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Eukaryotic protein kinases belong to a large superfamily with hundreds to thousands of copies and
are components of essentially all cellular functions. The goals of this study are to classify protein
kinases from 25 plant species and to assess their evolutionary history in conjunction with consider-
ation of their molecular functions. The protein kinase superfamily has expanded in the flowering
plant lineage, in part through recent duplications. As a result, the flowering plant protein kinase
repertoire, or kinome, is in general significantly larger than other eukaryotes, ranging in size from
600 to 2500 members. This large variation in kinome size is mainly due to the expansion and con-
traction of a few families, particularly the receptor-like kinase/Pelle family. A number of protein
kinases reside in highly conserved, low copy number families and often play broadly conserved regu-
latory roles in metabolism and cell division, although functions of plant homologues have often
diverged from their metazoan counterparts. Members of expanded plant kinase families often
have roles in plant-specific processes and some may have contributed to adaptive evolution. None-
theless, non-adaptive explanations, such as kinase duplicate subfunctionalization and insufficient
time for pseudogenization, may also contribute to the large number of seemingly functional protein
kinases in plants.

Keywords: plant protein kinase; gene family evolution; lineage-specific expansion;
comparative genomics
1. INTRODUCTION
The eukaryotic protein kinases are defined as enzymes
that use the g-phosphate of adenosine triphosphate
(ATP) to phosphorylate serine, threonine or tyrosine
residues in protein [1]. Protein kinases are highly similar
in having a 250–300 amino acid protein domain that is
responsible for the phospho-transfer reaction. Through
alignments of protein kinase sequences available at
the time, phylogenetic analysis revealed the sequence
diversity in this superfamily and provided the first com-
prehensive classification scheme for protein kinases [2].
When the first plant genome, Arabidopsis thaliana, was
sequenced, a surprising number protein kinases, over
1000, were identified [3]. Subsequently, an analysis
of human genome sequences indicated the presence of
518 human protein kinases and 106 pseudogenes [4].
Thus, 1–2% of functional genes encode protein kinases,
highlighting their importance in many aspects of cellular
regulation in both plants and animals.

Plant protein phosphorylation was first detected in
Chinese cabbage leaf discs after the application of a
plant hormone, cytokinin [5]. Shortly thereafter,
studies in common duckweed showed that plant ribo-
somes were phosphorylated on serine residues [6]. In
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the same year, the first plant protein kinase was par-
tially purified from pea [7]. However, it was not until
the late 1980s and early 1990s that the first few
plant protein kinase sequences became available. The
first plant protein kinase sequences were identified in
pea and in rice through the use of degenerate primers
[8]. In 1990, the third plant protein kinase, ZmPK1,
was cloned from maize, and was found to have a trans-
membrane region N-terminal to the kinase catalytic
domain and a large putative extracellular domain [9].
This receptor-like kinase (RLK) resembles animal
receptor kinases [10,11], but has a kinase domain
belonging to a distinct family that is related to the
fruitfly Pelle kinase and mammalian interleukin recep-
tor-associated kinases (IRAK) [12], indicating that in
plants a different class of kinases was co-opted for
functions in transmembrane signal perception and
transduction. Another major early finding was the
sequencing through Edman degradation of a very
abundant protein kinase with resemblance to both cal-
modulin- and calcium-dependent protein kinases [13],
coupling calcium signalling and phosphorylation.

In the ensuing years, many more plant protein
kinases homologous to multiple families of animal
and fungal protein kinases were identified. However,
the biological functions of plant protein kinases were
first elucidated for protein kinases that play roles in
plant-specific processes. The first published studies
demonstrating plant protein kinase function geneti-
cally, to our knowledge, are on Pto [14], CTR1 [15]
and Tousled [16]. Pto, a protein kinase with a catalytic
This journal is q 2012 The Royal Society
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domain related to those of RLKs, was identified from a
tomato cultivar resistant to a bacterial pathogen and
confers resistance when introduced into an otherwise
susceptible tomato cultivar [14]. CTR1, a kinase in
the tyrosine kinase-like (TKL) group, is involved in
the negative regulation of plant ethylene signalling
[15]. Mutations in the Tousled protein kinase from
A. thaliana, the founding member of the Tousled-like
kinase group (TLK), were found to result in impaired
floral organ development [16]. In the past 20 years,
plant protein kinases have been found to be com-
ponents of signalling networks such as the perception
of biotic agents, light quality and quantity, plant
hormones, and various adverse environmental con-
ditions. They function in diurnal and circadian
regulation, cell cycle regulation, developmental pro-
cesses, modulating vesicle transport and channel
activities, and in regulating cellular metabolism (for
reviews, see earlier studies [17–32]).

Recently, a number of plant genome sequences have
become available, allowing us to assess the evolution-
ary history of protein kinases from unicellular algae
to land plants with significantly higher resolution
than earlier studies that compared only two or four
plant species [33,34]. Studies of protein kinases in
other eukaryotes have led to detailed classification of
this superfamily [35–39]. However, with the exception
of studies of individual families, there is no compre-
hensive classification of plant kinomes using available
plant genomic resources and knowledge of evolution-
ary relationships between kinases in other eukaryotes.
Thus, we undertook a comparative study of protein
kinases between plants and other eukaryote models.
In addition to classifying plant protein kinases into
families, we assess the diversity and evolutionary his-
tory of plant protein kinases in the context of their
functions. The focus of this study is on the eukaryotic
protein kinase superfamily. We have also identified
other ‘atypical’ protein kinases not similar in sequence
to eukaryotic protein kinases [40], but they are not
discussed in detail.
2. DATA AND METHODS
(a) Sequence data and identification of plant

protein kinases

To facilitate classification of plant sequences, protein
kinase domain sequences and their classification
schemes from nine eukaryotes were obtained from
KinBase (http://kinase.com/kinbase/FastaFiles/). The
nine species included are listed in figure 1a. To identify
plant protein kinases, the annotated protein-coding
sequences from 25 plant species (figure 1b) were
obtained from PHYTOZOME (v. 7, http://www.phyto
zome.net/). For species with alternatively spliced form
annotation, only the longest variant of each gene was
analysed further. The putative protein kinases from
plants were identified using HMMER v. 3.0 [41] with
16 PKinase clan hidden Markov models (HMM;
http://pfam.sanger.ac.uk/clan/pkinase) from PFAM (v.
26; [42]). ‘Trusted cutoff ’ values specified by PFAM

were used as the thresholds to identify 30 431 putative
protein kinase domain sequences. Among these
sequences, 29 403 have significant matches to the
Phil. Trans. R. Soc. B (2012)
‘typical’ protein kinases (Pkinase and Pkinase_Tyr
domains) and were analysed further. Both typical and
atypical protein kinase information can be found in
the electronic supplementary material, appendix S1.

Very few of the plant genomes analysed have been
curated manually and there are probably annotation
errors. In addition, the A. thaliana and Oryza sativa
(rice) genomes have hundreds of pseudogenes that
belong to the protein kinase superfamily [43]. Thus,
the protein kinase domain sequences were not con-
sidered further if the domain alignments covered less
than 50 per cent of the PFAM domain models. This
resulted in the exclusion of 2841 sequences (see the
electronic supplementary material, appendix S1).
The same filter was applied to the protein kinase
sequences from nine other eukaryotes because there
are a few severely truncated or erroneous entries,
particularly from Tetrahymena thermophila. The plant
protein kinase domain sequences used in subsequent
analysis can be found in the electronic supplementary
material, appendix S2.
(b) Classification of protein kinases from four

model species

To classify plant protein kinase sequences into families,
a phylogenetic approach was used. First, the relation-
ships between plant protein kinases and kinases from
nine eukaryotes were established (figure 1a). The nine
eukaryote protein KinBase dataset contains classifi-
cation information, including group, family and, in
some cases, subfamily levels. Plant kinases were classi-
fied based on this scheme. Because it is not feasible to
build a phylogeny for all sequences from 25 species,
four ‘plant model species’, A. thaliana (dicotyledon),
O. sativa (monocotyledon), Physcomitrella patens
(moss) and Chlamydomonas reinhardtii (a green alga),
were chosen for the first round of classification. These
four species were chosen because they are relatively
well annotated and are representatives from major
lineages in plant evolution. This first pass classification
was then used to classify the other 21 plant species
as outlined in §2c.

