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The role of the two-component system (TCS) CBO0366/CBO0365 in the cold shock response and growth of the mesophilic Clos-
tridium botulinum ATCC 3502 at 15°C was demonstrated by induced expression of the TCS genes upon cold shock and impaired
growth of the TCS mutants at 15°C.

High and low temperatures are used to control the growth and
toxigenesis of harmful bacteria in foods. While high temper-

atures are prone to kill the bacteria, low temperatures often retard
bacterial growth without killing them. Bacteria have developed
strategies to sense and adapt to low temperatures. While the cel-
lular mechanisms explaining cold shock tolerance and growth of
the model organisms Escherichia coli and Bacillus subtilis at the
lower end of their growth temperature ranges have been widely
explored (1–6, 8–11, 16, 17, 26, 31, 32, 38), there are scarce reports
on such mechanisms for the notorious food pathogen Clostridium
botulinum (36).

Two-component signal transduction systems are central to
bacterial sensing and adaptation to environmental changes (25,
27, 30). The two-component system (TCS) histidine kinase senses
environmental stimuli with a sensor domain in its N terminus and
sends the signal, through autophosphorylation of a histidine res-
idue in its C-terminal transmitter domain, to the TCS response
regulator. An aspartate residue in the receiver domain of the re-
sponse regulator further transmits the phosphoryl group to the
C-terminal output domain of the response regulator. Response
regulators possess DNA-binding activity, ultimately resulting in a
specific response in target gene expression. TCSs in bacteria are
differentially specialized to respond to a wide variety of chemical
and physical stimuli, including pH, osmolarity, oxidative stress,
and temperature. TCSs associated with a response to low temper-
ature in other bacteria include the DesK/DesR in B. subtilis (1–3,

6), CheA/CheY in Yersinia pseudotuberculosis (31), CorS/CorR in
Pseudomonas syringae (37), and Fp1516/Fp1517 in Flavobacterium
psychrophilum (23). In addition, the LisK/LisR, Lmo1173/
Lmo1172, and Lmo1061/Lmo1060 systems were linked to the
cold shock response but not to long-term growth of Listeria mono-
cytogenes at low temperature (12). The role(s) of TCSs in the cold
shock response or adaptation of C. botulinum to low growth tem-
peratures is unknown. Here we show that the TCS CBO0366/
CBO0365 (39) is involved with the cold shock response and
growth of the model strain C. botulinum ATCC 3502 at 15°C, a
temperature close to this strain’s minimum growth temperature
(24).

To study the involvement of the TCS CBO0366/CBO0365 in
the cold shock response, the relative mRNA levels of cbo0365 and
cbo0366 in ATCC 3502 cultures (Table 1) were measured via
quantitative reverse transcription-PCR(qRT-PCR) (31, 35) im-
mediately before (T0) and 1 min, 30 min, 2 h, and 5 h after a
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TABLE 1 Bacterial strains and plasmids

Strain or plasmid Relevant properties Sourcea (reference)

Bacterial strains
C. botulinum ATCC 3502 Wild type ATCC (34)
C. botulinum ATCC 3502 cbo0365::intron-erm Insertion deletion in cbo0365 This study
C. botulinum ATCC 3502 cbo0366::intron-erm Insertion deletion in cbo0366 This study
E. coli TOP10 Electrocompetence Invitrogen, Paisley, UK
E. coli CA434 Conjugation donor UNOTT (33)

Plasmids
pMTL82153 pBP1 g-positive replicon, catP, ColE1 g-negative replicon, tra, fdx promoter UNOTT (22)
pMTL82153-cbo0366 pMTL82153 with cbo0366 under transcriptional control of fdx promoter This study
pMTL007 ClosTron plasmid, catP, intron with ermB RAM UNOTT (21)
pMTL007-cbo0365-48s Derived from pMTL007 by retargeting to cbo0365 This study
pMTL007-cbo0366-267s Derived from pMTL007 by retargeting to cbo0366 This study

a ATCC, American Type Culture Collection; UNOTT, University of Nottingham, United Kingdom.
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temperature downshift from 37°C to 15°C with the primers pre-
sented in Table 2. A non-cold-shocked culture served as a control
(Fig. 1A). In the non-cold-shocked culture at 37°C, the relative
mRNA levels of cbo0365 and cbo0366 were significantly down-
regulated (expression ratios, 0.2 to 0.02; P � 0.05) in late-log and
stationary growth phases in relation to the early logarithmic phase
(T0) (Fig. 1B). In the cold-shocked culture, however, the relative
mRNA levels of cbo0365 and cbo0366 were 1.2- to 3.3-fold induced
(P � 0.05) at all time points in relation to T0 (Fig. 1C), suggesting
that the gene upregulation was specifically linked to the cold shock
response instead of being a stationary-phase event. When cali-
brated to the non-cold-shocked cultures, up to 40- and 67-fold
higher relative cbo0365 and cbo0366 transcript levels, respectively,
were measured in the cold-shocked culture (Fig. 1D). These re-
sults suggest that a cold shock response and the immediate accli-
mation of ATCC 3502 to low temperature, as depicted by the
growth lag of the cold-shocked culture (Fig. 1A), involve induced
expression of the TCS genes cbo0365 and cbo0366. While consti-
tutive expression and delicately balanced control through a phos-
phorelay system have been reported for most TCSs under normal
growth conditions (18, 19, 24, 30), induced TCS expression under
cold stress conditions has been reported for B. subtilis and the
psychrotrophic Y. pseudotuberculosis (4, 31).

