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Emergence of resistance is a major concern in influenza
antiviral treatment and prophylaxis. Combination antiviral
therapy might overcome this problem. Here, we estimate
that all possible single mutants and a sizeable fraction of
double mutants are generated during an uncomplicated
influenza infection. While most of them may sustain a
fitness cost, some variants may confer drug resistance and
be selected during therapy. We argue that a triple combi-
nation regimen would markedly reduce the risk of antiviral
resistance emergence in seasonal and pandemic influenza
viruses, especially in seriously ill or immunocompromised
hosts.

Infection with influenza viruses remains an important public
health problem worldwide. Vaccines are the primary pharma-
cologic means for prevention, but they may not be available in
the event of a pandemic or effective when there is a mismatch
with the circulating strain or when immunogenicity is
inadequate. Currently, there are 2 classes of licensed drugs
against influenza available in most countries: the M2 ion
channel inhibitors (adamantanes) and the neuraminidase
inhibitors. However, single nucleotide substitutions and corre-
sponding amino acid changes can generate high-level resist-
ance to adamantanes and neuraminidase inhibitors, like
oseltamivir [1]. Consequently, the effectiveness of these agents,
primarily used as monotherapy, can be undermined by the

emergence of drug-resistant variants during prophylaxis or
therapy, especially in immunocompromised hosts or those
with severe illness. Furthermore, adamantane-resistant H3N2
and pandemic H1N1 viruses and oseltamivir-resistant seaso-
nal H1N1 virus have circulated globally in recent years [1],
and community transmission of dually adamantane-oseltami-
vir resistant seasonal H1N1 [2] and, recently, pandemic H1N1
viruses has been reported. Combining drugs with different
mechanisms of antiviral action is an obvious strategy to
reduce the risk of resistance emergence. Here we address this
issue by using a probabilistic model based on viral replication
patterns in infected persons and discuss its implications for
influenza therapy.

METHODS

Probability of Generating Influenza Variants
The RNA carried by each influenza virion is produced by the
action of an error-prone viral RNA polymerase. If the influen-
za genome is N nucleotides long and a substitution error
occurs with probability µ per replication, then the probability
of having i-nucleotide substitutions (i.e., an i-mutant) after 1
replication event is given by the binomial distribution,

Pi ¼ N
i

� �
mið1� mÞN�i. Although mutation rates may differ

between sites within a genome, for simplicity we assume that
mutation occurs with the same probability at all sites.

Fraction of All Possible Mutants Produced During Infection
One means of estimating whether drug-resistant variants
might arise during an influenza infection is to calculate the
fraction of all possible variants that are produced. For example,
assume that a particular single nucleotide substitution in the
influenza genome can give rise to drug resistance. Then if
influenza variants carrying all possible 1-base changes were
generated during an infection, this particular drug-resistant
variant would be included among the population. However, if
only 10% of all possible variants were generated, then there
would be a 10% chance that the particular drug-resistant
variant would be generated.

If the total number of virions produced during infection is
Vtot, then according to the binomial distribution the average
number of i-mutants generated per infection is Vtot · Pi, with
an SD of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vtot � Pi � ð1� PiÞ

p
. Since each of the N nucleotides

could mutate to any of 3 other nucleotides, there are a total of

Ni ¼ N
i

� �
3i possible sequences with i substitutions. Thus,
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the expected fraction of all possible i-mutants produced
during infection initiated with a fully drug-sensitive virus is

Vtot � Pi +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vtot � Pi � ð1� PiÞ

p
=Ni:

Conversion of the Viral Titer in Nasal Wash to the Number
of Virions Produced at the Site of Infection
To estimate the total number of virions produced during an
infection, we used viral titer data from an experimental infec-
tion study of H1N1 virus [3]. Since experimental infections
are generally restricted to the upper respiratory tract, this is a
minimal estimate of viral production during naturally occur-
ring infections; much higher and more sustained viral loads
have been documented in the lower respiratory tract of
patients with severe pandemic H1N1 illness [4]. Since the viral
titer was measured in units of 50% tissue culture infectious
doses (TCID50) per milliliter of nasal wash [3], we need to
convert it to the number of virions produced at the site of
infection. In experiments performed on Madin-Darby canine
kidney cells, infectious virions made up only about 1 in 10 000
virions [5]. We assume virus in humans is 10-fold more infec-
tious (ie, 1000 virions in nasal wash correspond to 1 TCID50).
Next, the concentration of total virions in nasal wash needs to
be converted to the concentration of total virions at the site of
infection. Although very little information is available, it is
believed that the concentration of virions at the site of infec-
tion is higher by a factor of 1–100 [6], according to circum-
stantial data [7]. Here, we choose the factor to be 10. Last, the
volume of the upper respiratory tract is approximately 30 mL
[8]. Combining the above, we obtain f = 3 × 105 virions/
(TCID50/mL), which converts 1 TCID50/mL of nasal wash to f
virions at the site of infection. Sensitivity analysis on the total
number of virions produced during infection is performed
below.

