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We isolated a new lytic Pseudomonas aeruginosa phage that requires type IV pili for infection. PA1Ø has a broad bactericidal
spectrum, covering Gram-positive and Gram-negative bacteria, and can eradicate biofilm cells. PA1Ø may be developed as a
therapeutic agent for biofilm-related mixed infections with P. aeruginosa and Staphylococcus aureus.

Bacteriophages (phages) are bacterial viruses that play an im-
portant role in bacterial biology, diversity, and evolution (6).

Due to their ability to lyse bacteria, attempts have been made to
use lytic phages to treat bacterial infections, and some have shown
clinical promise as therapeutic antimicrobial agents (2, 11, 16).
However, phages are not commonly used therapeutically due to
several problems, such as narrow host range, insufficient purity of
phage preparations, poor stability or viability of phage prepara-
tions, and a lack of understanding of the heterogeneity and mode
of action of phages (17, 18). Despite such problems, the worldwide
spread of multidrug-resistant (MDR) pathogenic bacteria has led
to the revival of this therapeutic approach (12).

In this study, we isolated a novel lytic phage, PA1Ø, which is
capable of lysing MDR pathogenic bacteria, especially Pseudomo-
nas aeruginosa and Staphylococcus aureus. From sewage samples
collected from poultry and pig farms located in Gyeonggi Prov-
ince, South Korea, several phages specific to P. aeruginosa were
found. Among the isolated phages, one, PA1Ø, was selected, prop-
agated, and purified successfully according to the method of
Merabishvili et al. (13). Concentrated phage solutions were pre-
pared as previously described (5) using cesium chloride (CsCl)
gradients (9). Approximately 1017 PFU/ml of phage stock solution
was obtained and stored at 4°C for future use.

PA1Ø exhibited an icosahedral head and a long noncontractile
tail by transmission electron microscopy analysis. The lengths of
the icosahedral head and the long tail were approximately 58 and
164 nm, respectively. Morphologically, PA1Ø belongs to the fam-
ily Siphoviridae (1). To assess the host range of PA1Ø, spot tests
and plaque formation assays were performed with various species
of bacteria (Table 1). In a spot test, PA1Ø formed clear lytic zones
on the lawns of P. aeruginosa, Shigella sonnei, S. aureus, Staphylo-
coccus epidermidis, Staphylococcus hominis, Streptococcus pneu-
moniae, Streptococcus salivarius, and Listeria monocytogenes. How-
ever, no lytic zones were found on the lawns of Escherichia coli,
Serratia marcescens, Enterobacter aerogenes, Acinetobacter bau-
mannii, or certain Streptococcus spp. In the plaque formation as-
says, PA1Ø formed distinct plaques only when used to infect P.
aeruginosa or S. sonnei. PA1Ø could not produce typical plaques
when used to infect S. aureus, although it formed distinct clear
zones on the lawn of S. aureus in spot test with lytic areas two to
three times larger than those formed on the lawns of P. aeruginosa
or S. sonnei. This result indicates that PA1Ø can infect and prop-
agate in only P. aeruginosa and S. sonnei.

The adsorption rate of PA1Ø was determined. About 87% of
PA1Ø phage were adsorbed to P. aeruginosa PAO1 cells within 2
min. The rate of PA1Ø adsorption to S. sonnei was similar to that
for P. aeruginosa. A one-step growth experiment showed that the
latent period of PA1Ø was approximately 10 min. The first burst
of PA1Ø was recorded at 15 min, and the burst size was assumed to
be approximately 261 PFU/bacterium.

