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Both Bacillus licheniformis strains 10-1-A and 5-2-D are efficient producers of 2,3-butanediol. Here we present 4.3-Mb and
4.2-Mb assemblies of their genomes. The key genes for the regulation and metabolism of 2,3-butanediol production were anno-
tated, which may provide further insights into the molecular mechanism for the production of 2,3-butanediol with high yield
and productivity.

Microbial production of 2,3-butanediol (2,3-BD) has a long
history, and various bacteria have been used to produce

2,3-BD (2, 3, 5, 6, 8, 9, 16). 2,3-BD is a crucial platform com-
pound, which could be used to produce valuable derivatives such
as methyl ethyl ketone and 1,3-butadiene (2, 3). However, the
2,3-BD yield and productivity of generally recognized as safe
(GRAS) strains, such as Bacillus species, were very low (3). It was
reported previously that Bacillus licheniformis could be used for
the production of 2,3-BD from glucose, xylose, and other sugars
(9, 10, 11). B. licheniformis strains can also be used in industry for
the manufacturing of enzymes, antibiotics, and chemicals and
have been identified as being important in nutrient cycling in the
environment (12). The B. licheniformis strain 10-1-A (CGMCC
5461) strain that was isolated from soil samples is a potential in-
dustrial candidate for 2,3-BD production, which could produce
2,3-BD with high productivity (�3.8 g liter�1 h�1) and high yield
(�96%) from glucose at a temperature above 50°C (unpublished
results). B. licheniformis strain 5-2-D (CCTCC M 2011371) was
also isolated from soil samples by our group, and it could also
produce 2,3-BD from glucose with a high yield (�96%); however,
the productivity was lower than that of strain 10-1-A (unpub-
lished results).

Here, we present high-quality draft genome sequences of
strains 10-1-A and 5-2-D, which were obtained using the Illumina
HiSeq 2000 system. A total of 16,212,242 filtered reads for 10-1-A
were assembled into 31 contigs and 15,307,178 filtered reads for
5-2-D were assembled into 45 contigs using VELVET (15). The
genome annotations were performed by the RAST server (1). The
functional descriptions were determined using the COG database
(14). The genes encoding tRNAs and rRNAs were identified by
tRNAscan-SE (7) and RNAmmer (4), respectively.

The draft genome sequences of strains 10-1-A and 5-2-D
consist of 4,317,010 and 4,161,078 bases with GC contents of
45.9% and 46.1%, respectively. There were 33 and 35 predicted
tRNAs in strains 10-1-A and 5-2-D, respectively. A total of
4,650 protein-coding sequences (CDSs) for strain 10-1-A were
identified with an average length of 799 bp; a total of 4,452
CDSs for strain 5-2-D were also identified with an average
length of 805 bp. A total of 501 and 493 subsystems were de-
termined using the RAST server for strains 10-1-A and 5-2-D,
respectively. Each sequence contains two complete operons
and key coding genes for 2,3-BD metabolism, which could pro-
vide further insights into the production of 2,3-BD. There are

607 and 611 CDSs for the utilization of carbohydrates in strains
10-1-A and 5-2-D, respectively, indicating that strains 10-1-A
and 5-2-D may have a wide substrate spectrum. Each genome
sequence contains a series of membrane transport systems, in-
cluding 73 CDSs involved in ATP-binding cassette (ABC)
transporters and 25 CDSs involved in phosphotransferase sys-
tems. They may play important roles in the production of
2,3-BD with high productivity.

Nucleotide sequence accession numbers. The whole-genome
shotgun projects have been deposited at DDBJ/EMBL/GenBank
under the accession numbers AJLV00000000 and AJLW00000000
for strains 10-1-A and 5-2-D, respectively. The versions de-
scribed in this paper are the first versions, AJLV01000000 and
AJLW01000000.
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