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The Rieske nonheme mononuclear iron oxygenase MdpJ of the fuel oxygenate-degrading bacterial strain Aquincola tertiaricar-
bonis L108 has been described to attack short-chain tertiary alcohols via hydroxylation and desaturation reactions. Here, we
demonstrate that also short-chain secondary alcohols can be transformed by MdpJ. Wild-type cells of strain L108 converted
2-propanol and 2-butanol to 1,2-propanediol and 3-buten-2-ol, respectively, whereas an mdpJ knockout mutant did not show
such activity. In addition, wild-type cells converted 3-methyl-2-butanol and 3-pentanol to the corresponding desaturation prod-
ucts 3-methyl-3-buten-2-ol and 1-penten-3-ol, respectively. The enzymatic hydroxylation of 2-propanol resulted in an enantio-
meric excess of about 70% for the (R)-enantiomer, indicating that this reaction was favored. Likewise, desaturation of (R)-2-bu-
tanol to 3-buten-2-ol was about 2.3-fold faster than conversion of the (S)-enantiomer. The biotechnological potential of MdpJ
for the synthesis of enantiopure short-chain alcohols and diols as building block chemicals is discussed.

Enzymes catalyzing the hydroxylation and desaturation of ali-
phatic tertiary alcohols seem to be rare and have not been well

characterized thus far. In previous studies of the biodegradation of
the fuel oxygenates methyl tert-butyl ether (MTBE) and tert-amyl
methyl ether (TAME), at least one tertiary alcohol-hydroxylating
enzymatic reaction has been proposed for the transformation of
the central ether metabolites tert-butyl and tert-amyl alcohol
(TBA and TAA, respectively) (9, 38). Though this reaction can be
expected in several bacterial strains known to completely degrade
MTBE and TAME under aerobic conditions (11, 13, 21, 27, 37),
only in the fuel oxygenate-degrading bacterial strain Aquincola
tertiaricarbonis L108 has the identity of the tertiary alcohol-attack-
ing enzyme recently been revealed by gene knockout experiments
(35). In this bacterium, the oxygenase MdpJ catalyzes not only the
hydroxylation of TBA to 2-methylpropane-1,2-diol (MPD) but
also the desaturation of TAA to 2-methyl-3-buten-2-ol (35).

MdpJ and its corresponding reductase, MdpK, have been de-
scribed for the first time by Hristova and coworkers as MTBE-
induced proteins and subunits of the postulated TBA-hydroxylat-
ing enzyme in Methylibium petroleiphilum PM1 (14). MdpJK
belongs to the family of Rieske nonheme iron aromatic ring-hy-
droxylating oxygenases (RHO), such as the well-characterized
phthalate and naphthalene dioxygenases (5, 20, 28, 36). These are
multicomponent enzymes which use reduced pyridine nucleotide
as the electron donor. The electrons are transported via a flavin
cofactor of the reductase subunit to a [2Fe-2S] iron-sulfur cluster
located on the same protein component as in MdpK (32) or on a
separate ferredoxin subunit. The electrons are further passed to a
[2Fe-2S] Rieske cluster and a mononuclear iron center of the ox-
ygenase subunit (23, 40). The multifunctionality of MdpJ to cat-
alyze hydroxylation as well as desaturation reactions (35) has like-
wise been found for other RHO enzymes, e.g., naphthalene
dioxygenase catalyzes mono- and dihydroxylations as well as de-
saturations (22). Practically all known RHO enzymes, however,
are described to exclusively attack aromatic compounds (19).
Thus, the use of aliphatic substrates underlines the uniqueness of
MdpJ among the RHO family.

The natural substrates of MdpJ-catalyzed hydroxylations and
desaturations might be tertiary alcohols, e.g., the fuel oxygenate
intermediates TBA and TAA. Accordingly, it has already been
shown that MdpJ also catalyzes the desaturation of the tertiary
alcohol 3-methyl-3-pentanol to 3-methyl-1-penten-3-ol (35). Here,
we demonstrate that MdpJ can also attack the secondary alcohols
2-propanol, 2-butanol, 3-methyl-2-butanol, and 3-pentanol. In 1,2-
propanediol formation from 2-propanol via hydroxylation and
2-butanol desaturation to 3-buten-2-ol, a preference for the (R)-
enantiomer was found, underpinning the potential of MdpJ for the
synthesis of enantiopure short-chain diols and unsaturated alcohols
from secondary alcoholic precursors.