RESULTS

Total Number of Virions Produced During the Course
of Atypical Influenza Infection
Baccam et al. [9] fit a viral dynamic model to experimental
viral titer data obtained via nasal washes from H1N1 influenza
A/Hong Kong/123/77–infected adult volunteers [3]. By using
this model and the parameters estimated for each individual,
we computed the total number of virions generated during the
observed 7-day infection, as follows:Vtot ¼

Ð 7
0 f � p � IðtÞdt.

Here p is the viral production rate per cell, and I(t) is the
number of productively infected cells, with both values esti-
mated from the best fit to the data [9]. Table 1 gives Vtot for
each individual, yielding an average of 8.1 × 1011 virions.
These Vtot values will be used to compute the expected
number of viral variants during infection.

Because the number of virions produced during an infec-
tion is a key parameter, we also use another simpler method

to calculate it. In Hoopes et al. [10], we assume that of the
approximately 4 × 108 epithelial cells in the upper respiratory
tract [9], about 25% are infected during seasonal influenza in-
fection, as observed during equine influenza infection [11],
and that each infected cell produces 5000 virions. Under these
circumstances, the total number of virions produced during
infection is 5 × 1011, which is of the same order of magnitude
as the estimate above. The estimate of 5000 virions produced
per infected cell is very likely a conservative estimate, as
numbers closer to 20 000 virions per cell have been reported
[12]. Further, if only 1 in 1000 virions is infectious, then this
implies that only 5 infectious virions are produced per cell,
which is also likely an underestimate, since in early infection it
has been estimated that each infected cell infects approxi-
mately 20 other cells [9]. Thus, one might expect >5 × 1011

virions to be produced in a typical infection or >1 of 1000 to
be infectious.

To gain insight into the possible transmission of drug-
resistant variants, we also computed the total number of
virions produced by the time of peak replication (tpeak) and
around peak replication because this is the time when people
are most infectious. The average number of virions produced
by tpeak and from 1 day before tpeak to 1 day after tpeak is 5.4 ×
1011 and 7.8 × 1011, respectively, which shows that most of
the virus produced during infection is produced near the
time of the viral peak (Table 1). This is likely close to or
shortly before the time of initiating antiviral therapy in
outpatients.

Generation of Different Influenza Variants During Infection
The number of nucleotides in the influenza A genome is
approximately 1.4 × 104. To calculate the probability of gener-
ating different influenza variants within an infected host, we
chose the point mutation rate to be 2 × 10−6 per copied
nucleotide [13], which is conservative as other estimates are

Table 1. Total Number of Virions Generated During an Uncom-
plicated Influenza Infection

Total No. of Virions Generated

Patient
During 7-Day Infection

(from t0 to t7)
From t0 to

tpeak
From tpeak −1 to

tpeak +1

1 2.8 × 1011 1.8 × 1011 2.7 × 1011

2 4.4 × 1010 3.8 × 1010 4.4 × 1010

3 1.8 × 1011 1.2 × 1011 1.7 × 1011

4 1.8 × 1012 1.2 × 1012 1.7 × 1012

5 2.3 × 1011 1.6 × 1011 2.2 × 1011

6 2.4 × 1012 1.6 × 1012 2.3 × 1012

Average 8.1 × 1011 5.4 × 1011 7.8 × 1011

Abbreviations: tpeak, time when viral peak is achieved; t0, time of initial
infection; t7, is the time when virus is cleared.
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higher [14]. According to the binomial distribution, if a
person is infected with a susceptible virus, we find that each
new virion generated, whether infectious or not, has a prob-
ability of 97% to carry a nonmutated genome, 2.7% to carry 1
nucleotide substitution, 0.038% to carry 2 substitutions, and
0.00036% to carry 3 substitutions (Table 2).