The role of induced cbo0366 expression in the growth of ATCC
3502 at 15°C was further confirmed by introducing pMTL82153-
cbo0366, containing the coding sequence of cbo0366 under tran-
scriptional control of the fdx promoter (22), into ATCC 3502 and
comparing its ability to grow at 15°C to that of a control strain
carrying pMTL82153. The strain harboring pMTL82153-cbo0366
showed enhanced growth over the strain with the empty vector
(Fig. 2), suggesting that fdx-mediated overexpression of cbo0366
may have assisted ATCC 3502 to grow at cold temperature.

To study the role of intact CBO0366/CBO0365 in adapted
growth of ATCC 3502 at low growth temperatures, we con-
structed cbo0365 or cbo0366 single insertional knockout mutants
(the strains and plasmids used are presented in Table 1, and the
primers are listed in Table 2) as described previously (13, 20–22,
35, 36) and compared the abilities of these mutants to grow at

FIG 1 Relative expression levels of cbo0365 and cbo0366 in ATCC 3502 in-
duced at 15°C. (A) ATCC 3502 was grown at 37°C, exposed to a temperature
downshift (cold shock [gray curve]) at 15°C at an optical density at 600 nm
(OD600) of 1.5, and sampled for qRT-PCR analysis before cold shock (T0) and
1 min, 30 min, 2 h, and 5 h after cold shock. A non-cold-shocked culture (black
curve) served as a control. (B) Relative expression levels of cbo0365 (light gray)
and cbo0366 (dark gray) in non-cold-shocked cultures calibrated at T0. (C)
Relative expression levels of cbo0365 (light gray) and cbo0366 (dark gray) in
cold-shocked cultures calibrated at T0. (D) Relative expression levels of
cbo0365 (light gray) and cbo0366 (dark gray) in cold-shocked cultures cali-
brated to non-cold-shocked cultures at the corresponding time points. The
normalization reference was 16S rrn. *, P � 0.05 (one-way analysis of vari-
ance). Error bars indicate standard deviations of three replicates.

FIG 2 Overexpression of cbo0366 improves growth of ATCC 3502 at cold
temperatures. ATCC 3502 harboring pMTL82153-cbo0366 (white triangles)
or empty pMTL82153 (white diamonds) was grown in tryptose-peptone-glu-
cose-yeast extract (TPGY) medium at 15°C. Error bars indicate standard de-
viations of three replicates.
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37°C, 20°C, and 15°C to the wild-type ATCC 3502 as described
previously (24, 35) with 24-hour, 3-day, and 11-day follow-up
periods. Both cbo0365 and cbo0366 knockout mutants exhibited
markedly impaired growth at 15°C and 20°C in relation to the
wild-type culture. At 37°C, all strains showed similar growth
curves (Fig. 3). The results suggest that a functional CBO0366/
CBO0365 is required for efficient growth of ATCC 3502 at low
temperature but not at its optimum temperature. Our previous
report on the role of the cold shock protein-encoding genes,
showing a cold-sensitive phenotype for a cspB mutant but not for
a cspA mutant (36), verified that the mutation procedure itself is
not responsible for the cold-sensitive phenotype.

As with many cold-responsive TCSs reported (7, 12, 23, 31),
the stimulus sensed by the CBO0366 kinase remains to be charac-
terized. The cold-responsive DesK of B. subtilis and Hik33 of Syn-
echocystis sp. have been shown to respond to cell membrane flu-
idity and thickness (1–3, 6, 14, 28) and to control desaturation of
the fatty acid chains in cell membrane phospholipids, maintaining
elasticity of cell membranes in the cold (2, 28). Temperature-
dependent alteration of the cell membrane fatty acid composition
has been reported for the psychrotrophic group II C. botulinum
(15), but its regulation is unknown.

While the results demonstrate that the cold shock response and
acclimation of ATCC 3502 at low temperature involves induced
expression of the CBO0366/CBO0365 genes and that the
CBO0366/CBO0365 system is required for efficient growth at
15°C, future work is required to unravel the function of this TCS
and the role of its downstream events in the cold tolerance of
ATCC 3502.
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