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The objective of this study was to develop a probabilistic model to predict the end of lag time (�) during the growth of Bacillus
cereus vegetative cells as a function of temperature, pH, and salt concentration using logistic regression. The developed � model
was subsequently combined with a logistic differential equation to simulate bacterial numbers over time. To develop a novel
model for �, we determined whether bacterial growth had begun, i.e., whether � had ended, at each time point during the growth
kinetics. The growth of B. cereus was evaluated by optical density (OD) measurements in culture media for various pHs (5.5 �
7.0) and salt concentrations (0.5 � 2.0%) at static temperatures (10 � 20°C). The probability of the end of � was modeled using
dichotomous judgments obtained at each OD measurement point concerning whether a significant increase had been observed.
The probability of the end of � was described as a function of time, temperature, pH, and salt concentration and showed a high
goodness of fit. The � model was validated with independent data sets of B. cereus growth in culture media and foods, indicating
acceptable performance. Furthermore, the � model, in combination with a logistic differential equation, enabled a simulation of
the population of B. cereus in various foods over time at static and/or fluctuating temperatures with high accuracy. Thus, this
newly developed modeling procedure enables the description of � using observable environmental parameters without any con-
ceptual assumptions and the simulation of bacterial numbers over time with the use of a logistic differential equation.

Modeling of bacterial lag time is complicated because the
mechanisms governing lag time are not fully understood.

Early models of bacterial lag time described the log-transformed
lag time using polynomial equations as functions of environmen-
tal factors (20). Later, the model proposed by Baranyi and Roberts
(4) introduced the parameter �0, which represents the physiolog-
ical state of bacterial cells. Their model focused on the constant
relationship between h0 (� �ln �0), which refers to the “work to
be done,” and the product of a specific growth rate (�max) and the
lag time (�) (4, 36). Similarly, Mellefont et al. (21) introduced the
concept of relative lag time, which represents the ratio of the lag
time and the generation time. Although these models are mecha-
nistic and appear robust, they do not consider the stochastic vari-
ability of the lag time. Stochastic variability in the behavior of
single cells has recently received attention, and the variability of
the lag time of single cells has been described as an appropriate
probability distribution (12, 13, 19, 32, 33). However, although
this modeling approach incorporates the probabilistic aspects of
lag time, the deterministic aspects of lag time, such as the effects of
environmental factors, have not been explicitly accounted for.
Thus, although there have been numerous studies on bacterial lag
time modeling, the modeling procedures developed to date have
left room for improvement.

It is known that bacterial lag time is influenced not only by
current environmental conditions but also by multiple other fac-
tors, such as the history of the cells and initial cell counts; however,
the mechanisms of the lag time have not been completely clarified
thus far. In previous lag time models, assumptions regarding h0

and the physiological state parameter (�0), which are directly un-
observable conceptual variables, have been introduced to provide
mechanistic and deterministic descriptions of the lag time. How-
ever, as the mechanisms of the lag time have not been completely
clarified, we cannot avoid complications involved in developing a

predictive lag time model based on various assumptions of di-
rectly unobservable conceptual parameters that consider various
environmental factors and stochastic variabilities. Thus, under
these circumstances, we focused on the development of a data-
driven, empirical, and probabilistic model to describe the lag time
based on experimentally observable data as a promising alterna-
tive.

The present study was aimed at developing a probabilistic lag
time model that includes both the deterministic and probabilistic
aspects of lag time. The probabilistic aspect of lag time can be
described deterministically as a function of environmental factors.
To provide baseline data for this study, we first determined
whether bacterial growth had initiated; i.e., whether the lag time
had ended at each time point was treated as the probability of that
event occurring, which was modeled using logistic regressions as a
function of time and other environmental parameters (1). The
equation can be described as follows:

p�t� �
1

1 � exp�� f�t�� (1)

where P(t) is the probability of the end of lag time and f(t) is a
function of time. The probability of the end of lag time can sub-
sequently be described as a sigmoidal function with a value be-
tween 0 and 1.