The analysis pipeline for classifying protein kinases
in the four model species includes three rounds of
phylogenetic analyses (figure 1a). In the first round, a
phylogenetic tree was generated for 3656 protein kinases
from the four plant models and 218 protein kinase repre-
sentatives from nine species with kinase classifications.
One representative kinase was chosen from each protein
kinase family and each of the following five major taxo-
nomic groups: Amoebozoa—Dictyostelium discoideum,
Alveolata—T. thermophila, Choanoflagellida—Monosiga
brevicollis, Fungi—Saccharomyces cerevisiae, Metazoa—
five species. Owing to annotation quality considerations,
for metazoan protein kinases, preference was given to
human and mouse sequences. The protein kinase
domain protein sequences were aligned using CLUSTAL

OMEGA [44] for generating a maximum-likelihood
(ML) tree with RAXML-LIGHT (v. 1.0.5, http://sco.
h-its.org/exelixis/software.html) using the CAT model
(category approximation of GAMMA model of rate
heterogeneity) to account for rate heterogeneities [45]
and the JTT (Jones, Taylor, Thornton) substitution
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Figure 1. Protein kinase identification and number of protein kinases in eukaryotes. (a) Input data and analysis pipeline for
identifying and classifying plant protein kinases. Model plant species: Ath, Arabidopsis thaliana; Osa, Oryza sativa; Ppa,
Physcomitrella patens; Cre, Chlamydomonas reinhardtii. HMM, hidden Markov model; ML, maximum likelihood. (b) Phyloge-

netic relationships between and numbers of protein kinase genes in 25 plant species. Branch colour: blue, dicotyledon species;
red, monocotyledon species; orange, bryophytes; green, green algae. (c) Phylogenetic relationships between selected eukaryotic
species and sizes of protein kinase superfamily relative to gene numbers. Branch colour: green, Viridiplantae; blue, Apicom-
plexa; red, Metazoa; orange, Fungi and Microsporidia; magenta, Amoebozoa; grey, Excavata.
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matrix [46]. On the basis of phylogeny, a plant protein
kinase, K, from a model plant was assigned to
a protein kinase family, F, if K is in a monophyletic
group with all representative sequences from F. Plant
sequences that could not be readily assigned were
designated as plant-specific.
Phil. Trans. R. Soc. B (2012)
In the second round, the goal was to verify the
family classification from round 1 by building an ML
tree for each family. Alignment and tree building pro-
cedures were the same as round 1. The RLK/Pelle
family has hundreds to more than 1000 members in
plants [34]. Thus, instead of building a tree with all



Table 1. Accuracy of protein kinase family assignments.

subjecta classificationa totalb correctc % correct

BLAST-basedd

Ath Osa 1015 983 96.85

Ath Ppa 1015 904 89.06
Ath Cre 1015 344 33.89
Osa Ath 1422 1358 95.50
Osa Ppa 1422 1053 74.05
Osa Cre 1422 298 20.96

Ppa Ath 689 574 83.31
Ppa Osa 689 554 80.41
Ppa Cre 689 240 34.83
Cre Ath 530 113 21.32

Cre Osa 530 115 21.70
Cre Ppa 530 119 22.45

HMM-basedd

Ath HMM 1015 1014 99.90
Osa HMM 1422 1420 99.86
Ppa HMM 689 686 99.56
Cre HMM 530 518 97.74

aAbbreviations follow species names in figure 1b. Subject refers to
the species where the protein kinases were to be classified.
Classification refers to species where the family assignments were
used to evaluate classification accuracy.
bTotal number of kinase domain sequences examined.
cNumber of cases where query kinase was in the same family as
the subject kinase.
dSee §2 for details.
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putative RLK/Pelles, sequences in this family were first
classified into subfamilies based on prior classification
schemes [34] and a phylogenetic tree was built for
each subfamily. During this step, some sequences
were classified in a different family from that assigned
in round 1. In the final round, alignments and phylo-
genetic trees were generated based on round 2
classifications to determine whether the classifications
remained consistent. If not, the consistent family des-
ignation in at least two rounds of analysis was used.
The final round alignments and phylogenetic trees
and classification of protein kinases in the four
model plants are compiled in the electronic
supplementary material, appendix S3.

(c) Classification of protein kinases from 21

other plants

Two approaches were tested for classifying protein
kinases from the other 21 plants into kinase groups,
families and subfamilies. In the first approach, a protein
kinase, K, from the 21 species dataset was first searched
against the four model plant protein kinases with
BLAST [47]. The classification of K was based on its
top matching protein kinases from the model species
(expect value , 1e 2 5). To evaluate the classification
accuracy, protein kinases from one model species
were assigned into families based on classification of
their top matches from one of the other three models
(table 1). The classification accuracy differs widely
depending on the evolutionary distances between
species. Using rice protein kinases to classify A. thaliana
ones, the accuracy is approximately 97 per cent.
Using moss classification, more than 10 per cent of
the A. thaliana protein kinases are mis-classified.
Phil. Trans. R. Soc. B (2012)
Using green algal classifications, 65–80% of protein
kinases in A. thaliana, rice and moss are mis-classified.

In the second approach, an HMM was built for each
family according to the family sequence alignment of
model plants (see electronic supplementary material,
appendix S4 for HMMs). The HMMs were then used
to search against protein kinases from the other 21
plants. The family assignment of a protein kinase
sequence was that of the top-scoring HMM (see
electronic supplementary material, appendix S5 for
classification results and numbers of members in each
family). The accuracy of the HMM-based approach
is very high, ranging from 98 per cent in classifying
C. reinhardtii protein kinases to 99.9 per cent for
A. thaliana kinases (table 1). This significant improve-
ment is probably due to the fact that HMM better
covers the family sequence space than a single top
match sequence. Because of this significant improvement
in classification accuracy over the similarity-based
approach, in all subsequent analysis, the HMM-based
assignments of plant protein kinase families were used.
3. PLANT PROTEIN KINASE SUPERFAMILY SIZE
AND DIVERSITY
(a) Sizes of plant protein kinase superfamilies

when compared with other eukaryotes

In the 10 years since the first plant protein kinase
sequence was reported [8], the number of known
plant protein kinases rose to over 500, and, because
of the rapid progress in sequencing the A. thaliana
genome, 175 of these plant kinases came from
A. thaliana [18]. In the published annotation of
the A. thaliana genome, there are approximately
1000 protein kinases [3], an number five times larger
than that in budding yeast, and two to three times
larger than various other eukaryotes, including mam-
mals (figure 1c). Later analysis indicated that the
protein kinase superfamily is even larger in other flow-
ering plant species, with over 1500 members in rice
and poplar [33,34,48]. Why are there more protein
kinases in plants than in most other eukaryotes? The
mechanisms underlying gene family expansion are
similar between eukaryotes and involve tandem
duplication in linked regions, retrogene formation,
chromosomal duplications and whole genome dupli-
cation [49]. The differences in the size of the
protein kinase repertoire between flowering plants and
other eukaryotes suggest a relatively higher degree of
lineage-specific expansion of this superfamily in
plants. The main mechanisms contributing to expan-
sion are elevated rates of tandem as well as whole
genome duplication in plants relative to those in other
eukaryotes [49]. Polyploidization is much more promi-
nent in plants than in any other eukaryote; as many as
70 per cent of extant plant species are polyploids [50].
There have probably been at least three rounds of
palaeo-polyploidization in the A. thaliana lineage after
its split from monocotyledon species 150 Ma [51–53].

