. 15) for the selective advantage, we can now express the
invasion–extinction dynamics of the mutants in terms of
conditions on the functions F and g.
We distinguish between the following situations: A(1). F ,

0, g . 0: Mutants with increased entropy will invade the
population almost always, mutants with decreased entropy will
become extinct. A(2). F , 0, g , 0: Mutants with increased
entropy will invade the population with a probability that is an
increasing function of population size. Mutants with decreased
entropy will invade the population with a probability that is a
decreasing function of size. A(3). F . 0, g , 0: Mutants with
decreased entropy will invade the population almost always,
mutants with increased entropy will become extinct. A(4). F
. 0, g . 0: Mutants with increased entropy will invade the
population with a probability that is a decreasing function of
population size. Mutants with decreased entropy will invade
the population with a probability that is an increasing function
of size.
We have observed in ref. 20 that the special structure of the

Leslie model imposes constraints on the function F and g such
that the condition F , 0, g , 0 is rarely realized. Hence for
the demographic models described by Eq. 6, we have that,
when F , 0 holds, the condition g . 0 obtains. This implies
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that the invasion-extinction dynamics in natural populations
will be described completely by the states A(1), A(3), and A(4).
The Dynamics of Selection. The mutation event introduces

new genotypes X2 into the population. These new types will
mate with the ancestral type X1, according to the Mendelian
laws, to generate new types, denoted X3. During the selection
process, which proceeds on a time scale that is much longer
than the invasion process, ecological factors will regulate the
population dynamics and the numbers of the three genotypes
will vary in response to the ecological effects. This process can
be described in terms of the interaction between the three
dynamical systems induced by the genotypesX1, X2, andX3 (17,
18). As shown in ref. 18, this coupled dynamical system will
converge to a new steady state described by a new entropy.
The expression D̃H, which denotes the change in entropy as

the population evolves from one steady state to the next, and
DH, which denotes the change in entropy which characterizes
the invading mutant, can be shown to satisfy (17)

DHD̃H . 0. [16]

This equation asserts that the global directional change in
entropy as one population replaces another under the dual
processes of mutation and selection is positively correlated
with the local directional changes in entropy induced by the
invading mutant itself.
The integration of themutation event as described by Eq. 13,

the invasion–extinction characterization A(1), A(3), A(4), and
the selection event, as represented by Eq. 16, provides a means
of relating the demographic and ecological conditions with
global directional trends in evolutionary entropy. The relations
are summarized in Table 1. We distinguish between density-
dependent populations, whose equilibrium states are described
by the condition r 5 0, and density-independent populations
which satisfies the condition r . 0. For the density-
independent model, two situations are described: slow expo-
nential growth, F , 0, rapid exponential growth F . 0. We
also distinguish, in the case of rapid exponential growth,
between weak iteroparity (g , 0) and strong iteroparity (g . 0).
There exist intrinsic limits to the directional changes in

entropy, owing to constraints on the ability of new mutants to
become established in the population. The degree of genetic
polymorphism at a given locus can be shown to increase for the
mutation–selection process when ecological conditions that
generate directional changes in entropy obtain. However, a
limit will ultimately be attained, described by the state where
the genome becomes invulnerable to the invasion of new
alleles. This limiting condition derives from a result due to
Kingman (30), who showed that the expectation, r, that a new
mutant takes its place in a new equilibrium population, scales
according to the relation, r ; exp(2ak), where a is a
parameter that depends on the fitness of the different alleles,
and k denotes the number of alleles at the locus. The expres-
sion for r implies that large polymorphisms once established

are highly resistant to invasion by a newmutant: moreover, this
resistance increases exponentially with the number of alleles.
We can therefore assert that, in ecological conditions which

induce stationary or slow population growth, entropy will
increase to some upper limit which may be inferior to the
mathematically defined maximum condition. Also, in weakly
iteroparous populations under conditions of rapid exponential
growth, entropy will decrease to some lower limit which will be
superior to the zero entropy state.
The mutation–selection analysis also provides a basis for