We focused on the Baranyi and Roberts model (4) to apply the
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probabilistic lag time model described above. The Baranyi and
Roberts model is one of the most frequently used differential
equation models in predictive microbiology. It consists of the fol-
lowing two simultaneous differential equations:

dq

dt
� �maxq�t� (2)

dN

dt
�

q�t�
1 � q�t� � �max � �1 �

N

Nmax
� � N (3)

where N denotes the bacterial cell concentration (CFU/g or CFU/
ml) at time t, q is a dimensionless quantity related to the physio-
logical state of the cells, �max is the maximum specific growth rate
(1/h), and Nmax represents the maximum population density of
the bacteria (CFU/g or ml). Equation 2 can be explicitly solved as
follows:

q�t� � q0 � exp��maxt� (4)

where q0 is the initial value of q at time zero. Then, equation 3 can
be described by incorporating equation 4 as follows:

dN

dt
�

q0 � exp��maxt�
1 � q0 � exp��maxt�

� �max

� �1 �
N

Nmax
� � N (5)

Equation 5 can be further modified as follows:

dN

dt
�

1

1 �
1

q0
exp���maxt�

� �max � �1 �
N

Nmax
� � N

(6)

We focused on the function of
1

1 �
1

q0
exp���maxt�

in equa-

tion 6, which adjusts the lag time as a value between 0 and 1,
representing a sigmoidal change over time. However, because q is
a dimensionless conceptual variable, it is difficult to use this vari-
able to explicitly describe the effects of environmental and/or
other factors. If an alternative function described by various
factors could be substituted into equation 6 in place of

1

1 �
1

q0
exp���maxt�

and still result in values between 0 and 1 with

a sigmoidal increase over time, then bacterial growth simula-
tion could be achieved successfully. The function of

1

1 �
1

q0
exp���maxt�

is essentially the same as equation 1, which

represents a logistic function. Thus, if the function of
1

1 �
1

q0
exp���maxt�

could be replaced with a function of the

probability of the end of lag time as described by the logistic re-
gression given above, then the modified model of equation 6 could
simulate bacterial densities over time.

The objective of the present study was to develop a statistical
model for the probability of the end of bacterial lag time during
growth kinetics using logistic regression as a function of time,

temperature, pH, and sodium chloride concentration. The devel-
oped logistic regression model for lag time was subsequently com-
bined with primary differential equations, such as the logistic
model (Verhulst model) (28), to predict bacterial numbers over
time. This new model was validated using experimentally ob-
tained data on bacterial growth in real foods.

MATERIALS AND METHODS
Bacterial strain. Bacillus cereus (BI-88, nonhemolytic enterotoxin pro-
ducing, isolated from a crepe) was used as a target bacterium because it is
a representative contaminant in cooked foods and demonstrates potential
growth at low temperatures. The strain used in this study can grow at 8°C.
The B. cereus culture was stored at �85°C in a medium containing 10%
skim milk (Morinaga Milk Industry Co., Ltd., Tokyo, Japan). A sterile
wire loop was used to transfer the frozen bacterial cultures to plate count
agar (Eiken Ltd., Tokyo, Japan). The plate was incubated at 35°C for 18 h.
A typical single colony was inoculated in a glass tube containing 10 ml of
tryptic soy broth (TSB; Difco Ltd., Franklin Lakes, NJ) and incubated at
35°C for 18 h without agitation. Subsequently, 1 ml of the culture was
inoculated in 10 ml of fresh TSB and incubated at 35°C for 6 h without
agitation. The growth medium consisting of the vegetative cells was used
as an inoculum.

B. cereus growth experiments. Peptone-yeast extract-glucose (PYG)
broth containing yeast extract (2.0 g/liter; Difco), peptone (5.0 g/liter,
Difco), and glucose (1.0 g/liter; Wako, Ltd., Tokyo, Japan) was used as a
base medium for the B. cereus growth experiments (18, 24). Hydrochloric
acid (HCl; Wako) was used to adjust the pH of the medium to 5.5, 6.0, 6.5,
and 7.0. Sodium chloride (NaCl; Wako) was also added to the PYG me-
dium at concentrations of 0.5, 1.0, 1.5, and 2.0% (wt/vol). These media
were filtered through a membrane filter (pore size, 0.45 �m; Millipore
Ltd., Billerica, MA), and a 5-ml aliquot was transferred to an L-shaped
glass tube. The inoculum consisting of vegetative cells of B. cereus (0.1 ml)
was added to 5 ml of broth (ca. 105 CFU/ml) and incubated at 10, 15, and
20°C.