To determine whether there are more protein
kinases derived from recent duplication events
in plants compared with other eukaryotes, protein
sequence identity between all paralogous protein kin-
ases in a species was determined and used as a proxy
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Figure 2. Distributions of pairwise identities between closest protein kinase paralogues. (a) Non-plant eukaryote representatives.
(b) Four model plant species with species abbreviations coloured according to the convention in figure 1b. (c) Additional dico-

tyledon species. (d) Additional monocotyledon species. (e) Additional bryophyte and green alga. The x-axis indicates paralogue
per cent identity, and the y-axis indicates the number of paralogous pairs in an identity bin. The species abbreviations follow the
species names shown in figure 1. The yellow line indicates the median paralogue identity value (also shown) for each species.
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for timing of duplication. Species that have more recently
duplicated and retained protein kinases will have
more paralogues with higher identities to each other.
The paralogue identity distributions were compared
between the four model plant species and five non-
plant eukaryotes, including human (Homo sapiens),
sea urchin (Strongylocentrotus purpuratus), fruitfly
(Drosophila melanogaster), budding yeast (S. cerevisiae)
and slime mould (D. discoideum). Among five non-plant
eukaryotes, the median identity of protein kinase paralo-
gues is highest in humans (73.1%), significantly higher
than the other four species (Wilcoxon rank sum test, all
p , 1e 2 11; figure 2a). On the other hand, the three
model land plants (A. thaliana, Ath; O. sativa, Osa;
P. patens, Ppa; figure 2b) have significantly larger
median identities compared with that of humans (all
p , 1e210). In C. reinhardtii (Cre; figure 2b), which
Phil. Trans. R. Soc. B (2012)
does not have a history of whole genome duplication,
the median identity of kinase paralogues is significan-
tly lower than observed in the model land plants and
in humans. This is consistent with the notion that
there are more recent protein kinase duplicates in land
plants than in other eukaryotes. In addition to elevated
duplication rate, another explanation is that many
plant protein kinase duplicates tend to be retained.
This was shown in a comparative analysis of protein
families from A. thaliana, poplar, rice and moss where
protein kinases were shown to have significantly higher
expansion rates than other protein families [54].

(b) Expansion of the protein kinase superfamily

in Viridiplantae

The expansion of protein kinases appears to be quite
rapid, given that there are approximately 600 more
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protein kinases in poplar than in A. thaliana (figure 1b)
and that these two species diverged only approximately
70 Ma. On the other hand, the moss P. patens has 685
protein kinases, substantially less than those of flowering
plants (figure 1b). In green algae, the protein kinase
superfamily is even smaller with 426 and 93 members
in C. reinhardtii and Ostreococcus tauri, respectively
[34]. These findings indicate that within Viridiplantae
(green plant species, including land plants and green
algae), the protein kinase superfamily has steadily
grown in size in the lineage leading to flowering plants.
In addition, such expansion correlates with an increase
in developmental complexity. Both C. reinhardtii and
O. tauri are unicellular Chlorophyta green algae hypoth-
esized to have diverged from the Charophyta green algae
and land plant lineage approximately 1200 Ma [55].
The divergence time between C. reinhardtii and
O. tauri is unclear. Although both of these green algae
are free-living unicellular organisms, C. reinhardtii has
333 more protein kinases than O. tauri.

The explanation for this large difference is most
likely to due to extensive reduction in genome size
that occurred in O. tauri [56]. The sizes of O. tauri
intergenic regions are significantly shorter than other
eukaryotes with similar genome sizes. In addition,
there is substantial reduction of gene family size in
general. Compared with other eukaryotes, only 1.1
per cent of annotated protein-coding genes in
O. tauri are protein kinases, similar to two obligate
intracellular parasites Encephalitozoon cuniculi (1.1%;
[39]) and Plasmodium falciparum (1.4%; [38]). Inter-
estingly, the E. cuniculi genome has undergone a
significant degree of genome compaction and gene
loss [57]. A recent analysis in another intracellular para-
site, Giardia lamblia, indicates the presence of 278
protein kinases [37]. However, 198 of these G. lamblia
protein kinases belong to the never in mitosis/
Aspergillus-related kinase (NEK) family. Thus, exclud-
ing the dramatic expansion in NEKs, there remains
only 80 protein kinases (1.3% of protein-coding genes)
in G. lamblia. Some flowering plants have also undergone
gene loss. For example, A. thaliana has probably lost
DNA through rearrangement events [58]. However,
A. thaliana also has a similar percentage of genes that
are protein kinases compared with poplar, rice and
moss (figure 1c). Thus, it appears that just as many
protein kinases were lost compared with genes in general
in flowering plant species with genome reduction.
(c) Protein kinase superfamily size variation

among plant species

Although earlier studies have provided important clues
on the expansion of the plant protein kinase superfam-
ily, the number of species examined was small. Thus,
it was not clear whether the patterns observed would
remain consistent if more species were analysed. In the
past few years, over 25 Viridiplantae genomes (includ-
ing 21 flowering plants, one bryophyte, one moss and
two algae; figure 1b) have been sequenced with draft
annotation available. To further examine how the sizes
of plant protein kinase superfamilies differ between
plant species, protein kinase sequences were identified
from the annotated protein sequences. Among them,
Phil. Trans. R. Soc. B (2012)
approximately 1 per cent are classified as ‘atypical’
protein kinases. Excluding the atypical protein kinases,
26 966 protein kinase domain sequences from 26 775
annotated genes were identified.

There is substantial variation in the protein kinase
superfamily size among plant species. In addition to
the differences between land plants and algae noted in
§3b, the numbers of protein kinases among flowering
plants differ by more than fourfold (figure 1b). The ana-
lysed species with the largest protein kinase superfamily
is rose gum eucalyptus, Eucalyptus grandis, with 2532
kinase genes. By contrast, papaya (Carica papaya) has
only 600 kinase genes. It should be noted that the
lower numbers of kinases in some plant species are
due to incomplete genome sequencing coverage and
should be regarded as lower-bound estimates. To cir-
cumvent the incomplete genome issue, a comparison
of protein kinase superfamily sizes can be conducted
in consideration of annotated gene numbers. Interest-
ingly, there exists a significant correlation between the
number of protein kinase genes and the total gene
number in a genome (Pearson’s correlation, r ¼ 0.63,
p , 1e 2 3). This finding indicates that, despite the
large variation in the size of the protein kinase repertoire
among flowering plants, a similar proportion of genes
encode protein kinases. The implication is that the
protein kinase superfamily as a whole grows and shrinks
with the rest of the gene families within each genome.
Alternatively, this correlation may suggest that the
propensity for expanding the protein kinase super-
family is similar among different plant species. In the
following sections, we examine the approximate timing
of plant protein kinase duplications and assess the
degree of differential expansion among plant protein
kinase families.
(d) Approximate timing of plant protein

kinase duplications

To assess why these species differ so greatly in the
number of protein kinase paralogues, an all-against-
all similarity search was conducted for protein kinases
in each species. The distributions of identities between
the most closely related paralogous pairs are shown in
figure 2b. In eucalyptus, Glycine max (soybean), and
Populus trichocarpa (cottonwood), which have more
than 1600 protein kinases, the paralogue identity dis-
tributions tend to peak at approximately 95 per cent,
significantly higher than other plants. For example,
the eucalyptus protein kinase paralogue identities are
significantly higher than those of A. thaliana
(Wilcoxon rank sum test, p , 1e 2 16). Thus, very
recent gene duplications contribute significantly to
the larger protein kinase repertoire in some plants.
Through this analysis, it also becomes apparent that
some species, such as Medicago truncatula, Selaginella
moellendorffii and C. reinhardtii, have an excess of
protein kinases with 100 per cent identity (figure 2b).
Some of these identical kinases may be the result
of mis-annotation. Thus, an analysis eliminating
sequences with 100 per cent similarity was also
conducted (see electronic supplementary material,
appendix S6), and our conclusion remained
unchanged. In addition to identical sequences, there
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are also a substantial number of nearly identical
sequences. In some cases, these may be allelic variants
that are identified as distinct loci, as noted in the
Selaginella genome study [59].