To identify the receptor molecule used by PA1Ø to infect P.
aeruginosa, we constructed and screened a library of random
transposon (Tn) insertion mutants of P. aeruginosa strain PAO1
for resistance to PA1Ø treatment. A library of random transposon
insertion mutants of P. aeruginosa strain PAO1 was constructed
by biparental mating using E. coli SM10 (�pir) harboring pBTK30
as a donor strain (4). Gentamicin-resistant (Gmr) transconjugants
were pooled, and an aliquot of the pool (�108 CFU/ml) was in-
oculated into LB containing 1 � 1011 PFU/ml of PA1Ø. After 16 h
growth at 37°C, cultures were diluted 100-fold in fresh LB con-
taining the same titer of PA1Ø to enrich the population of PA1Ø-
resistant mutants. This enrichment step was repeated three times,
and then culture aliquots were spread on LB agar plates containing
200 �g/ml gentamicin (Gm) to isolate mutants that had poten-
tially acquired resistance to PA1Ø. Under these conditions, three
mutants were successfully identified as demonstrating normal
growth. As shown in Fig. 1, these mutants exhibited uninterrupted
growth in the presence of 1 � 1011 PFU/ml PA1Ø, while
the growth of wild-type PAO1 was greatly diminished under the
same conditions; the optical cell density of these mutants in the
presence of PA1Ø was almost comparable to that of PAO1 in plain
LB medium. Further sequence analysis revealed Tn insertion into
the pilY1 (PA4554), pilB (PA4526), or pilA (PA4525) gene in each
of these selected mutants. Since these genes encode core compo-
nents of the type IV pilus synthetic machinery, this result strongly
suggests that PA1Ø binds to the pilus to infect P. aeruginosa. The
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TABLE 1 Results of spot tests and plaque formation assays

Species
Strain or
isolate

Spot test
resulta

Plaque
formation Source

Pseudomonas aeruginosa PAO1 � Yes Yonsei University
ATCC 29853 � Yes ATCCb

PA 1-30 � Yes Laboratory collection
PA 1-67 � Yes Laboratory collection
PA 1-86 � Yes Laboratory collection
PA 2-22 � Yes Laboratory collection
PA 2-35 � Yes Laboratory collection
PA 2-36 � Yes Laboratory collection
PA 2-50 � Yes Laboratory collection

Shigella sonnei NIH1 � Yes Laboratory collection
H9 � Yes Laboratory collection
H114 � Yes Laboratory collection
H131 � Yes Laboratory collection
H151 � Yes Laboratory collection
H1 � No Laboratory collection
H122 � No Laboratory collection

Escherichia coli ATCC 25922 � No ATCC
03K543 � No Laboratory collection
04K743 � No Laboratory collection
03K830 � No Laboratory collection
03K692 � No Laboratory collection

Serratia marcescens ATCC 8100 � No ATCC

Acinetobacter baumannii ATCC 19606 � No ATCC

Enterobacter aerogenes EA7 � No Laboratory collection

Staphylococcus aureus ATCC 29213 �� No ATCC
ATCC 25923 �� No ATCC
MRSA WS-05 �� No Laboratory collection
MRSA D43-a �� No Laboratory collection
KNUH-2 �� No Laboratory collection
KNUH-3 �� No Laboratory collection
KNUH-5 �� No Laboratory collection

Staphylococcus epidermidis KNUH-134 � No Laboratory collection
KNUH-174 � No Laboratory collection
KNUH-175 � No Laboratory collection

Staphylococcus hominis KNUH-328 �� No Laboratory collection
KNUH-329 �� No Laboratory collection

Streptococcus pneumoniae 15 � No Laboratory collection
83 � No Laboratory collection
134 � No Laboratory collection

Streptococcus salivarius 65 � No Laboratory collection
68 � No Laboratory collection
84 � No Laboratory collection
133 � No Laboratory collection

Streptococcus gordonii 143 �� No Laboratory collection

Streptococcus agalactiae 188 � No Laboratory collection

Listeria monocytogenes 10403S � No Martin Wiedermann
a ��, large clear lysis; �, small clear lysis; �, no lysis.
b ATCC, American Type Culture Collection.
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adsorption assay using P. aeruginosa mutants revealed that PA1Ø
was unable to adsorb to the mutants, confirming that the type IV
pilus is the receptor molecule used by PA1Ø to infect P. aerugi-
nosa.

