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The study of brain evolution, particularly that of the neocortex, is of primary interest because it directly

relates to how behavioural variations arose both between and within mammalian groups. Artiodactyla is

one of the most diverse mammalian clades. However, the first 10 Myr of their brain evolution has

remained undocumented so far. Here, we used high-resolution X-ray computed tomography to investi-

gate the endocranial cast of Diacodexis ilicis of earliest Eocene age. Its virtual reconstruction provides

unprecedented access to both metric parameters and fine anatomy of the most complete endocast of

the earliest artiodactyl. This picture is assessed in a broad comparative context by reconstructing endo-

casts of 14 other Early and Middle Eocene representatives of basal artiodactyls, allowing the tracking of

the neocortical structure of artiodactyls back to its simplest pattern. We show that the earliest artiodactyls

share a simple neocortical pattern, so far never observed in other ungulates, with an almond-shaped gyrus

instead of parallel sulci as previously hypothesized. Our results demonstrate that artiodactyls experienced

a tardy pulse of encephalization during the Late Neogene, well after the onset of cortical complexity

increase. Comparisons with Eocene perissodactyls show that the latter reached a high level of cortical

complexity earlier than the artiodactyls.
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1. INTRODUCTION
By collecting and processing sensory information, the brain

ensures optimal behavioural responses in a given environ-

ment. Accordingly, brain size and pattern diversified

dramatically as mammals evolved to fill an extensive variety

of ecological niches. Artiodactyla has achieved one of the

most successful diversifications among mammals and is

today by far the predominant group within ungulates (or

hoofed mammals). The diversity of modern artiodactyls

is also perceptible in their brain pattern. They show a

wide array of brain morphologies [1–3], including some

of the biggest and most convoluted mammalian brains in

those of delphinid cetaceans (e.g. Tursiops truncatus and

Delphinus delphis), where brain size expressed as a function

of the body mass (‘encephalization quotient’, or EQ [4])

ranks second after that of humans [5]. Accordingly,

recent studies have focused on the evolutionary increase

of brain size in Artiodactyla, with a special attention to ceta-

ceans [6,7]. Yet only a few studies have dealt with the issue

of morphological early evolutionary history of the brain of

non-cetacean artiodactyls.

Artiodactyla suddenly appears in the fossil record

at the earliest Eocene (�55.8 Ma) with Diacodexis, a
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deer-like small artiodactyl retaining tribosphenic molars

[8,9]. The oldest known artiodactyl endocast descri-

bed so far originates from the early Middle Eocene of

Pakistan (Diacodexis pakistanensis, �48 Ma), and it con-

sists of a composite reconstruction based on nine skull

fragments lacking crucial features such as the extent and

precise structure of the neocortex (isocortex) or volume

of the braincase [10]. The evolutionary history of the

artiodactyl brain was mainly studied during the 1960s

and early 1970s, based on natural or plaster endocranial

casts (endocasts) of either endemic Late Eocene/

Oligocene European artiodactyls [11–13] or Middle

Eocene to Recent North American camelids [3]. Overall,

the first 10 Myr of artiodactyl brain evolution remains

unknown, and endocranial morphology of Eocene

artiodactyl groups is still scantily documented.

Two main pulses of generic diversity are recorded in

the terrestrial artiodactyl fossil record [14]; one during

the Eocene epoch, with the emergence of modern

groups [15], and a second major one during the Pliocene

epoch, resulting from the recent explosive radiation in

bovids [16]. Here we examine the early evolution of the

Artiodactyla brain in terms of both volume increase and

neocortical external surface complexity during the

Eocene first diversification pulse of the group. We used

high-resolution X-ray computed tomography to fill the

temporal gap in our knowledge of artiodactyl endocast

by investigating the endocranial cast of the North
This journal is q 2012 The Royal Society
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Figure 1. In situ endocast of the earliest Eocene artiodactyl D. ilicis (AMNH VP 16141), visible through a translucent rendering
of the cranium in (a) lateral and (b) dorsal views. Scale bar, 1 cm.
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American diacodexeid Diacodexis ilicis of earliest Wasatch-