On the basis of the estimate of approximately 8 × 1011

virions produced during the course of uncomplicated influen-
za infection, we calculated that on average 2.2 × 1010, 3.1 × 108,
and 2.9 × 106 mutants are generated with random single,
double, and triple nucleotide changes, respectively (Table 2).
Since a base can mutate to any of 3 others, the number of all
possible single, double, and triple mutants is 4.2 × 104, 8.8 ×
108, 1.2 × 1013, respectively. Thus, all possible single mutants,
about 35% of all possible double mutants, and about 2 ×
10−5% of all possible triple mutants are generated during in-
fluenza infection within 1 host. If we focus on infectious
virions, the fraction of all possible infectious variants pro-
duced remains unchanged.

When we used the calculation of virions produced around
the time of peak infection, we obtained similar results
(Table 2). For severe viral pneumonia, as observed with H5N1
and in pandemic 2009 (H1N1) influenza, or for immunocom-
promised patients, we assumed the virus production is 5–
1000-fold higher. We also calculated the fraction of all possible
mutants generated during infection when the mutation rate is
10-fold higher. In both cases, all possible single and double
mutants are predicted to be generated, whereas the fraction
of triple mutants produced is still relatively small (from 1 ×
10−4% to 2 × 10−2%; Table 2 and Supplementary material).
Thus, a large increase in either the mutation rate or the
total number of virions produced during infection, 2 critical
parameters in our calculations, would generate similar results.

DISCUSSION

Emergence of antiviral resistance poses a major challenge in
the clinical management of seasonal and pandemic influenza
[1]. Here we estimated the probability of producing various
influenza variants during infection. The results predict that all
possible single mutants are produced hundreds of thousands
of times during infection in a single host. Although growth
and emergence of such variants depend on a number of
factors, such as vulnerability to immune attack, susceptibility
to drugs, transmission and replication capacities, and, poss-
ibly, mechanisms of antiviral action, we expect drug resistance
to arise particularly when therapy is given to enough infected
persons and imposes strong selection for the outgrowth of
drug-resistant variants, corresponding with the clinical experi-
ence with adamantanes and less often with oseltamivir [1].
Therapy with double combinations can decrease the possi-
bility of de novo drug resistance. However, a sizeable fraction Ta
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of all possible double mutants are also generated during infec-
tion (Table 2), and variants generated early in infection with 1
or 2 substitutions could acquire an additional mutation. Some
substitution combinations will confer drug resistance, and
some may involve predisposing or compensatory mutations
that restore viral fitness [15]. Thus, a more sensible strategy is
to use drug combinations that require ≥3 mutations to gener-
ate resistance, especially in individuals with high replication
levels, like immunocompromised hosts and severely ill viral
pneumonia patients. Moreover, the recent circulation of influ-
enza A viruses resistant to adamantanes or oseltamivir reduces
the genetic barrier of double combinations to only a single
mutation; pandemic H1N1 and seasonal H1N1 with dual
resistance have already been reported [1, 2]. Simultaneous
triple mutants arise so infrequently that enormous populations
of infected individuals are required to generate even a single
instance of such variants (Table 2). Thus, triple combination
therapy provides an additional genetic barrier.

In practice, triple therapy may not be necessary for treating
immunocompetent individuals, since host immune responses
clear virus relatively rapidly once symptoms appear. However,
combination therapy needs to be seriously considered in se-
lected influenza target groups, particularly patients with H5N1
infection, viral pneumonia, and/or severe immunocom-
promise. A recent in vitro study reported that a triple combi-
nation of amantadine, oseltamivir, and ribavirin is synergistic
as compared to any dual combinations against drug-resistant
influenza viruses [16]. Of note, a randomized trial comparing
this triple regimen to oseltamivir monotherapy is currently
being conducted in at-risk, ambulatory adults by the National
Institute of Allergy and Infectious Diseases (clinical trials
registration number NCT01227967). More preclinical/clinical
studies will be essential to determine whether combination of
available and/or novel agents will reduce resistance emergence
and offer clinically meaningful benefits.

Overall, our calculation lays a theoretical foundation for
combination therapies for influenza. If antiviral therapy were
to be widely used, combinations of drugs that have a genetic
barrier of 3 mutations might be needed to mitigate resistance
emergence during influenza treatment, especially in patients
with serious infections associated with high and sustained
viral replication or with preexisting resistance to an antiviral
class. Our findings support development of novel inhibitors
and greater diversity in antiviral stockpile choices.
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