MATERIALS AND METHODS
Chemicals. (S)-(�)-2-Phenylbutyryl chloride was synthesized as de-
scribed by Hammarström and Hamberg (12) using (S)-(�)-2-phenylbu-
tyric acid (99% pure; Sigma-Aldrich Chemie GmbH, Steinheim, Ger-
many) and thionyl chloride (99% pure; Merck Schuchardt, Hohenbrunn,
Germany). Suppliers and purities of other chemicals used in this study are
listed in the supplemental material.

Bacterial strains and growth media. Aquincola tertiaricarbonis L108,
isolated from an MTBE-contaminated aquifer (Leuna, Germany) (21,
31), was cultivated in liquid mineral salt medium (MSM; see the supple-
mental material) containing MTBE at a concentration of 0.3 g liter�1. The
previously generated knockout mutant strain A. tertiaricarbonis L108
(�mdpJ) K24 (35) was cultivated on 2-methylpropane-1,2-diol (MPD) at
0.5 g liter�1 in MSM supplemented with kanamycin (50 mg liter�1).
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Resting-cell experiments. Cultures were incubated at 30°C on rotary
shakers. Bacterial cells were pregrown on MPD (0.5 g liter�1) and then
incubated on TBA (0.5 g liter�1) overnight. Afterwards, cells were har-
vested by centrifugation at 13,000 � g and 4°C for 10 min. After being
washed twice with MSM, cells were immediately used, and biomass was
adjusted to values of 1.4 g (dry weight) per liter by dilution with MSM for
the 2-butanol experiments and 2.2 g per liter when cells were incubated
with 2-propanol, 3-methyl-2-butanol, and 3-pentanol. During the exper-
iments, bacteria were incubated at 30°C in 25 ml MSM in glass serum
bottles, sealed gas tight with butyl rubber stoppers. Liquid and gas samples
were taken as described before (33) by puncturing the butyl rubber stop-
pers with syringes equipped with 0.6- by 30-mm Luer Lock needles. For
chiral analysis of 1,2-propanediol, the complete culture liquid was har-
vested by centrifugation at 13,000 � g and 4°C for 10 min in order to
obtain a clear supernatant. The shown data represent mean values and
standard deviations of results from four replicate experiments.

Chiral analysis of 1,2-propanediol. Methods of Powers et al. for chiral
analysis of short-chain diols and hydroxy carboxylic acids (30) and Jenske
and Vetter for chiral analysis of hydroxy fatty acids (15) were modified for
determining the ratios of different 1,2-propanediol enantiomers formed
in bacterial cultures. Samples from resting-cell experiments (200 ml) were
saturated with NaCl and extracted two times with 100 ml diethyl ether.
The diethyl ether phase was dried with Na2SO4 and evaporated com-
pletely. Standards of the 1,2-propanediol racemate and (S)-enantiomer
were applied directly (3 �l). Pyridine (400 �l) and (S)-(�)-2-phenylbu-
tyryl chloride (100 �l) were added for derivatization. After 2 h of incuba-
tion on a slow shaker at room temperature, H2O (5 ml) and one spatula tip
of K2CO3 were added. Then, the solutions were extracted with MTBE (5
ml) via shaking for 1 h at room temperature. The MTBE phase was dried
with Na2SO4 and evaporated to 0.5 ml. Analysis was performed using gas
chromatography (GC) (model 7890A chromatograph; Agilent) coupled
to mass spectrometry (MS) (mass selective detector [MSD] model 5975C;
Agilent) on an RTX-5Sil MS column (30 m, 250 �m, 0.25 �m; Restek)
with an Integra-Guard column (5 m; Restek). GC conditions were as
follows: the carrier gas was helium, constant flow was nominally 0.8 ml
min�1, the injector temperature was 230°C, the split injection ratio was
20:1, programmed oven temperatures were 70°C for 1 min, with an in-
crease of 1°C min�1 to 76°C and then 6°C min�1 to 350°C, after which the
temperature was held for 1 min, and the MSD transfer line temperature
was 250°C. MSD conditions were as follows: full-scan mode (m/z 40 to
600) was used, the ion source temperature was 230°C, and the quadrupole
temperature was 150°C. Compounds were identified by comparison with
calibrated retention times and mass spectra of authentic standards.

Other analytics. Volatile compounds (TBA, isobutene, 2-propanol,
acetone, 2-butanol, 3-buten-2-ol, 2-butanone, 3-buten-2-one, 3-methyl-

2-butanol, 3-methyl-2-butanone, 3-pentanol) were quantified by head-
space GC using flame ionization detection (FID) (33). Compounds were
assigned according to retention times of pure GC standards. Additionally,
ketonic metabolites of 2-butanol as well as metabolites of 3-methyl-2-
butanol and 3-pentanol were identified by GC-MS analysis (see Fig. S3 to
S6 in the supplemental material). Quantitative analysis of 1,2-propane-
diol was performed using high-performance liquid chromatography
(HPLC) with refractive index detection (RID) as described elsewhere
(24, 25).