ian age (�55 Ma; Sand Coulee beds, Clark Fork Basin

[17]). Its virtual reconstruction provides unprecedented

access to both metric parameters and fine anatomy of

the earliest artiodactyl endocast. This picture is assessed

in a broad comparative context by reconstructing endo-

casts of Early and Middle Eocene representatives of

five dichobunoid families (Diacodexeidae, Dichobunidae,

Homacodontidae, Helohyidae and Cebochoeridae),

and of 10 other taxa representing basal members of

most Palaeogene artiodactyl families (Agriochoeridae,

Mericoidodontidae, Protoceratidae, Choeropotamidae,

Cainotheriidae, Entelodontidae, Leptomerycidae and

Hypertragulidae), comprising putative stem taxa to

each crown group of terrestrial artiodactyl subclades

[18–20]. We therefore document for the first time

the pattern and diversity of early artiodactyl brain

volume and external morphology through an almost

exhaustive sampling at the family level. We aim to illus-

trate the structure of the ancestral artiodactyl brain and

to identify the first steps of artiodactyl brain evolution,

in terms of both volume increase and neocortical external

surface complexity. Additionally, this approach gives us

the opportunity to evaluate differences in the brain of

early artiodactyls compared with coeval perissodactyl

ungulates. The Diacodexis specimens described here are

stored in the American Museum of Natural History in

New York, USA (AMNH).
2. RESULTS AND DISCUSSION
(a) The oldest artiodactyl endocast

The specimen we investigated (AMNH VP 16141) con-

sists of a nearly complete cranium from the earliest

Wasatchian (�55 Ma; Sand Coulee beds, Willwood

Formation, Clark Fork Basin, Wyoming [17]), referred

to D. ilicis [9]. A detailed description of the basicranium

of this specimen was previously published by Coombs &

Coombs [21]. The cranium is crushed dorsoventrally
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and its occipital region is ventrally shifted. This implies

that volume estimates of the braincase are drastically

underestimated. An isolated natural endocast (AMNH

FM 143933) from younger deposits of the same area

(�50 Ma; Lost Cabin Member, Wyoming [22]) is here

tentatively reported to the genus Diacodexis based on

compatible measurements and shared morphological

characters [23]. Proposed minimal volume estimations

are therefore based on the two available specimens.

Dynamic three-dimensional reconstructions of the two

endocasts of Diacodexis, as well as dental measurements

and justification for specific and generic attribution of

the specimens (figure S1 and table S1) are provided in

the electronic supplementary material. Complete full-res-

olution raw datasets are archived and available upon

request by the different institutions where the specimens

are curated. Phylogenetic relationships of Eocene artio-

dactyls remain a current topic of investigation. However,

recent studies show that stem taxa to extant artiodactyl

groups are found in the paraphyletic assemblage of dicho-

bunoid artiodactyls [18,19,24]. Among them, Diacodexis

appears either as the first offshoot at the base of the artio-

dactyl clade [18,25] or more highly nested in the

Artiodactyla tree and closely related to cetaceans

[19,26]. Accordingly, while being the oldest artiodactyl

brain known so far, it might not represent the basalmost

artiodactyl morphology.

Our reconstruction of D. ilicis endocast reveals a very

simple brain pattern with huge olfactory bulbs located

between the orbits and covering the whole interorbital

distance (figure 1). The estimated volume of the olfactory

bulbs represents 8.65 per cent of the overall brain volume

of the D. ilicis deformed cranium and 6.80 per cent when

overall brain minimal volume estimations are considered.