On the basis of this expanded analysis, it is in gen-
eral true that plant protein kinase genes experienced
much more recent duplication compared with the
other five eukaryotic species examined. However,
there are some notable exceptions. For example, the
protein kinase paralogue identities from castor bean
(Ricinus communis), cucumber (Cucumis sativus) and
papaya were not significantly different from those of
human protein kinases (p . 0.1 in all cases). Interest-
ingly, unlike plant species such as soybean [60] and
cottonwood [61] with significantly higher paralogue
identities and a recent history of polyploidization,
there is no apparent recent whole genome duplication
event detected in the cucumber or papaya genomes
[62,63]. In addition, castor bean, cucumber and
papaya have some of the lowest numbers of protein
kinase genes among the plant species analysed
(figure 1b). These findings reinforce the idea that
whole genome duplication contributes significantly to
the expansion of the protein kinase superfamily in
plants. We should emphasize that the ancestral lineage
leading to castor bean, cucumber and papaya probably
experienced at least one round of whole genome dupli-
cation 70–100 Ma [51–53]. However, the protein
kinase superfamily in papaya, cucumber and castor
bean is substantially smaller than other species,
particularly those with recent whole genome dupli-
cations. Thus, it is likely that many of the protein
kinase duplicates derived from whole genome dupli-
cation were lost in a timeframe of tens to hundreds
of million years. This timeframe for gene loss is con-
sistent with that found in a global study of gene
family expansion in four land plant species [54].
(e) Plant protein kinase families and their

differential expansion

To evaluate the evolution of plant protein kinases at the
family level, plant protein kinases were first classified
using an established scheme based on phylogenetic ana-
lyses of animal, fungal and protist protein kinases
[1,2,35]. The number of kinase sequences is large
(more than 26 000), creating computing issues for
both the multiple sequence alignment and the phyloge-
netic analysis phases. Thus, protein kinases were first
classified in four model plant species (A. thaliana, rice,
moss and C. reinhardtii), based on location in the same
monophyletic group as kinases with known, consistent
family designations (see electronic supplementary
material, appendix S3 for alignments, phylogenies and
classification). The model plant classification was then
used to classify protein kinases from the other 21 species
(see §2). The numbers of plant protein kinases in
different families are shown in figure 3a.

Through this analysis, the majority of model plant
protein kinases can be classified into known groups.
Nonetheless, there remains a small number of plant
kinases that cannot be assigned at the group level
(figure 3a, plant-specific). Some of the plant-specific
kinases are found only in green algae (Group-Cr-2),
Phil. Trans. R. Soc. B (2012)
or only in green algae and bryophytes (Group-Pl-1;
here ‘Pl’ indicates plant). On the other hand, Group-
Pl-3 and -4 are highly conserved across plants and
have relatively few members. Most plant kinases that
can be classified at the group level can also be readily
classified into known families, indicating that many of
these families were established prior to the divergence
of the plant, animal and fungal lineages or earlier.
Nonetheless, there remain unclassified plant-specific
families in all major protein kinase groups (figure 3a,
Pl families in different groups). There are also families
that are shared only between green algae and fungi
(CAMK1-Scer), between green algae, bryophyte and
T. thermophila (CAMK1-Tthe); between green algae
and animals (TK and several TKL families); and
between land plants and T. thermophila (CMGC-Pl-
Tthe). These ‘mosaic’ patterns suggest potential
gene losses in other major lineages or horizontal gene
transfers that remain to be further investigated.

Among families that are present in green algae, bryo-
phytes and flowering plants, three major patterns
emerge when comparing the variation in numbers of
protein kinases across families and species. The first is
protein kinase families that consistently have relatively
low (1–5) copy numbers (figure 3a, blue series).
Given that many of these families have animal or
fungal orthologues, low copy numbers suggest that
there has been no or limited changes in these families
since the divergence of the plant and animal/fungal
lineages approximately 1 Ga. Considering that there
were repeated whole genome duplications in plants,
these low copy number families had the opportunity
to expand via duplication, but apparently most
duplicates were not retained. For example, the CDK–
CCRK, CDK–CDK7, and CDK–CDK8 subfamilies
in most species consist of only one gene, except in
soybean, where a very recent whole genome duplication
occurred (approx. 59 and 14 Ma) [60]. In fact, soybean
protein kinase families in general are larger than other
species. Thus, the significantly larger protein kinase
repertoire in soybean can partly be attributed to the
possibility that there has been insufficient time for
pseudogenization of duplicates.

The second pattern is families with moderate sizes
(6–30 members; figure 3a, green series and yellow),
and the third is large families (more than 30 members;
figure 3a, red series, magenta series). In general, the
sizes of these families are in the order: algae ,

bryophytes , flowering plants, consistent with the
notion that the protein kinase superfamily has expanded
over the course of plant evolution. Among plant species,
the family with the largest size differences is the RLK/
Pelle family with two to three genes in green algae,
approximately 300 genes in bryophytes and 374–2205
members in flowering plants. The RLK/Pelle family
was established because the kinase domains of various
RLKs are more closely related to fly Pelle and human
IRAKs than to protein kinases from any other families
[12]. This family was later defined as the IRAK
family. For historical reasons, we use the ‘RLK/Pelle
designation’ throughout. Earlier studies have established
that this family has experienced extensive expansion in
the land plant lineage [33,34,64]. When the RLK/Pelle
family is classified at the subfamily level (figure 3b), a
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Figure 3. Sizes of protein kinase families in 25 plant species. (a) Major groups and families. (b) RLK/Pelle subfamilies. The
species abbreviations follow the species names shown in figure 1b. The number of protein kinases in each family/subfamily is

colour coded according to the colour key on the lower right. Kinases that cannot be readily assigned to a group are classified as
‘plant-specific’. Within each group, some plant or algal kinases cannot be assigned to an existing family. They are designated
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sub-family level. In addition to ‘Pl’ and ‘Cr’ designations, they are designated as ‘Pp’ or ‘Os’ specifying P. patens and
O. sativa-specific kinases, respectively.
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few subfamilies have low copy number (e.g. RLCK-II)
but most others have moderate to large sizes. RLK/
Pelle subfamilies in soybean are in general larger than
in other species, consistent with the patterns observed
Phil. Trans. R. Soc. B (2012)
for other protein kinase families. The most striking
expansion of the RLK/Pelle family is seen in eucalyptus
where multiple subfamilies have more than 300 mem-
bers (figure 3b). However, other protein kinase
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families in eucalyptus are of similar size as other plant
species (figure 3a). Thus, the very large number of
protein kinases in eucalyptus is mostly a consequence
of expansion in the RLK/Pelle gene family.
4. FUNCTIONAL DIVERSITY OF PLANT PROTEIN
KINASES
(a) Kinase families that have remained low

in copy number in both plants and other

eukaryotes

(i) Conserved central roles in metabolic signalling and
stress response
As shown in figure 3a, many protein kinase families
remain low in copy number, despite ample opportu-
nity to duplicate. Considering that the flowering
plant species studied are either palaeo- or recent poly-
ploids, the implication is that many of these protein
kinases were duplicated but the duplicates were sub-
sequently lost. Most of these small families are
conserved between plants and animals, suggesting
that they play roles in conserved processes. Several
subfamilies that have undergone limited expansion in
most eukaryotic lineages have central roles in meta-
bolic signalling and regulating metabolic changes
in response to stress, and include AMPK/SNF1,
PDK1, S6K, IRE1 and GCN2. Here, we discuss
how the functions of these genes have remained
conserved and/or diverged in the plant lineage.
AMPK/SNF1 and LKB1
The AMP-activated protein kinase (AMPK)/SNF1
(sucrose-non-fermenting 1) kinases are conserved
across eukaryotes and play central roles in sensing
energy status and maintaining energy homeostasis [65].
Like their yeast and animal counterparts, the A. thaliana
AMPK homologues SnRK1.1/AtKIN10 and SnRK1.2/
AtKIN11 also play roles as central regulators of energy
metabolism and homeostasis under stress conditions
[66,67]. The involvement of SNF1 kinases in response
to starvation also appears to be evolutionarily conserved,
and in moss, AMPK/SNF1 kinases enable plants to cope
with periods of dark [65,68]. SNF1/AMPK functions
and interaction partners are probably broadly conserved
across kingdoms. AMPK/SNF1 is activated by LKB1,
and PAK1, TOS3 and ELM1 in mammals and yeast,
respectively [69,70]. The two A. thaliana LKB subfamily
members, GRIK1 and 2, can complement a yeast pak1/
tos3/elm1 mutant and can phosphorylate AtSNF1 [71,72].
PDK1
In metazoans and yeast, phosphoinositide-dependent
kinase-1 (PDK1) serves as a master regulator of AGC
kinase activity, phosphorylating several AGC kinases
through interaction with the PDK1 interacting fragment
domain in response to 3-phosphoinositide generation
[73,74]. A. thaliana PDK1 activates RSK-2 AGC
kinases in response to a different lipid signal, phosphati-
dic acid [75–77]. A. thaliana plants lacking both PDK1-
related genes are dwarf and defective in reactive oxygen
species-mediated signalling, but still viable [78]. This is
in contrast to mice where loss of PDK1 results in
embryo lethality [79]. It appears that the activation of
Phil. Trans. R. Soc. B (2012)
AGC kinases by PDK1 is conserved in plants, animals
and yeast, but that the details of that regulation as well
as downstream effects have diverged.