predicting, when stationary growth constraints obtain, changes in
entropy, as described by the nondimensional quantity S̃. Now, in
evolution under ecological conditions that induce stationary
growth, the generation time T̃ will remain invariant as one
population replaces another under the dual process of mutation
and selection. Since S̃ 5 HT̃ holds, we can infer from the
unidirectional increase in H, that the entropy S̃ also increases.
Entropy and Body Size. Body size is a multivariate character

which is correlated with many physiological and life-history
traits. An individual’s body size imposes constraints on the rate
of metabolic processes and therefore controls its relationship
to the external environment. Empirical studies have shown that
within a taxon, such as mammals, physiological and morpho-
logical variables, Y, are power functions of body size, W. We
have, Y 5 aWb, where the parameter a denotes the propor-
tionality coefficient. The exponent b is known to fall into
certain patterns determined by the dimension of the variable
Y: capacities of transport organs (b . 1); volume rates, such as
metabolic rates (b . 3y4); cycle time, such as generation time
(b . 1y4) (31, 32).
Evolutionary entropy is a life-history variable. As observed

from Eq. 3, in the case of models where an individual’s state
is parameterized by the variable age, entropy H is given by the
ratio S̃yT̃. We now present an energetics-life history popula-
tion model which predicts that the entropy S̃ is isometric to
body size W.
In ref. 33, I developed a model of the organism as a metabolic

system described in terms of a set of coupled chemical reactions.
By assuming that themetabolic energy generated by the chemical
reactions is allocated uniquely to reproduction and survivorship,
I showed that net offspring production over the course of an
individual life is proportional to body size. I will exploit this
relation whose empirical basis is discussed in ref. 34 to show that
entropy is isometric to body size.
Now, by appealing to demographic theory (16), I note that

the function p̃j, the probability that the mother of a randomly
chosen newborn belongs to age-class ( j), can be expressed by
p̃j 5 exp(2vj)yZ, where Z 5 •jexp(2vj), and vj 5 2logVj,
where Vj denotes the net reproductive function of individuals
in age class ( j). Population growth rate, r 5 log Z, can be
expressed as the difference between an entropy and an ‘energy’
function as follows,

logZ 5 2Op̃ilog p̃j 2 Op̃jvj.
At equilibrium, r 5 0, and the entropy S̃ now becomes S̃ 5
(p̃jvj. The function (p̃jvj is the expected offspring production
over the course of an individual life. Since this quantity is
proportional to body size (33), I conclude that the isometric
relation S̃ 5 aW holds.
I can also derive an allometric relation for the entropy

function H 5 S̃yT̃. Since the generation time T̃ scales on body
size with exponent 1y4 (32), I conclude that H scales on body
size with exponent 3y4. The scaling relations for the entropy
functions can be used to predict the effect of ecological and
demographic constraints on evolutionary trends in body size.
We can appeal to the directionality theorems for entropy to
predict the following patterns: (i) an increase in body size
(stationary or slowly growing populations), (ii) a decrease in
body size (rapidly increasing populations with weakly iterop-

Table 1. Relation between ecological conditions and
evolutionary trends

Demographic and ecological constraints

Directional
changes
in entropy

Density-dependent conditions
Stationary growth (r 5 0) Increase

Density-independent conditions (r . 0)
(i) Slow exponential growth (F , 0) Increase
(ii) Rapid exponential growth (F . 0) Decrease
Weak iteroparity (g , 0)

(iii) Rapid exponential growth (F . 0) Random,
Strong iteroparity (g . 0) nondirectional
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arous life cycles), and (iii) random nondirectional changes in
body size (rapidly increasing populations with strongly iterop-
arous life cycles).
Most species for the greater part of their evolutionary

history will be subject to ecological conditions that induce slow
or stationary growth. We can therefore predict a tendency
toward an increase in body size within most phyletic lineages.
These predictions are consistent with the fossil record. Studies
concerning trends in body size or some reasonably proxy for
size such as molar area in animals, have revealed a widespread
tendency to increase—a property that is sometimes codified as
Cope’s Rule, (35). Instances have been documented in which
departures from this trend occur. The theory described in this
article predicts that trends toward decreased or random non-
directional changes in size will only occur under particular
ecological constraints, namely, conditions that entail rapid
exponential growth.