RESULTS
Whole-cell assay for analyzing MdpJ substrate specificity. For
studying the substrate and catalysis specificity of MdpJ, a test sys-
tem employing the isolated enzyme is recommended. However,
purification of the active enzyme from cells of strain L108 or after
heterologous expression in Escherichia coli was not successful (see
the supplemental material). Therefore, we developed a whole-cell
assay comparing the substrate usage and product formation of
wild-type strain L108 with that of the mdpJ knockout strain L108
(�mdpJ) K24 (35). MPD-grown cells of both strains were incu-
bated in the presence of TBA for 10 to 16 h. This procedure was
sufficient to induce MdpJ and MdpK in the wild-type strain (see
Fig. S1 in the supplemental material); however, the mutant strain
K24 did not synthesize these enzymes due to the insertion muta-
tion in the mdpJ gene. In line with this, subsequent resting-cell
experiments revealed that only the wild-type cells were able to
degrade TBA (see Fig. S2 in the supplemental material). However,
the formation of small amounts of the alkene isobutene from TBA
was observed with both strains. This dehydration activity is a side
reaction of MTBE metabolism in strains L108 and PM1 and has
previously been ascribed to MdpJ (33). The dehydration activity
of the mutant strain clearly shows now that an enzyme other than
MdpJ must be involved. Likely, the same dehydratase that has
recently been considered for the conversion of the tertiary al-
cohols TAA and 2-methyl-3-buten-2-ol to isoamylene and iso-
prene, respectively (35), forms isobutene from TBA. Neverthe-
less, knockout cells formed only less than 30% of the alkene
amount of wild-type cells, indicating a higher dehydration ac-
tivity during complete TBA metabolization.

Hydroxylation of 2-propanol to 1,2-propanediol. During the
whole-cell assay, wild-type cells of strain L108 formed 1,2-pro-
panediol from the secondary alcohol 2-propanol (Fig. 1), by anal-

FIG 1 Degradation of 2-propanol and accumulation of metabolites in resting-cell experiments of A. tertiaricarbonis wild-type strain L108 (A) and mdpJ
knockout strain L108 (�mdpJ) K24 (B). In the latter case, 1,2-propanediol was below the detection limit (10 �M) throughout the experiment. The sum of
2-propanol and metabolites represents the percentage of all analyzed 2-propanol-derived compounds (2-propanol, acetone, and 1,2-propanediol) relative to the
initial substrate concentration.
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ogy with the hydroxylation of TBA to MPD. In addition, the de-
hydrogenation product acetone accumulated. In contrast, the
mdpJ knockout cells converted 2-propanol exclusively to acetone,
providing evidence that MdpJ catalyzes the hydroxylation of
2-propanol in the wild-type strain L108. Acetone formation, on
the other hand, is probably caused by an unspecific secondary
alcohol dehydrogenase expressed in both strains under the exper-
imental conditions. Formation of 1,2-propanediol was about 7
times slower than TBA conversion (1.5 and 10 nmol min�1 mg�1

[dry biomass], respectively), indicating that TBA is a much better
substrate for MdpJ. As 1,2-propanediol is asymmetric, the ste-
reospecificity of the hydroxylation reaction was investigated. After
derivatization to the corresponding (S)-phenylbutyryl diester, the
(S)- and (R)-enantiomers of 1,2-propanediol could be distin-
guished by GC analysis. Both enantiomers were formed by MdpJ.
However, the hydroxylation to (R)-1,2-propanediol was slightly

favored, resulting in an enantiomeric excess (EE) of about 70%
(Fig. 2). During resting-cell experiments with the wild-type strain
L108, substrate recovery of the conversion products 1,2-propane-
diol and acetone was below three-quarters, as these metabolites
represented only less than 25 and 50% of the converted substrate,
respectively. In contrast, knockout cells, which converted only
one-third of the 2-propanol amount of wild-type cells, accumu-
lated exclusively acetone, with close to 100% substrate recovery.
This confirms that acetone is not degraded by strain L108 (21) and
that 1,2-propanediol may be converted slowly to other metabo-
lites not accumulating under the experimental conditions. By
analogy to TBA and MPD metabolism, likely degradation prod-
ucts of 1,2-propanediol are lactaldehyde and lactic acid.