S6K/AGC-Pl
Because we cannot clearly resolve the relationship
between animal ribosomal S6 kinases (S6Ks) and their
reported plant homologues, the plant S6K-like genes
are designated AGC-Pl in this study. The p70 S6Ks
are stimulated in response to nutrients and modulate
protein translation by phosphorylating downstream tar-
gets such as ribosomal protein S6, EF2 kinase and
eIF4B [77]. There are two p70S6K-related proteins in
A. thaliana. The S6K2 gene, AT3G08720, can phos-
phorylate human and plant S6 ribosomal protein,
suggesting that targets have been conserved [80].
AtS6K1 is located in the cytoplasm and nucleus,
whereas S6K2 is only located in the nucleus and nucleo-
lus; in animals, there are two isoforms of S6K with
analogous distinct localization patterns [81]. S6Ks
also are phosphorylated by PDK1 in both plants and
animals [81]. As in animals, S6K1 is activated by an
activation complex called TORC in response to stress,
although plant S6Ks do not have the conserved TOR
signalling motif found in animals [81]. Arabidopsis thali-
ana S6K1 interacts with the RBR1–E2F pathway to
inhibit cell proliferation. Interestingly, the TSC/Rheb/
Tor/S6k pathway in Drosophila was also shown to regu-
late E2F1 levels and to work with RB1 to regulate cell
cycle progression and also cell survival [82]. Plants
with reduced levels of AtS6K1 and 2 exhibit chromo-
some instability and a failure to repress cell
proliferation under nutrient limiting conditions [83].
This contrasts with the absence of aneuploidy and
effects on cell survival in fruitfly, and indicates that
although there are similarities in regulation and targets,
the functions of S6K have diverged in plants.

IRE1
One remarkable example of conservation is the
mechanism by which IRE1 (inositol-requiring 1) senses
endoplasmic reticulum (ER) stress and activates the
unfolded protein response. Upon sensing unfolded pro-
teins, IRE1 in yeast and its orthologues in metazoans
and (presumably) in plants is activated by autophosphor-
ylation [84,85]. Activated IRE1 then splices the mRNA
of a transcription factor, Hac1 in yeast, XBP1 in metazo-
ans [85] and bZIP60 in A. thaliana and rice [86,87]. In all
cases, the spliced isoform of the transcription factor regu-
lates the expression of stress response genes, but the
mechanism by which splicing activates the transcription
factor differs in yeast, animals and plants [85,87].

GCN2
GCN2 (general control nonrepressed 2) regulates
translation in response to nutrient stress through its
phosphorylation of eIF2a [88]. Yeast GCN2 is also
activated by ultraviolet radiation and is required for a
checkpoint delaying progression from G1 to S phase
[89]. In mammals and Schizosaccharomyces pombe,
there are GCN2 orthologues as well as three and two
additional eIF2 kinases, respectively, that each
respond to different stresses [88,90]. Arabidopsis
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thaliana contains a single GCN2 gene that can comp-
lement amino acid starvation response in gcn2 mutant
yeast cells [91] and also EF2a phosphorylation in
response to multiple stresses, but not osmotic stress
in contrast to yeast GCN2 [92,93].
(ii) Regulation of mitosis and cytokinesis
Another group of protein kinase families conserved
between plants and animals that are low copy
number includes Aurora and some cyclin-dependent
kinase (CDK) subfamilies. Protein kinases in these
two families play central roles in the regulation of
mitosis, cytokinesis and cell cycle control.
Aurora
In yeast and metazoans, Aurora kinases play important
roles in mitosis and cytokinesis (reviewed in Carmena
et al. [94]). Plants have a- and b-type Aurora kinases,
which are distinct from the A, B and C types in animals
and B type found in yeast [95]. Arabidopsis thaliana
Aurora kinases co-localize with mitotic structures, cen-
tromeres and/or the cell plate and also phosphorylate
histone 3, a substrate of animal Aurora kinases,
suggesting conservation of mitotic functions [96]. How-
ever, as suggested by sequence divergence, plant Aurora
kinases have evolved plant-specific functions. A recent
study showed that a double knockout of the a Aurora
kinases AtAUR1 and AtAUR2 is gametophyte lethal
and that the a kinases function in division plane orien-
tation [97]. The b-type Aurora kinase could not
complement the mutant, indicating that it has a dif-
ferent function. Interestingly, a distinct group of
Aurora-related kinases has dramatically expanded in
green algal species (figure 3a). A C. reinhardtii Aurora-
like kinase, CALK, is required for flagellar disassembly
and its phosphorylation state is used to measure flagellar
length [98,99]. In mammals, Aurora kinase A, which
regulates entry into mitosis, also has a non-mitotic role
promoting disassembly of the primary cilium, a struc-
ture evolutionarily related to the motile flagella of
Chlamydomonas [100]. In both cases, flagellar/ciliary
disassembly requires microtubule destabilization,
suggesting that signalling pathways leading to disassem-
bly are conserved in Chlamydomonas and mammals;
however, CALK is quite divergent from Aurora kinase
A [98,100].
CDKA and CDKB
In plants, some CDK subfamilies are highly conserved
with low copy number, such as CDKA, CDKB, while
the others have expanded fairly significantly. In some
cases, the functions of plant orthologues of small
CDK gene families have remained highly conserved.
For example, yeast requires one gene, Cdc2/Cdc28,
to drive cell cycle progression, and in A. thaliana,
this function is supplied by CDKA [101]. In our
analysis, CDKA does not form a monophyletic
group with Cdc2/Cdc28 and is classified as a plant-
specific CDK family (CDK-Pl). In A. thaliana, there
are three plant-specific CDKB genes that work with
CDKA to regulate the G2/M transition [102].
Phil. Trans. R. Soc. B (2012)
CDK7
Similar to CDKA, the plant CDK7 subfamily mem-
bers also seem to have conserved functions with their
yeast and animal counterparts, the cyclin-activating
kinases (CAKs). Animal CDK7, the major CAK,
regulates transcription by phosphorylating the C-
terminal domain (CTD) of RNA Pol II [103,104].
The CAK and transcriptional regulation functions
are carried out by two separate CDK7 genes in
yeast. The sole rice CDK7 orthologue appears to
have both CAK and transcriptional regulation func-
tions [105,106]. Arabidopsis thaliana has three
CDK7-related genes, of which two (CDKD2 and 3)
phosphorylate both the RNA Pol II CTD and
human CDK2 (reviewed in Inagaki & Umeda [107]).

CDK20
In contrast to CDKA and CDK7, the functions of the
small CDK subfamily CDK20 (originally named
CCrK) have diverged in plants. In A. thaliana, a cell-
cycle-related kinase (CRRK) subfamily member,
CDKF1, functions as a CAK [108]. The mammalian
CRRK, while required for cell proliferation, does not
have CAK activity [109]. Interestingly, CCRK-related
genes are involved in the regulation of cilia assembly in
vertebrates [110] and flagellar length in green algae
[111]. These examples indicate that even though
CCRK remains largely a single copy gene in all
lineages examined (figure 3a), it has been recruited
for different functions in different organisms.

Other cyclin-dependent kinases
Other CDK members with non-mitotic roles have also
remained low in copy number in the plant lineage.
CDK8 subfamily members regulate transcription in
metazoans and in yeast, functioning as part of a com-
plex called Mediator, to modulate the activity of RNA
Pol II [112,113]. The A. thaliana CDK8 orthologue,
HEN3, is required for floral cell differentiation [114]
and also functions as part of Mediator complex to
regulate transcription in A. thaliana [115], indicating
that this function is also conserved in plants.

(iii) Low copy number families with divergent or
unknown functions
Similar to CDK20 discussed earlier, some subfamilies
with low copy numbers in plants and animals can also
diverge significantly in their functions. WEE1 and
ULK are clear examples as they regulate plant-specific
processes. On the other hand, functional similarities of
RCK and TLK homologues between eukaryotes are
not entirely clear.