We assessed the bactericidal activity of PA1Ø against eight bac-
terial strains (S. aureus ATCC 25923, WS-05, and D43-a; P. aerugi-
nosa PAO1; S. hominis KNUH-328 and KNUH-329; and S. epider-
midis KNUH-134 and KNUH-174). Overnight bacterial cultures
were diluted to an optical density at 600 nm (OD600) of 1, followed
by a 10-fold dilution. For treatment of planktonic cultures with
phage, 100-�l aliquots (5 � 106 CFU) were inoculated into 96-
well microtiter plates, followed by inoculation of 100 �l of PA1Ø
samples (1 � 1010 PFU/ml), to a multiplicity of infection (MOI) of
200, into the same wells and a further 6-h incubation at 37°C. Fifty
microliters of 0.1% triphenyltetrazolium chloride (TTC) was
added, and samples were further incubated at 37°C for 1 h, after
which absorbance at 540 nm was determined using an enzyme-

linked immunosorbent assay (ELISA) reader (VersaMax; Molec-
ular Devices, Sunnyvale, CA) (7, 9). For biofilm formation, 100 �l
of an overnight bacterial culture (5 � 106 CFU) were inoculated
into a 96-well microtiter plate and incubated at 37°C for 1 day in a
humidified incubator. After removal of planktonic cells and me-
dium by washing with 100 �l of fresh tryptic soy broth (TSB), 100
�l of PA1Ø (1 � 1010 PFU) was inoculated into the biofilm. After
incubation at 37°C for 3 h in a humidified incubator, 50 �l of 0.1%
TTC was added and incubated for a further 1 h. Absorbance was
recorded at 540 nm. PA1Ø significantly inhibited the bacterial
growth in all bacterial strains tested (Fig. 2A). After incubation for
6 h with PA1Ø and P. aeruginosa PAO1, the growth of PAO1 was
greatly inhibited in comparison with an untreated control. We
also measured PA1Ø’s biofilm removal activity (Fig. 2B). After
treatment of 24-hour-old biofilms of P. aeruginosa, S. aureus, S.
epidermidis, and S. hominis with PA1Ø, the numbers of viable cells
in phage-treated biofilms were greatly decreased in comparison
with those in untreated biofilms. Field emission scanning electron
microscopy (FESEM) analysis clearly showed PA1Ø’s biofilm re-
moval activities (Fig. 3). In phage-treated samples, lysed cells were
obvious, and most of the cells adopted a “ghost” morphology (Fig.
3B, D, F, and H). In contrast, no lysed or killed cells were found in
the phage-untreated groups (Fig. 3A, C, E, and G).

The genome sequence of PA1Ø was deciphered and an-
nounced recently (8). The PA1Ø genome consists of 51 putative
protein-coding genes. Since the PA1Ø genome showed a high ho-
mology to the D3112 phage genome in the study (8), we per-
formed Dot Matrix View and MAUVE genome alignment analy-
ses to compare the two genomes in detail. The analyses revealed six
unmatched regions (Fig. 4). Unmatched region 1, spanning ORF1
to ORF5 of D3112 phage including the c repressor protein-coding
gene, was not found in the PA1Ø genome. Unmatched region 3
covers the coding regions of host nuclease inhibitor proteins in
both phages, and other unmatched regions correspond to genes
coding hypothetical proteins of both phages. Three highly con-
served regions between PA1Ø and D3112 cover hypothetical pro-
teins (regions A and C), the major head subunit (region B), and
the putative tail component (region C).

FIG 1 Three pilus mutants grow normally in the presence of PA1Ø. The
growth of three pilus-negative strains and wild-type PAO1 was monitored by
measuring the optical density (OD) at 600 nm. PAO1 growth in plain LB is
included as a control. *, P � 0.001 versus all other growth.