Within Artiodactyla, D. ilicis has among the largest olfac-

tory bulb volume expressed as a percentage of the total

braincase volume—bulb volume of Middle Eocene artio-

dactyl taxa ranges between 3.1 (Oxacron) and 7.6%

(Dichobune; see the electronic supplementary material,
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Figure 2. Labelled endocasts of the dichobunoid artiodactyls (a,c) D. ilicis (AMNH VP 16141) and (b,d) Homacodon vagans
(USNM 482369) in the (a,b) dorsal, (c) ventral and (d) lateral view (scale bar, 5 mm). Abbreviations: bs, brain stem; fp, fissura
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Natural History, Smithsonian Institution, Washington.
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table S3). The bulbs are only separated from the cerebral

hemispheres by a short circular fissure and are not pedun-

culate (figure 2). The presence of large olfactory bulbs is

congruent with the huge development of the pyriform lobe

(‘olfactory cortex’) of the cerebrum and the presence of

large olfactory tubercles (which receive inputs from the

olfactory bulbs). Large rounded casts of olfactory tubercles

have been described in oreodontids [23] and are also

observed in other dichobunoids of this study for which

this character can be assessed (Homacodon, Cebochoerus

and Dichobune), as well as in the early cainotheriid

Robiacina and basal Suinamorpha (Entelodon).

Dorsal exposure of the olfactory peduncles in

Diacodexis was hypothesized in the previous composite

reconstruction of D. pakistanensis [10]. Nonetheless, the

virtual reconstruction of D. ilicis shows instead that

the anterior development of the neocortex was sufficiently
Proc. R. Soc. B (2012)
expansive to cover the olfactory peduncles in this earliest

Eocene Diacodexis. Indeed, D. ilicis presents a small

anterior neocortical lobe delimited posteriorly by a clear

sylvian fossa and by a dorsal inflection of the neocortex.

Noteworthy and in contrast to D. ilicis, the neocortex

does not abut the olfactory bulbs in a number of

Palaeogene artiodactyls (North American Agriochoerus

and Leptauchenia; European Cebochoerus and Tapirulus).

This suggests that the earliest Diacodexis brain might be

already advanced in terms of differentiation and develop-

ment of the anterior part of the neocortex, especially

when compared with some stratigraphically younger

artiodactyls. A key feature to assess the degree of neocorti-

calization in mammals is the position of the rhinal fissure

that marks the boundary between the neocortex (isocortex)

and the paleocortex (‘olfactory cortex’). This feature could

not be determined in the D. pakistanensis reconstruction
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Figure 3. Morphology and temporal distribution of early artiodactyl endocasts. Endocasts are figured in dorsal view, anterior
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[10], but both Diacodexis specimens of this study, as well as

other dichobunoids investigated here (such as Homacodon

vagans, illustrated in figure 2b,d) show a clear and continu-

ous rhinal fissure that delineates a short but inflated cap of

the neocortex. Underlining the early evolutionary stage of

the neocortex of Early Eocene artiodactyls, the lateral

extent of the neocortex in Diacodexis, Homacodon and

Helohyus does not completely cover the dorsal part of the

hemisphere (figures 2 and 3). The neocortex of D. ilicis

bears two deep neocortical sulci anteriorly fused to form

an almond-shaped gyrus (figure 2a). In early artiodactyls,

the latter is interpreted as the gyrus 3 and is formed medi-

ally by the lateral sulcus, and ventrally by the suprasylvian

sulcus [11,12]. Contrary to the composite reconstruction

of the somewhat younger D. pakistanensis [10], none of

the Diacodexis endocasts in this study shows a coronal

sulcus, and the lateral and suprasylvian sulci join at their

anterior tip. While the midbrain is deep to other structures

in living artiodactyls, the caudal part of the cerebrum of D.

ilicis did not abut the cerebellum, and a portion of the mid-

brain is dorsally exposed. The colliculi are not visible.

Midbrain exposure is observed in all dichobunoids of this

study, and in most other early artiodactyls (as illustrated

here in figure 3). By contrast, and owing to the posterior

extension of the neocortex, the midbrain is completely cov-

ered in earliest Ruminantia, such as Leptomeryx and
Proc. R. Soc. B (2012)
Hypertragulus, as well as in Entelodon, one of the earliest

Suinamorpha, and the stem camelid Protylopus.