WEE1
In fission yeast and metazoans, WEE1 plays a central role
in the cell cycle, regulating cell cycle progression by phos-
phorylating and inactivating CDK1, which is in turn
activated by the phosphatase Cdc25 (reviewed in
Doonan & Kitsios [104]). In budding yeast, where
there is no gap between S-phase and mitosis, the WEE1
homologue, Swe1p, functions in a morphogenesis
checkpoint instead, monitoring the actin cytoskeleton
[116,117]. On the basis of presence of homologous
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genes, the same CDK1–WEE1–CDC25 regulatory
loop was thought to operate in plants. However, recent
evidence suggests that entry into mitosis is regulated dif-
ferently in plants than in fission yeast and metazoans
[118]. Supporting this, plant WEE1 functions in endo-
reduplication and as a regulator of a DNA integrity
checkpoint during the S phase rather than as a central
regulator of cell cycle progression [119–121].

ULK
ULK (uncoordinated 51-like kinase) subfamily mem-
bers regulate autophagy in metazoans and yeast, and
have also been shown to regulate vesicle transport in
neurons (reviewed in Chan [122]). The only ULK-
ULK4 kinase in A. thaliana, RUNKEL (RUK), is an
essential gene, but is involved in cell division rather
than in autophagy [123], even though autophagy path-
ways appear to be conserved in plants and metazoans
[124]. The ULK-fused subfamily members are com-
ponents of the sonic hedgehog signalling pathway and
regulate Gli transcription factors involved in cell pro-
liferation and cell fate [125]. In A. thaliana, which
lacks sonic hedgehog signalling components, the only
ULK-fused homologue is located at the phragmoplast
and regulates cytokinesis [126].

RCK
One interesting example of conservation of function is
the role of the ros cross-hybridizing kinase (RCK)
male germ-cell-associated kinase (MAK) homologues
in flagella/cilia morphology [30]. Note that the plant
MAK homologues were classified as mitogen-activated
protein kinase (MAPK) in Rodriguez et al. [30], which
is inconsistent with our analysis results. The C. rein-
hardtii MAK homologue [127], CrLF4, regulates
flagellar length [128]. CrLF4 homologues in C. elegans
and mouse regulate the morphology and length of cilia
[129,130]. The three A. thaliana MAK-related genes
are expressed in the male gametophyte and pollen
tube [131], but their functions are not known.

TLK
The TLK was first identified in A. thaliana as a regu-
lator of flower initiation and development [16] and
transcriptional silencing [132]. TLKs are conserved
throughout eukaryotes, but are absent from yeast.
Metazoan and plant TLK orthologues appear to
share functions in chromatin dynamics, indicated by
their ability to phosphorylate the same substrates: His-
tone 3B and ASF1, a histone chaperone protein that
functions in chromatin assembly [133–137].

CMGC_DYRK
Dual specificity yak-related kinases comprise three
subfamilies: (i) DYRK, (ii) homeodomain interacting
kinases (HIPKs), and (iii) pre-mRNA processing
protein 4 kinases (PRP4). The first member of the
DYRK family, YAK1, was identified in yeast, and
since then members have been found in all eukaryotes
(reviewed in Aranda et al. [138]). In yeast, Yak1 regu-
lates stress and nutrient response transcription factors
[139,140]. Interestingly, YAK1 genes are not found in
animals, which have the related DYRK1 and DYRK2
Phil. Trans. R. Soc. B (2012)
genes [138]. Nearly all plants have one to three
YAK1-related genes, but none of the DYRK genes in
plants have been characterized. Plants do not have
apparent HIPKs, which in animals regulate transcrip-
tion by interacting with homeodomain proteins [141],
but do have expanded PRP4 kinase subfamilies. The
functions of these genes also remain uncharacterized.
Given the importance of PRP4 kinases in splicing in
yeast [142] and mammals [143], it would be interest-
ing to investigate their function in splicing in plants.

(b) Protein kinase families with moderate

degrees of expansion

(i) Families with divergent functions but conserved
signalling network components
A number of families are found in most eukaryotes but
have experienced moderate degrees of expansion in
plants. Members in several of these families, including
MAPK, MAPK kinase (MAP2K), MAPK kinase
kinase (MAP3K) and RSK-2 have been shown to inter-
act with homologous signalling network partners in
plants, fungi and animals. However, they play appar-
ently different roles in plants, presumably because of
the morphological, developmental and physiological
divergence and differences in life histories between
plants and other eukaryotes.

MAPK
MAPKs in plants, metazoans and yeast link extracellular
and intracellular signals to downstream responses. In
plants, MAPKs play diverse roles in development, and
response to abiotic and biotic stresses (reviewed in
Rodriguez et al. [30]). Several signalling modules invol-
ving MAPKs in both plants and animals have been
defined. Although there is a high degree of conservation
of structure of these modules, MAPK signalling path-
ways in plants are different from those in other
eukaryotes [30]. Furthermore, the MAPK family has
expanded more in land plants (7–31 members) relative
to yeast (6) and animals (6–14), suggesting more
opportunities for diversification of functions in the
plant lineage. In rice, poplar and A. thaliana, there is
a high degree of conservation of MAPKs, and most
orthologous relationships are clear [30].

STE7 and STE11
These two related families of protein kinases, STE7
(Sterility 7) and STE11, function as MAP2K and
MAP3K, respectively. Note that Raf kinases also func-
tion as MAP3K but belong to the TKL group. Like
MAPKs, the STE7 and STE11 subfamilies have
expanded in the land plant lineage (3–19 and 14–55
members, respectively) relative to yeast (four) and
metazoans analysed (4–10). The expansion of the
STE11 lineage is particularly pronounced: there are
three times as many STE11 kinases in A. thaliana
than STE7. These two subfamilies have been reviewed
extensively elsewhere [30]. The first complete MAPK
signalling pathway in plants was determined for the
innate immunity pathway activated by the flagellin
peptide, flg22. Flg22 binds to the FLS2 receptor, an
RLK, activating the MAP3K, MEKK, which in turn
activates the MAP2Ks MKK4 and MKK5, which
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activate MPK3 and MPK6 leading to downstream tran-
scription of defence response genes [144]. Strikingly,
this signalling framework is the same used in animals
to signal innate immunity with the exception that the
pathogen-associated molecular pattern (PAMP) is per-
ceived by a Toll-like receptor that then acts through a
cytosolic IRAK kinase [144]. Note that IRAK belongs
to the RLK/Pelle family, which has undergone dramatic
expansion in plants [34] but remains a small family in
metazoans (1–4 members). Since this first example
was published, MAPK pathways regulating cell division
[145,146], stomata development (reviewed in Liu et al.
[147]) and abiotic stress have been elucidated (reviewed
in Sinha et al. [148]).

RSK-2
The most extensively studied AGC kinases in plants
belong to the RSK-2 subfamily that is related to but
evolutionarily distinct from RSK (p90 ribosomal S6
kinase). Members are involved in many aspects of
cell growth and proliferation, and are activated by
MAPK signalling cascades as well as by PDK1
(reviewed in Anjum & Blenis [149]). In land plants,
the RSK kinases have undergone moderate expansion
and are involved mainly in plant-specific roles, includ-
ing blue light perception [150], polar auxin transport
[151] and stress response [152,153]. Despite this
divergence in function between plants and other
eukaryotes, the regulation of RSK and RSK-2 activity
by PDK1 is conserved (see §4a(i)).

(ii) Divergent functions but conserved regulatory
mechanisms
The regulation of kinase activity of some moderately
expanded families, OSTL1, CHK1 and CK1, is
achieved by conserved mechanisms, even though the
functions of and/or the signalling pathways regulating
these kinases have diverged.

OSTL
The AMPK/SNF-related kinase family, OSTL (open
stomata-like; SnRK2), which is related to but more
divergent from the AMPK/SNF1 family discussed in
§4a(i), has undergone pronounced expansion and
divergence in plants [28]. Studies in rice, wheat and
A. thaliana have revealed roles for SnRK2s in osmotic
stress, the plant hormone abscisic acid (ABA) and/or
sugar metabolism signalling (reviewed in Coello et al.
[154]). There is evidence that SnRK2s are regulated
by protein phosphatase 2C (PP2C), a mechanism
used to regulate AMPK/SNF1 in animals and yeast.
For example, the A. thaliana ABA-activated OST1/
SnRK2.6 kinase is deactivated by the PP2C, HAB1,
upon ABA binding to an ABA receptor [155]. The crys-
tal structure of the SnRK2.6–HAB1 complex revealed
that PP2C binds to both SnRK2s and ABA receptors
through a common domain. Algae SnRKs lack this
domain, indicating that SnRK2 ABA signalling is a
land-plant-specific adaptation [156].