FIG 2 Bactericidal and biofilm removal effects of PA1Ø. Planktonic cultures (A) and 1-day-old biofilms (B) of eight different bacterial species were treated with
PA1Ø at an MOI of 200 for 6 h and 1 � 1010 PFU of PA1Ø for 3 h, respectively. Triphenyltetrazolium chloride (TTC) absorbance values at 600 nm were compared
with those of non-PA1Ø-treated controls (gray bars). 1, S. aureus ATCC 25923; 2, S. aureus WS-05; 3, S. aureus D43-a; 4, S. epidermidis KNUH-134; 5, S.
epidermidis KNUH-174; 6, S. hominis KNUH-328; 7, S. hominis KNUH-329; and 8, P. aeruginosa PAO1. Experiments were performed three times independently,
and values are means and standard deviations.
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In this study, we isolated a novel lytic bacteriophage, PA1Ø,
with a broad host range of P. aeruginosa and S. sonnei. Besides
these bacteria, PA1Ø could lyse a number of Gram-positive bac-
terial pathogens. Since PA1Ø could form plaques only when in-

fecting P. aeruginosa and S. sonnei, its bactericidal mechanism
against Gram-positive bacteria might be different from that
against P. aeruginosa and S. sonnei. One possible explanation is the
production of phage-associated lytic enzymes. In fact, Lai et al.

FIG 3 Biofilm removal capacity of PA1Ø. Non-PA1Ø-treated (A, C, E, and G) and treated (B, D, F, and G) biofilms of four bacterial strains were visualized by scanning
electron microscopy. (A and B) P. aeruginosa PAO1; (C and D) S. aureus ATCC 25923; (E and F) S. epidermidis KNUH-134; (G and H) S. hominis KNUH-329.

PA1Ø Possesses Anti-Biofilm Activity

September 2012 Volume 78 Number 17 aem.asm.org 6383

http://aem.asm.org


reported that Acinetobacter baumannii phage varphiAB2, which
shows broad bactericidal activity against Gram-positive and
Gram-negative bacteria, produced endolysin (LysAB2), which
was responsible for the lysis of S. aureus by degrading bacterial cell
wall’s peptidoglycan (10). Another feature of PA1Ø is its ability to
destroy biofilms of P. aeruginosa, S. aureus, S. epidermidis, and S.
hominis. It could significantly lyse those bacterial cells in the es-
tablished biofilms within 3 h. To our knowledge, the broad bacte-
ricidal spectrum and strong lytic activities against both planktonic
and biofilm cells exhibited by PA1Ø have never been demon-
strated in other phages.

In several aspects, PA1Ø resembles P. aeruginosa phage D3112,
which is a well-known temperate phage used for molecular biol-
ogy studies of P. aeruginosa (3, 19). Both phages are Pseudomonas
phages belonging to the family Siphoviridae. Both phages infect P.
aeruginosa via the type IV pili (14). The genome of PA1Ø is highly
homologous to the genome of D3112 phage (GenBank accession
number AY394005.1), with overall nucleotide identity of 90%.
The difference of PA1Ø from D3112 is the absence of the un-
matched region 1 spanning first five ORFs of phage D3112. Be-
cause unmatched region 1 includes a c repressor-encoding gene,
known to play a critical role in the maintenance of the lysogenic
state of the D3112 phage in P. aeruginosa (15), it seems that PA1Ø
lacks the critical lysogenic genes. Thus, it is suggested that PA1Ø is
a lytic phage, not a temperate, transposable one.

In conclusion, this study characterized a new lytic P. aeruginosa
phage that has a broad bactericidal spectrum covering various
species of Gram-positive and Gram-negative bacteria. Moreover,
PA1Ø can eradicate biofilm cells. Therefore, PA1Ø can be devel-
oped as an alternative antimicrobial agent that may be useful in
treatment of biofilm-related infections and mixed infections
caused by bacteria such as P. aeruginosa and S. aureus.
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