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We report the first genome sequences for six strains of Rhodanobacter species isolated from a variety of soil and subsurface envi-
ronments. Three of these strains are capable of complete denitrification and three others are not. However, all six strains contain
most of the genes required for the respiration of nitrate to gaseous nitrogen. The nondenitrifying members of the genus lack
only the gene for nitrate reduction, the first step in the full denitrification pathway. The data suggest that the environmental role
of bacteria from the genus Rhodanobacter should be reevaluated.

The genus Rhodanobacter contains 11 described species of
Gram-negative, non-spore-forming, rod-shaped bacteria be-

longing to the family Xanthomonadaceae and the class Gamma-
proteobacteria of the phylum Proteobacteria. Described species
have been isolated mainly under aerobic conditions from surficial
soils (1, 4, 5, 9, 12, 15, 16). Denitrification has not been considered
a property of this genus. Recently, two strains of a new species,
Rhodanobacter denitrificans, were isolated from a contaminated
terrestrial subsurface environment and shown to denitrify (7, 13).
Furthermore, nitrate-reducing isolates were recently recovered
from sewage sludge (17), and we and others determined that Rho-
danobacter thiooxydans is capable of denitrification (13, 14). In
some acidic and nitrate-rich environments, Rhodanobacter species
dominate bacterial communities (8, 14).

To explore the genetic basis of phenotypes leading to bacterial
community dominance in such environments, genome sequences
were acquired for three denitrifying strains (R. denitrificans 2APBS1
and 116-2 and R. thiooxydans) and three strains incapable of denitri-
fication (Rhodanobacter fulvus, Rhodanobacter spathiphylli, and Rho-
danobacter sp. 115). A complete R. denitrificans 2APBS1T genome
sequence was generated using paired-end Illumina and Roche 454
mate-pair sequencing and manual finishing steps, essentially as de-
scribed previously (3, 6). Four draft genomes (R. denitrificans 116-2,
R. thiooxydans, R. fulvus, and R. spathiphylli) were generated by de
novo assembly of paired-end Illumina sequence data (�5.7 to 9.5
million paired-end reads/genome, yielding �1.1 to 1.9 Gb of total
output/genome) (CLC Genomics Workbench 5.0; CLC bio A/S,
Denmark). DNA from each strain was prepared for sequencing using
the Nextera library preparation kit (Epicentre, Madison, WI). DNA
from Rhodanobacter sp. 115 was prepared for sequencing using the
Ion Xpress fragment library kit (Life Technologies, Grand Island,
NY) and sequenced using a Personal Genome Machine (Ion Torrent,
San Francisco, CA), yielding approximately 1.4 Mb of reads (�138
Mb of total output). For Rhodanobacter sp. 115, genome assembly
was performed as described previously (10) using CG-Pipeline mod-
ules (11), yielding 453 contigs and 4.2 Mb of genomic sequence data.

The complete genome of R. denitrificans 2APBS1 is 4.23 Mb. Anno-
tation was performed in RAST (2) and in the CG-Pipeline before
being submitted to NCBI.

Denitrification is a strain-specific trait, and the high sequence di-
vergence observed in genetic markers for denitrification challenges
our ability to understand the fundamental ecological principles and
environmental parameters controlling nitrate attenuation in terres-
trial environments (7). Thus, whole-genome sequencing of closely
related denitrifying and nondenitrifying taxa is essential to improve
detection of denitrifying bacteria in the environment and to develop
hypotheses regarding the distribution and acquisition of denitrifica-
tion genes. Comparative analysis of the six genomes revealed that all
strains contained genes coding for complete or nearly complete deni-
trification pathways. The three nondenitrifying lineages lacked only
genes for nitrate reduction. These organisms may still be capable of
denitrification, however. Nitrate to nitrite reduction is a widespread
physiological capability in the bacterial domain, and in complex en-
vironments, such as soil, nitrite will be available for organisms capa-
ble of nitrite reduction to gaseous nitrogen end products. These data
indicate that the environmental role of bacteria from the genus Rho-
danobacter should be reevaluated.

Nucleotide sequence accession numbers. The Rhodanobacter
genome assemblies and their annotations were deposited in GenBank
under the accession numbers AGIL00000000 (DSM 23569),
AJXS00000000 (Rhodanobacter strain 115), AJXT00000000
(DSM 17631), AJXU00000000 (DSM 18449), AJXV00000000
(DSM 24678), and AJXW00000000 (DSM 18863).
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