CHK1
In animals, CHK1 and the closely related CHK2 play
roles in DNA damage response. Earlier studies indi-
cated that there are no obvious plant CHK1
Phil. Trans. R. Soc. B (2012)
orthologues [157], but in our analysis, some plant
kinases appear to be more closely related to CHK1
than to other CAMK families. CHK1, or the SNF1-
related SnRK3, subfamily members are calcineurin
B-like protein (CBL) interacting protein kinases
(CIPKs). Plant CBLs are related to calcineurin B pro-
teins in animals and yeast. However, CBL–CIPK
signalling pathways are specific to plants; in yeast and
animals calcineurin B binds to phosphatases, not kinases
[158]. The plant CAMKL–CHK1 subfamily includes
salt overly sensitive2 (SOS2), which interacts with the
calcium-binding protein, SOS3, to regulate ion homeo-
stasis and confer salt tolerance [159,160]. CIPKs have
also been implicated in osmotic stress responses, ABA
signalling, nitrate sensing and Kþ transport, with the
CBL-binding partner determining pathway specificity
[161,162]. Like SnRK2s, CIPKs interact with PP2Cs,
although whether CIPKs are dephosphorylated by
PP2Cs has not yet been determined [156].

CK1
Casein kinase 1 (CK1) is evolutionarily conserved across
eukaryotes and regulates a wide variety of cellular pro-
cesses [163]. Many plant lineages have more than
twice the number of CK1 paralogues compared with
humans. Most plant CK1s have not been functionally
characterized; however, there is evidence that A. thaliana
CK1 proteins are involved in microtubule organization
[164]. Not much is known about the regulation of
plant CK1 activity, but achieving target specificity
through the differential subcellular targeting of different
isoforms appears to be a mechanism for controlling CK1
activity across eukaryotes [165,166]. Another group of
CK1-related genes (CK1_CK1-Pl) is found only in the
plant lineage. Rice EARLY FLOWERING1 encodes a
plant-specific CK1 that negatively regulates gibberellic
acid (GA) signalling by phosphorylating a DELLA
domain protein, also a member of a plant-specific
family of GA regulators [167], indicating that these
family members participate in plant-specific processes.

(iii) Expansion and involvement in plant-specific processes
The plant-specific expansion of kinase families such as
GSK3, NEK, CTR1, plant-specific TKLs and WNK/
NRBP may take on functions in plant-specific pro-
cesses that are probably adaptive. The plant-specific
TKLs have clearly evolved to regulate processes that
are specific to plants.

GSK3
Glycogen synthase kinase 3 (GSK3) is a key regulator of
several developmental processes, including cell migration
[168], metabolism [169] and cell proliferation. CMGC_
GSK3 kinases are conserved in animals, fungi and
plants, but while mammals have two copies of GSK3,
this subfamily has expanded (up to more than 20 mem-
bers) in land plants. In C. reinhardtii, the only GSK3
homologue is required for flagellar assembly [170]. In
plants, GSK3 kinases function in brassinosteroid hor-
mone signalling, abiotic and biotic stress pathways, and
flower development (reviewed in Saidi et al. [32]). The
diversification of GSK3 genes several times during land
plant evolution suggests that they have been important
for adaptation [32].
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NEK
NimA was first isolated from Aspergillus niger, and
NimA-related kinases (NEK) are found in all eukar-
yotes, ranging from one family member in yeast to
14 in mammals. Although NEKs have divergent func-
tions, a common feature is their regulation of
microtubules (reviewed in Moniz et al. [171]). NEK
genes have roles in cell cycle regulation as well as cilia-
genesis, and it is thought that expansion in organisms
with cilia/flagella might be due to the need to coordi-
nate the cell cycle with cilia development [171,172].
In G. lamblia, the NEK family has expanded to an
astounding 198 of the 278 protein kinases, 70 per
cent of which are likely to be catalytically inactive
[37]. The dramatic expansion of the NEK family
may be due to the fact that G. lambila has eight flagella
and two nuclei, requiring more regulatory kinases; how-
ever, the expanded NEK genes are not orthologous to
NEKs in expanded subfamilies in ciliates, which are
also binucleate [37]. Notably, green algae C. reinhardtii
and Volvox carteri have twice as many NEKs as land
plants, suggesting that expansion may also be related
to the presence of flagella in these algae. In plants,
A. thaliana NEK6 has been the most extensively
characterized. It interacts with microtubules to regulate
epidermal cell morphogenesis [173,174] and is also
involved in stress responses [175,176].
DRK-1 and DRK-2
In A. thaliana, expansion of TKLs has occurred in
families whose members are involved in plant-specific
processes. Because of high sequence divergence, the
classification of TKLs is challenging. Particularly, in
our analysis, many plant kinases that are regarded as
Raf homologues (or referred to as MAP3Ks on some
occasions) belong to the TKL group but do not
appear to be in a monophyletic group with metazoan
Raf kinases. One such example are the DRKs (down-
stream of receptor kinases) originally found in the
slime mould D. discoideum [177] that resolved into
two clades: DRK-1 and DRK-2. The DRK-2 family
includes EDR1, which regulates SA-inducible defence
signalling [178] and CTR1, which regulates ethylene
responses [15]. Originally, on the basis of sequence
similarity with Raf kinase, which has MAP3K activity,
CTR1 was proposed to activate MAPK signalling cas-
cades in response to ethylene (reviewed in Colcombet
& Hirt [25]). However, a biochemical function as a
MAP3K has not been demonstrated. EDR1 is recruited
to the ER via its association with the plant-specific E3
ligase/kinase KEEP ON GOING, a member of the
small TKL_Pl-1 subfamily; this complex may regulate
signalling complexes located at the ER [179]. Rice
DSM1, another DRK-2 member, mediates drought
stress response [180]. The function of other DRK-2
and all DRK-1 members remains unclear.
TKL: plant-specific subfamilies
The TKL_Pl-4 kinases belong to multiple expanded,
little studied subfamilies. HIGH TEMPERATURE1
is expressed in guard cells and regulates stomata in
response to CO2 [181]. Three additional members
(STY 8, STY17 and STY46) phosphorylate the transit
Phil. Trans. R. Soc. B (2012)
peptides on chloroplast-targeted preproteins and
are required for chloroplast differentiation [182].
The TKL_Pl-5 subfamily member, VH1-interacting
kinase (VIK), interacts with VH1/BRL2, and
mutations lead to defects in leaf venation and auxin
and BR response [183]. VIK also phosphorylates the
A. thaliana tonoplast monosaccharide transporter to
regulate vacuolar sugar accumulation [184].

WNK/NRBP
WNK (with no lysine) and nuclear receptor binding
protein (NRBP) families are considered together
because they consistently form a monophyletic group.
In addition, the duplication event that led to these two
families appears to have taken place in the animal/
fungal lineage after its divergence from plants (see elec-
tronic supplementary material, appendix S3). WNK
kinases are distinct from other kinases because a con-
served lysine in the catalytic cleft is found in
subdomain I instead of subdomain II. They are found
in most eukaryotes, but were lost in yeast [185]. In
mammals, WNKs have been extensively studied owing
to their effects on renal ion transport (reviewed in
Huang et al. [186]). The C. elegans WNK1 gene func-
tions in cell volume recovery after hypertonic stress
[187]. Not much is known about the functions of
WNKs in plants. Plant WNK genes in plants are tran-
scriptionally regulated by the circadian clock and
abiotic stress [188,189]. Soybean GmWNK1 regulates
root architecture in response to ABA and osmotic sig-
nals [190]. On the basis of common functions of
WNKs in osmotic stress responses [190], members in
this family may be retained owing to their adaptive
roles in protecting cells against water loss.

(c) Families with significant degree of expansion

(i) Significantly expanded families tend to play roles in
stress response
The CDPKs and RLK/Pelle have undergone the most
significant degree of expansion among protein kinase
families in all land plant lineages. On the basis of
our knowledge of their functions, their expansion
and subsequent functional divergence may have
allowed plants to perceive and/or respond to various
environmental signals.