Desaturation of 2-butanol, 3-methyl-2-butanol, and 3-pen-
tanol. As 2-propanol turned out to be a substrate for MdpJ, the
higher homologue 2-butanol was also tested. Surprisingly, hy-
droxylation products were not obtained with wild-type cells; only
the desaturation product 3-buten-2-ol was formed from racemic
2-butanol (Fig. 3). Both secondary alcohols, 2-butanol and 3-buten-
2-ol, were oxidized to their corresponding ketones, 2-butanone
and 3-buten-2-one, respectively (Fig. 3 and see Fig. S3 and S4 in
the supplemental material). In line with the assumption that
MdpJ is responsible for 2-butanol desaturation, neither 3-buten-
2-ol nor 3-buten-2-one was formed by the knockout mutant
strain. Likely due to the high dehydrogenase activity, resulting in a
nearly complete substrate conversion to 2-butanone, only very
small amounts of 2-butanol of maximally 2% and 1% were recov-
ered as the desaturation product 3-buten-2-ol and its correspond-
ing ketone, 3-buten-2-one, respectively. In experiments with
enantiopure substrates, conversion of (R)-2-butanol to 3-buten-
2-ol was about 2.3 times faster than desaturation of the (S)-enan-
tiomer (Fig. 4).

In line with the observed transformation of 2-butanol to
3-buten-2-ol, 3-methyl-2-butanol and 3-pentanol were also con-
verted to the corresponding desaturation products 3-methyl-3-
buten-2-ol and 1-penten-3-ol, respectively, by wild-type cells of
strain L108 (see Fig. S5 and S6 in the supplemental material). In
addition, both wild-type and knockout mutant cells oxidized the
secondary alcoholic substrates to the corresponding ketones. In
the case of incubation with 3-methyl-2-butanol, the oxidation to
the unsaturated ketone 3-methyl-3-buten-2-one by the wild-type
cells was also observed (see Fig. S5 in the supplemental material).

FIG 2 GC-MS analysis of the (S)-2-phenylbutyryl derivatives of a racemic
(RS)-1,2-propanediol standard, a pure (S)-1,2-propanediol standard, and a
sample from a resting-cell experiment of A. tertiaricarbonis wild-type strain
L108 incubated on 2-propanol. (A) Total ion chromatogram signals; (B) mass
spectra of peaks occurring in the total ion chromatograms of the sample and
the racemic standard at 37.9 min, representing the (S)-2-phenylbutyryl deriv-
ative of (R)-1,2-propanediol.

FIG 3 Degradation of racemic 2-butanol and accumulation of metabolites in resting-cell experiments of A. tertiaricarbonis wild-type strain L108 (A) and mdpJ
knockout strain L108 (�mdpJ) K24 (B). In the latter case, 3-buten-2-ol and 3-buten-2-one were below the detection limit (2 �M) throughout the experiment.
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Generally, desaturation activities were lower than with 2-butanol,
and prolonged incubation periods of up to 8 h were necessary to
accumulate sufficient amounts of desaturation products for
GC-MS analysis.

DISCUSSION

The Rieske nonheme mononuclear iron oxygenase MdpJ of
Aquincola tertiaricarbonis L108 has previously been found to con-
vert the tertiary alcohols TBA, TAA, and 3-methyl-3-pentanol to
the corresponding diols and unsaturated alcohols (35). By com-
paring the product formations of wild-type and mdpJ knockout
mutant cells, this study now demonstrates that short-chain sec-
ondary alcohols can also be attacked by MdpJ.

As indicated recently by Schuster and coworkers in the context
of TAA and 3-methyl-3-pentanol metabolism (35), the mode of
MdpJ catalysis obviously depends strongly on the molecule struc-
ture of the substrate, allowing either hydroxylation or desatura-
tion reactions. An overview of the products obtained from the
thus-far-tested substrates (C3 to C5 secondary alcohols and C4 to
C6 tertiary alcohols) is given in Fig. S7 in the supplemental mate-
rial. The structures of 2-propanol and TBA do not contain an ethyl
group that can be desaturated. Accordingly, only hydroxylation to
diols has been observed. On the other hand, 2-butanol, 3-methyl-
2-butanol, 3-pentanol, TAA, and also 3-methyl-3-pentanol are
desaturated mainly by MdpJ, as they all possess at least one pair of
vicinal carbon atoms which can form a double bond. It can also be
speculated whether the unsaturated alcohols 3-buten-2-ol and
2-methyl-3-buten-2-ol, considering their structural similarity
with the MdpJ substrates 2-butanol and TAA, can be used by
MdpJ. As these compounds are already desaturated, it appears
likely that hydroxylation products would be formed (see Fig. S7 in
the supplemental material). However, when testing both unsatu-
rated alcohols in the whole-cell assay, we were not able to detect
the formation of 1,2-diols, but HPLC analysis indicated their con-
version to other products, likely unsaturated 2-hydroxy carboxy-
lic acids (data not shown). Thus far, these compounds have not
been unambiguously assigned by GC-MS measurements, and ad-
ditional identification work is needed.