The Directionality Principle and the Second Law

Thermodynamic theory and evolutionary theory represent two
domains whose mathematical structures embody a time asym-
metric evolution of macroscopic states. However, the mecha-
nisms that generate the temporal asymmetry are distinct.
Thermodynamics is concerned with explaining the dynamical

behavior of aggregates of inanimate matter in so far as it is
determined by changes in temperature. The central parameters in
the theory are the free energy F, the mean energy E, the entropy
S, and the temperature T, which are related by the identity

F 5 E 2 ST. [17]

The temperature of any object, a measure of the mean
kinetic energy of the molecules, can be described by the
amount of heat that must be added to it to increase its entropy
by one unit. We write

1
T

5
DS
DE
. [18]

The Second Law, one of the main tenets of thermodynamic
theory, pertains to closed systems: it is a precise statement of
the familiar observation that in natural processes that are
thermally isolated from their surroundings, systems evolve
from a more ordered to a less ordered state. This fact is
equivalent to the assertion that in irreversible processes subject
to adiabatic constraints, there is a tendency for thermal energy
to be distributed uniformly among the basic elements of
matter.
Evolutionary theory in its widest sense is concerned with

understanding the dynamical behavior of populations of rep-
licating organisms in so far as it is determined by changes in
generation time. The central parameters in this theory are the
growth rate r, the reproductive potential F, the entropy S̃, and
the generation time T̃. We note from Eq. 9 and the property
S̃ 5 HT, that the four quantities satisfy the relation

r 5 F 1 S̃/T̃. [19]

The generation time, themean age ofmothers at the birth of their
daughters, can be described by a relation analogous to Eq. 18. An
expression for the generation time given by Eq. 20 can be derived
from the perturbation relations given by Eq. 13. We have

T̃ 5
DS̃

2DF
. [20]

The generation time can thus be described by the amount of
reproductive potential that must be added to the population to
reduce its entropy by one unit.

The Directionality Principle for evolutionary entropy per-
tains to open systems: it is a precise statement of the obser-
vation that in populations subject to density dependent growth
constraints, there is evolution from lower to higher degrees of
life cycle complexity. This fact is equivalent to the assertion
that when conditions of stationary growth prevails, there is a
tendency for net-reproductive activity to be distributed more
uniformly over the different stages of the life history.
These observations indicate the existence of a formal cor-

respondence between the population parameters and the
thermodynamic quantities. By observing the equivalence be-
tween Eqs. 17 and 19, and between Eqs. 18 and 20, I infer the
following correspondence: free energy–growth rate; reproduc-
tive potential–mean energy; temperature–inverse generation
time; thermodynamic entropy–evolutionary entropy. The re-
lations between the parameters are summarized in Table 2.
Generation Time and Temperature. The results described in

this article also pertain to a wide class of models. Directionality
theorems for evolutionary entropy have been shown to hold for
dynamical systems described by products of random positive
matrices (11). These dynamical systems include the Leslie
matrices, models of cellular populations, and also discrete
analogues of the quasi-species models developed by Eigen (36)
and Eigen and Schuster (37); see also ref. 38.
Cellular and molecular assemblies can be considered as both

evolutionary and thermodynamic systems. Bimolecular asso-
ciation and unimolecular dissociation reactions, processes that
drive molecular evolution, are temperature-dependent. The
enzymatic reactions that determine the biosynthesis of cellular
matter are also temperature-dependent. Hence these systems
can be described in terms of an evolutionary entropy S̃, and
cycle time T̃, and also in terms of a thermodynamic entropy S,
and an absolute temperature T.
Empirical studies of cellular growth show that within tem-