Most of the cerebellum of AMNH VP 16141 is not

accessible, owing to postmortem deformation. Both

Diacodexis specimens show a broad and rounded para-

flocculus (lobe of the cerebellar hemisphere associated

with coordination, balance and vestibular sensory acqui-

sition [27,28]), a plesiomorphic character within therian

mammals [29]. Diacodexis shows the biggest parafloccu-

lar lobes among our sample, including Early Eocene

Homacodon (figure 2c,d) and Helohyus. On the ventral

aspect of the endocast, the hypophyseal fossa of

Diacodexis is an ovoid deep depression, observed in all

early artiodactyls of this study, except Leptotragulus,

Agriochoerus and Leptauchenia. The nerve pattern of

Diacodexis is similar to that previously described by

Sigogneau-Russell & Russell [10] and to that described

so far for other early artiodactyls [11].
(b) Evolution of terrestrial artiodactyl neocortex

during Eocene times

The mammalian neocortex is the six-layered roof of the

cerebral hemispheres responsible for superior cognitive

functions such as sensory perception, spatial reasoning

and voluntary movement. As such, the neocortex is a
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major feature we focused on to assess brain evolution.

Given the lack of resolution at the base of the Artiodactyla

tree and the current instability of the phylogenetic pos-

ition of the basalmost artiodactyl taxa [19,25], the

evolution of terrestrial artiodactyl endocast features is

here described chronologically, faute de mieux.

The temporal arrangement of the endocast mor-

phology of basal members of terrestrial artiodactyl

families documented in this study shows that the

Early Eocene to early Middle Eocene taxa Diacodexis,

Homacodon and Helohyus share a very simple neocortical

pattern, with two coronal sulci forming the almond-

shaped gyrus (figure 3). This gyrus, already described

from natural endocasts of Middle and Late Eocene artio-

dactyls from Europe [11–13], is identified here in all

Eocene artiodactyl groups documented so far (figure 3).

By contrast, it is completely obliterated in modern artio-

dactyls, owing to a widely increased cortical complexity

(‘gyrification’). Throughout the last 200 Myr of mamma-

lian evolution, the neocortex has undergone marked

variations in size, shape and convolutional pattern

complexity from a lissencephalic ancestral condition

[30–32], and a convoluted neocortex evolved indepen-

dently several times in placentals [28,33]. Artiodactyla,

Perissodactyla and Carnivora brains are hypothesized to

derive from the same ancestral pattern of convolution

composed of two longitudinal dorsal fissures [28,34],

which is congruent with the hypothesis of close phyloge-

netic relationships between ungulates and Ferae within

Laurasiatheria [35,36]. However, the primary arrange-

ment of these two sulci differs by their orientation in

early representatives of the three groups [11,12]. Previous

hypotheses of an ancestral fissurization pattern of artio-

dactyls, consisting of two longitudinal sulci, were either

based on a more restricted fossil record [34], or on the

brain morphology of the smallest extant artiodactyls

(Hyemoschus) considered to retain the plesiomorphic con-

dition for the order [28]. However, our results show that

the almond-shaped gyrus is not only present in the ear-

liest artiodactyl but also in all putative basal artiodactyl

groups (figure 3), which indicates that it might instead

represent the ancestral fissurization pattern of the artio-

dactyl brain. This neocortical pattern differs from that of

the early diverging equid perissodactyl, Xenicohippus [37]

(figure 3) and those of other Palaeogene ungulate groups

[38], as well as from that of published early Carnivora

(e.g. Vulpavus [39]). This almond-shaped gyrus pattern

is so far unique to artiodactyls within Laurasiatheria.

Very interestingly, a similar almond-shaped pattern was

independently acquired in the macroscelid afrotherian

mammal Rhynchocyon cirnei [40], with a comparable

expansion of the neocortex. In other words, the endocast

of Early Eocene artiodactyls is seemingly showing a stage

of brain evolution equivalent to that of R. cirnei.