The capacity of MdpJ for hydroxylation and desaturation of
small aliphatic alcohols as found in strain L108 seems to be quite

unique. In the context of MTBE metabolism, a few other strains
which should possess enzymes with a similar substrate spectrum
have been described. Accordingly, the conversion of TBA to MPD
has also been shown for the strains Mycobacterium vaccae JOB5
(37), Hydrogenophaga flava ENV 735 (13), Mycobacterium aus-
troafricanum IFP 2012 (11), and Methylibium petroleiphilum PM1
(27). However, only the MdpJ of strain L108 has been character-
ized for oxidation of TBA in MTBE metabolism. In addition,
strain PM1 possesses a nearly identical enzyme, showing 97% se-
quence identity to MdpJ of strain L108, which has been proposed
to be involved in tertiary alcohol metabolism (14). Moreover,
MdpJ has been detected in environmental samples. The mdpJ gene
is present in MTBE-degrading enrichment cultures from a con-
taminated groundwater treatment plant in Leuna, Germany (33),
and the enzyme has been detected in oxygenate-degrading mixed
cultures by 13C metagenomic and metaproteomic stable-isotope
probing (SIP) experiments (2, 4). These findings underline the
important role of MdpJ in bacterial MTBE degradation.

Short-chain chiral alcohols and diols are interesting building
blocks for the synthesis of pharmaceuticals and other active
compounds (3, 10, 18, 39). Enantiopure alcohols, for example,
are key intermediates in the side chain synthesis of serum cho-
lesterol-reducing drugs, i.e., 3-hydroxy-3-methylglutaryl-co-
enzyme A (CoA) reductase inhibitors (29). In addition, 1,2-pro-
panediol is a chiral building block for the synthesis of antiviral
drugs like tenofovir or efavirenz (26, 17). Thus far, the most im-
portant enzyme-based method to synthesize enantiopure alcohols
is lipase-catalyzed kinetic resolution of alcoholic and diolic race-
mates (6, 18, 34). In addition, enantioselective reduction of ke-
tones (29) or carboxylic acids (6) with specific dehydrogenases can
be applied. Enantiopure 1,2-propanediol for commercial pur-
poses, on the other hand, is currently synthesized only via chem-
ical routes (1, 6). A more straightforward approach for the syn-
thesis of enantiopure unsaturated alcohols and, particularly, diols
may be the stereospecific desaturation and hydroxylation of the
corresponding saturated alcoholic compounds. However, a one-
step synthesis employing MdpJ would require a high stereospeci-
ficity. In our preliminary experiments on MdpJ catalysis, only an
EE value of about 70% of that of (R)-1,2-propanediol and a 2.3-
fold preference for (R)-2-butanol as a desaturation substrate were
achieved. This indicates that at least for the secondary alcohols
tested, the same orientation in the reaction center of the enzyme is
favored (Fig. 5). On the basis of this finding, the poor stereospec-

FIG 4 Formation of 3-buten-2-ol from 2-butanol by resting cells of A. tertia-
ricarbonis wild-type strain L108 after application of pure enantiomers as the
substrate.

FIG 5 Favored substrate and corresponding product enantiomers of MdpJ-
catalyzed hydroxylation of 2-propanol to 1,2-propanediol and desaturation of
2-butanol to 3-buten-2-ol.
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ificity could be improved by site-directed mutagenesis or novel
approaches like directed enzyme evolution (7, 8). The stereospec-
ificity of the MdpJ-catalyzed desaturation of 3-methyl-2-butanol
and 3-pentanol to the hemiterpenic 3-methyl-3-buten-2-ol and to
1-penten-3-ol, respectively, has not yet been analyzed. Neverthe-
less, a preference similar to that with (R)-2-butanol could be ex-
pected. Hence, an improved MdpJ enzyme showing higher-than-
normal stereospecificity could be employed for the synthesis of
chiral allylic alcohols and related compounds currently available
only through multistep chemical synthesis (3, 16). At the present
stage of our research, however, we exclude the possibility of ap-
plying pure MdpJ, because preparation of the cell-free enzyme
always resulted in a complete loss of enzymatic activity. Alterna-
tively, application in whole-cell systems is quite promising but
requires either metabolic manipulation of the wild-type strain
L108 in order to avoid the ketone-forming side reaction or the
transformation of the mdpJK genes into a more appropriate host
strain lacking such side activities.
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