perature ranges where enzyme denaturation does not occur,
cycle time is inversely related to temperature (39). An ana-
lytical relation between cycle time and temperature can be
derived by appealing to transition state theory. The rate
constant v, describing the enzymatic transformation of sub-
strate to product is given by

v 5
kT
h
expS2

DG#

RT D ,
where k is Boltzmann constant; h, Planck’s constant; R, the gas
constant; and DG#, the activation free energy.
We now consider the cell as a network of metabolic path-

ways in which the transformation between substrate and
product is mediated by an array of specific catalysts. This
means that the flux through each part of the network is
dependent on the kinetic parameters of all enzymes in the
system. The simplified representation of such a network is a
linear metabolic pathway with successive substrates and prod-
uct as follows

S1^ S2^ . . . ^ Sn.

Table 2. Relation between thermodynamic and
evolutionary principles

Properties Evolutionary systems
Thermodynamic

systems

Measure of
heterogeneity

S̃ 5 2• p̃j log p̃j S 5 2• pj log pj

Organizing
variable

Generation time Inverse temperature

Nature of steady
state

Nonequilibrium Equilibrium

Directionality
principle

DS̃ . 0, density-
dependent conditions

DS . 0, irreversible
adiabatic constraints
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We can now appeal to the Kacser–Burns theory (40) to show
that the metabolic f lux through the enzymatic system will be
inversely proportional to •i511yEi where Ei denotes the en-
zyme activity, a quantity that is proportional to the velocity v
of the reaction between a substrate with concentration Si; and
a product with concentration Si11.
Now, cycle time T̃will be inversely proportional to metabolic

f lux. Hence, we have

T̃ 5
ch
kT O

i

1
ri
, [21]

where ri 5 exp[2(DFi#yRT)], with DFi# the activation free
energy of the enzyme with activity Ei. The constant c is a
function of the concentration of the cellular reactants, en-
zymes and substrates. The equation (Eq. 21) can be expressed
in the more compact form given by (Eq. 5) where r 5
exp[2(DF#yRT)] and DF# denotes an effective activation
energy.
The analytic relation between generation time T̃ and tem-

perature T which Eq. 21 expresses, indicates that the formal
relation between the two quantities which is described in Table
2 has a physical basis, in the case of cellular populations. This
property entails that the directionality principle for evolution-
ary entropy represents a nonequilibrium analogue of the
Second Law of Thermodynamics.

Conclusion

The theory described in this article invokes the processes of
mutation and natural selection to provide a mechanistic
explanation of macroevolutionary trends in biopopulations. A
central parameter in this theory is the concept evolutionary
entropy, a statistical measure which characterizes the com-
plexity of the life cycle and population stability. Entropy, as
described by the nondimensional quantity S̃, is also isometric
to the morphometric variable, body size. The statistical me-
chanics of replicating organisms distinguishes between two
distinct kinds of ecological constraints—limited resource con-
ditions (with stationary or slow population growth), unlimited
resource conditions (with rapid exponential growth); and two
demographic conditions, weak iteroparity (few reproductive
states) and strong iteroparity (many reproductive states). The
theory rests on the following tenets: (i) an increase in life cycle
complexity and body size in evolution under limited resource
conditions, (ii) a decrease in life cycle complexity and body size
in evolution under unlimited resource conditions for popula-
tions with weak iteroparity, and (iii) random, nondirectional
changes in complexity and body size in evolution under
unlimited resource conditions for populations characterized by
strong iteroparity.
The mathematical structures of the statistical mechanics of

replicating organisms (Directionality Theory), and the statis-
tical mechanics of physical systems (Thermodynamic Theory)
are intimately related. Evolutionary entropy, which pertains to
populations of replicating organisms, is an extension of ther-
modynamic entropy, which pertains to aggregates of inanimate
matter. The Directionality Principle, which describes an in-
creased complexity and stability of replicating entities subject
to stationary growth constraints, is a nonequilibrium analogue
of the Second Law, which describes an increase in disorder in
inanimate matter subject to irreversible processes and adia-
batic constraints.
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