CDPK
The calcium-dependent protein kinases (CDPKs)
comprise a large family of Ca2þ regulated kinases
found in plants [13] and alveolates [38] (see Talevich
et al. [191], in this issue) that have a domain similar
to calmodulin and bind Ca2þ directly. Different
CDPKs bind to Ca2þ with differing affinities, poten-
tially allowing different CDPKs to respond to
different Ca2þ signals [20]. CDPKs play roles in devel-
opment, for example regulating transcription in
response to hormone levels [192]. Several CDPKs
are known to function in abiotic stress response and
ABA signalling pathways through phosphorylation of
targets, including ion channels and transporters
(reviewed in Das & Pandey [193]). CDPK activity in
guard cells regulates the opening and closing of sto-
mata in response to ABA [194,195] and methyl
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jasmonate [196]. Recently, CDPKs have also been
found to be key components of innate immunity
signalling pathways [197,198].

RLK/Pelle
Plant RLK/Pelle family members play diverse roles in
development, regulating cell-type specificity and
organ identity (reviewed in De Smet et al. [199], as
well as in defence response [200] and, to a lesser
extent, in abiotic stress response [201–203]. It has
been shown that RLK/Pelle subfamilies with develop-
mental regulatory functions tend to have lower
degrees of expansion than those involved in defence
response [33]. However, subsequent study has shown
that this distinction is not as clear-cut as was once
believed [34]. Involvement in basal immunity is a
function shared by both animal and plant RLK/Pelle
genes, and the functions of RLK/Pelles in innate
immunity pathways as pattern recognition receptors
have been particularly well-studied [204]. Several
lines of evidence suggest that RLK/Pelle expansion is
tied to the need for plants to adapt to changing
biotic conditions [34]. Although little domain gain
within RLK extracellular domains has occurred since
the divergence of the vascular plant lineage from
moss, the domains that have been acquired have
been implicated in sensing biotic signals. In addition,
there is evidence that RLK/Pelle genes have been
co-opted for roles in sensing biotic signals. For
example, LRR-I subfamily members have evolved
legume-specific roles in symbiosis. Finally, RLK/Pelle
subfamilies show substantial differential expansion
in different plant lineages, and subfamilies showing
differential expansion, such as DLSV (DUF26,
SD-1, LRR-VIII and VWA, a moss-specific new
RLK subfamily), L-LEC, LRR-XII, SD2b, WAK and
WAK/LRK10L-1 also tend to be enriched in genes
that have been implicated in biotic stress response
based on either function or expression evidence [34].
5. WHY THERE ARE SO MANY PLANT PROTEIN
KINASES?
In this study, plant protein kinases were identified and
classified based on assignments from other eukaryotes.
Many of these families and even subfamilies have clear
plant homologues, suggesting their early establishment
during the course of eukaryote evolution. The plant
protein kinase superfamily is in general larger than
that in other eukaryotes. Our findings indicate that
the larger protein kinase repertoire is the consequence
of recent duplications. Species such as soybean and
cottonwood, where very recent genome duplications
have taken place, have more kinases than most other
plant species. Together with frequent tandem dupli-
cation found in this gene family [12,33,34], these
duplication mechanisms are the main proximal cause
for the higher degree of expansion of the protein
kinase superfamily in plants.

The propensity to expand, however, differs greatly
among protein kinase families and subfamilies because
clearly not all duplicates were retained. Despite fre-
quent duplication, many plant protein kinases remain
low in copy number. In some cases, such as WEE1
Phil. Trans. R. Soc. B (2012)
and TLK, there are only single members within the
families established prior to the divergence of eukary-
otic species. Considering their functions, many are
involved in ‘house-keeping’ functions such as regu-
lation of metabolism, cell cycle and mitosis. Their
low copy number and house-keeping role is consistent
with the finding that duplicability of house-keeping
genes tends to be low [205]. However, the plant lin-
eage diverged from the animal and fungi lineages
over a billion years ago. Extensive developmental and
physiological adaptation and life-history differences
have led to significant differences in how these highly
conserved kinases function. As a result, many of
them now play roles in plant-specific processes.

Aside from families with low copy number, some
families have been moderately or highly expanded.
What was the evolutionary force(s) that drove such
differential expansion in protein kinase families?
Given what we understand now, it appears that the
selection pressure on the ability to properly respond
to changing environment is a major contributor [54].
In the case of RLK/Pelle family members, which
play roles in recognition of non-self biotic factors,
continuous selective pressure imposed by pathogens
and symbionts potentially drove the rather drastic
expansion in this family [34]. The expansion of the
CDPK family, whose members are involved in
calcium-modulated signalling, could conceivably be a
consequence of adaptive evolution where a new
CDPK duplicate allowed perception of a different
calcium signal through variation in affinity for Ca2þ

and/or interacting protein substrates [20]. For the
other families (such as multiple TKL families, the
WNK/NRBP and the NEK families) that have under-
gone moderate expansion, the reason for expansion
remains unclear. One possibility is that many of
these protein kinases were duplicated and retained
owing to their roles in plant-specific processes. This
notion is consistent with the plant-specific roles
played by many plant protein kinases with animal/
fungal orthologues. To test this hypothesis, compara-
tive functional studies are required between early
diverging plant species such as algae and bryophytes
and flowering plants.

In addition to an adaptive explanation for the obser-
vation of significantly more kinases in plants, it is
possible that some protein kinases have been retained
owing to at least two non-adaptive reasons. First,
some duplicate protein kinases may be retained simply
owing to subfunctionalization where the functions
of the ancestral kinase were partitioned among the
duplicates [206]. In this situation, neither copy can be
lost without clear phenotypic consequences. This pos-
sibility, at first glance, may run counter to the
well-known finding in the plant research community
that there is a substantial functional overlap between
duplicate genes. There are a large number of plant
studies demonstrating that loss-of-function in multiple
paralogues is necessary to reveal mutant phenotypes in
laboratory conditions. However, it is apparent that
laboratory conditions are not as diverse as the natural
environment. Thus, the absence of a phenotype with
the loss-of-function of one paralogue cannot be
regarded as evidence against subfunctionalization.
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The second non-adaptive explanation is that some
protein kinases may very well be on their way to
becoming pseudogenes. There are several lines of evi-
dence suggesting this may be the case. Note that
species with recent whole genome duplications tend
to have larger protein kinase repertoires. In a compara-
tive study of A. thaliana and rice genomes, hundreds of
protein kinase pseudogenes were found, although
protein kinases as a whole tend to have proportionally
less pseudogenes than other families [43]. Population
genomic studies of A. thaliana have also shown that
many members of the RLK/Pelle family, which experi-
enced the most extensive expansion, have alleles with
non-sense and/or frame-shift mutations expected to
disrupt gene function [207]. Therefore, there may
have been insufficient time after duplication to
accumulate mutations that render some protein
kinases completely non-functional.

Another potential indication that some duplicate
kinases are becoming pseudogenes is the prevalence of
pseudokinases in plants. Around 13 per cent of
A. thaliana protein kinases were hypothesized to be
pseudokinases with modifications in some residues criti-
cal for catalytic activity [208]. However, some predicted
pseudokinases have been shown to have catalytic
activity, and the numbers of pseudokinases may be over-
estimated [209]. Among RLK/Pelle family members,
the proportion of pseudokinases is even higher at
approximately 20 per cent. In some cases, such pseudo-
kinases have clear biological functions. One of the first
examples is the STRUBBELIG kinase, which lacks
enzymatic phospho-transfer activity but is essential for
proper A. thaliana development [210]. Examples such
as STRUBBELIG clearly demonstrate the importance
of phosphorylation-independent mechanisms in plant
signal transduction. However, a clear demonstration of
loss-of-function phenotype is required to argue against
the equally likely explanation that loss of kinase activity
is due to relaxed or no selection on duplicates.

The relative importance of adaptive and non-adaptive
explanations for protein kinase family expansion is
unclear. But these discussions do highlight the challenge
in elucidating plant protein kinase functions, given their
exceptional numbers and similarities in all plant species.
Comparative genomic studies examining molecular
patterns of protein kinase evolution within and between
species may provide some hints as to which protein
kinases continue to experience strong purifying selection
and are likely to remain functional.
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