Other macroscelids are either lissencephalic (Elephantulus

and Petrodromus) or lacking a suprasylvian fissure

(Rhynchocyon petersi) [41]. The almond-shaped gyrus of

R. cirnei is thus interpreted here as a convergence.

For most Middle Eocene taxa, increase in the brain pat-

tern complexity is restricted to the addition of a third sulcus

to the pre-existing almond gyrus, recognized as the coronal

sulcus [11] (figure 3). From our sample, it seems that

this coronal sulcus, originally thought to join either the lat-

eral sulcus or the suprasylvia [12], is more likely to have
Proc. R. Soc. B (2012)
originated from the anterior junction between the two

pre-existing neocortical sulci. Dichobune (Dichobunidae),

Tapirulus (Choeropotamidae) and Cebochoerus (Cebo-

choeridae) show a reduced development of the coronal

sulcus. Eocene taxa show a lengthening of the coronal

sulcus and a concurrent development of the frontal

lobe. This is accompanied by a narrowing of the gyrus 3

(figure 3) and by a concomitant shift to a more parallel

arrangement of the sulci [11], except in basal Ruminantia,

as exemplified by Hypertragulus, which retain a wide gyrus 3

(figure 3). The earliest record of additional accessory neo-

cortical sulci occurs during the Middle Eocene in various

families: Dacrytheriidae (Dacrytherium) and Cainotherii-

dae (Robiacina) have a small additional postero-lateral

sulcus, referred to as ‘d-sulcus’ [11], whereas Oromeryci-

dae (Protylopus) have an additional longitudinal dorsal

sulcus [3] (figure 3). Dichobune (Dichobunidae) presents

both the d-sulcus and additional sulci within the gyrus

3. Variation in the presence of accessory sulci and in the

confluence of coronal, suprasylvian and lateral sulci has

been described in Middle to Late Eocene artiodactyls,

notably in oreodontids [23].

Dechaseaux [11] mentioned the apparent absence of

morphological changes in artiodactyl neocortical com-

plexity during the Late Eocene (�37–34 Ma). Our

study shows instead that neocortical complexity of artio-

dactyls remained simple and generalized among early

artiodactyls throughout the Early Eocene period (55.8–

48.6 Ma), before a more complicated pattern is docu-

mented in early Middle Eocene artiodactyls from

Europe and North America. Following the increase in

generic and familial diversity, the endocast of Middle and

Late Eocene artiodactyls shows a wider range of mor-

phologies. This first increase in Eocene artiodactyl

endocast diversity includes stem taxa or putative stem taxa

to modern artiodactyl groups: Choeropotamidae, proposed

as sister taxa to Hippopotamoidea [20], as represented by

Tapirulus; stem Camelidae [3,18,19], as represented by

the oromerycid Protylopus and the cainotheriid Robiacina;

and stem Ruminantia, as represented by Hypertragulus

[18]. These taxa show simple brain patterns compared

with their modern counterparts, but already display some-

what distinct neocortical fissurization. This implies that

the complex gyrification observed in modern artiodactyls

would have resulted from independent convergent proces-

ses of neocortical complexity increase. Notably, camelids,

which are the first offshoot within modern artiodactyls

according to molecular data [35,36], are also the first ones

to show a marked diverging neocortical fissurization

pattern, as observed with Protylopus.
(c) Evolution of brain size and

encephalization quotients

The estimated minimal endocranial volume of D. ilicis

equals 4.7 cm3. Depending on the equation (m1 length

[42]; skull length [43]; astragalus size [44]), body mass

estimates of D. ilicis range from 554 to 935 g. Details of

estimated body mass calculation, endocast volumes and

corresponding EQs are given in the electronic supple-

mentary material (tables S4–S6). The EQ of D. ilicis

ranges from 0.54 to 0.79 using Eisenberg’s [4] equation

and from 0.40 to 0.57 using Jerison’s [34] equation,

which falls within the range of EQs of small archaic
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ungulates (0.2–0.7 using Eisenberg’s equation). Inte-

gration of the new fossil data to pre-existing fossil EQ

datasets and to a combination of modern EQ dataset

sources confirms that EQs of extinct artiodactyls are

significantly smaller than those of modern artiodactyls

(figure 4). However, there is no significant increase in

brain size relative to body size between Palaeogene and

Neogene terrestrial artiodactyl assemblages. These results

contrast with the general idea of brain size increase among

ungulates between the Palaeogene and the Neogene periods

[34,45,46], and support more recent results based on a smal-

ler fossil sample, suggesting that there was no significant

increase in EQ throughout the Cenozoic in artiodactyls [7].

We demonstrated above that terrestrial artiodactyls

documented in this study showed little morphological

change in their brain pattern during the Early Eocene

interval and that a higher complexity is observed in artio-

dactyl endocasts from the Middle Eocene interval.

Generalized high complexity of artiodactyl neocortex is

achieved during the Oligocene epoch [3,12,47]. However,

significant increase in EQs probably occurred during the

Pliocene–Pleistocene. This indicates that increase in cor-

tical complexity preceded brain size increase in terrestrial

artiodactyls. However, the sample of Miocene endocasts

would need to be augmented. This observation contrasts

with cetaceans, the encephalization pulse of which

occurred during the Oligocene epoch [48]. Disunity in

brain evolutionary history of terrestrial and aquatic artio-

dactyl is not surprising given the great eco-physiological

discrepancies between both groups.
(d) Artiodactyla versus Perissodactyla

Ungulates have traditionally been treated together in EQ

studies [34,46]. However, the early history of artiodactyl

brain evolution, characterized by a relative stability and

simplicity throughout the Early and Middle Eocene,
Proc. R. Soc. B (2012)
contrasts greatly with what is observed in coeval early

diverging hippomorph and tapiromorph perissodactyls

from North America and Europe. One of the earliest

equid hippomorphs, Xenicohippus osborni (Early Eocene

of North America, �53 Ma), shows a slightly more com-

plex fissurization pattern than Diacodexis, with three

or four sulci [37] (figure 3), while another early equid,

Orohippus pumilus (�52–46 Ma, North America), already

displays a complex neocortical pattern with additional

sulci lateral to the sylvia (i.e. the presylvian sulcus and

the sulcus posticus) [49]. Endocasts of Middle Eocene

hippomorphs also present an increased complexity with

multiplication of sulci and gyri, as seen in Anchilophus

desmaresti (42–37.2 Ma, Europe [50]). The earliest rhi-

nocerotoid tapiromorph Hyrachyus modestus from North

America shows a complicated neocortical pattern with

three longitudinal sulci and a well-differentiated frontal

lobe by Early Eocene times [50]. These examples show

that Early and Middle Eocene perissodactyls presented

a more complex neocortical fissurization than their

artiodactyl counterparts. Perissodactyls radiated in a

wide array of body sizes from the earliest Eocene

onward, whereas artiodactyls remained small until the

Late Middle Eocene. Therefore, increased neocortical

complexity in perissodactyls and retention of low com-

plexity in artiodactyls could be related to body-size

allometry [28].
3. CONCLUSION
The direct study of mammalian brain evolution is limited

to the information provided by the fossil record: brain

size, brain shape and sulcal pattern. In this framework,

the endocast of D. ilicis provides detailed anatomical

information on the brain of earliest artiodactyls. Its com-

parison with a wide familial sample of Eocene artiodactyl

endocasts provides an unprecedented picture of early

artiodactyl brain morphology and reveals that they share

a common basic neocortical pattern, so far only observed

in Artiodactyla among ungulates. Based on our sample,

the neocortex of early artiodactyls retained this simple fis-

surization pattern during the Early Eocene, before a

growing cortical diversity is observed during the Middle

and Late Eocene, as generic diversity increases. Contrary

to the traditional scheme for ungulates, there is no signifi-

cant increase in brain mass over body mass until the latest

Neogene in artiodactyls. A comparison with their Eocene

perissodactyl counterparts demonstrates that artiodactyls

and perissodactyls have non-simultaneous complexity

increase pulses and that perissodactyls reached a high level

of cortical complexity earlier than the artiodactyls.
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