To validate the model, independent conditions from the model devel-
opment were examined within the interpolation region of the model. The
growth data were obtained at 12 and 17°C for pH values of 5.8, 6.3, and 6.7
and NaCl concentrations of 0.7, 1.2, and 1.7%.

Optical density measurement of B. cereus growth and determina-
tion of the lag time. B. cereus growth was monitored by optical density
(OD) measurements at 660 nm using a Bio-photorecorder (model
TVS062CA; Advantec Toyo Roshi Kaisha, Ltd., Tokyo, Japan). This ap-
paratus can continuously and automatically measure and record the OD
values in an L-shaped glass tube at various temperatures. The OD values
were recorded every 10 min until they reached 1.0. B. cereus growth curves
for each condition given above were obtained in triplicate.

In the present study, the lag time of B. cereus was defined as the time
required for the OD to increase by 0.006 from the beginning of the incu-
bation (0.000). The value of 0.006 was chosen because it represents the
smallest detectable significant change in OD values for the given sensitiv-
ity of the apparatus (0.001) and the measurement noise (0.003 to 0.005).

In parallel, the lag time was estimated by the previously reported pro-
cedure using OD data and viable counts (8). Briefly, the nontransformed
four-parameter logistic model fit the OD growth curves as follows (9):

ODt � ODmin �
ODmax � ODmin

1 � exp���OD�t � ti��
(7)

where t is time, ODmax and ODmin are asymptotic maximum and mini-
mum OD values, respectively, �OD is �max determined from OD values,
and ti is the time at the inflection point in equation 7. Then, the time
(t�OD) and viable counts (N�OD) corresponding to a 0.05-unit increase in
OD values were determined from fitted model parameter values. The lag
time was then calculated by using equation 8:

� � t�OD � ��log10�N�OD� � log10�N0�� � ln�10�
�OD

� (8)
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where values of N0 and N�OD were determined from viable counts, and
other parameters are as described above.

Modeling the probability of the end of lag time. As described above,
the end of the lag time of B. cereus was defined as the detection of a change
of �0.006 OD unit at 660 nm during the incubation period. Each replicate
sample was assigned a value of 1 or 0 to indicate whether or not the end of
the B. cereus lag time had been reached, respectively. The data were fitted
to a logistic regression model using R statistical software (v 2.14.1; www
.R-project.org/) based on a previously developed approach (16) in which
we used the “glm” function. The two models proposed in this study were
of the following form:

Logit�P� � a0 � a1Temp � a2 ln�Time� � a3pH � a4NaCl (9)

Logit�P� � b0 � b1Temp � b2 ln�Time� � b3pH � b4NaCl

� b5Temp � pH � b6Temp � NaCl � b7pH � NaCl (10)

where, Logit(P) represents ln[P/(1 � P)], ln is the natural logarithm, P is
the probability of growth initiation (or the end of the lag time), which has
a value between 0 and 1, ai and bi are the coefficients to be estimated, Temp
is the temperature (°C), Time is the time of incubation (h), pH is the pH
of the tested environment, and NaCl is the concentration (%) of sodium
chloride in the tested environment. We used the logarithm of the incuba-
tion time because this factor would have a nonlinear effect on the end of
the lag time.

Simulation of the population size of B. cereus. We applied the devel-
oped probability model for the end of the lag time, as described above, to

equation 6 as a substitute for
1

1 �
1

q0
exp���maxt�

. Equations 9 and 10 can

be transformed into the following equations:

P �
1

1 � exp���a0 � a1Temp � a2 ln�Time� � a3pH � a4NaCl��
(11)

P �
1

1 � exp���b0 � b1Temp � b2 ln�Time� � b3pH � b4NaCl

� b5Temp � pH � b6Temp � NaCl � b7pH � NaCl��
(12)

Therefore, the following model equations were proposed:

dN

dt
�

1

1 � exp���a0 � a1Temp � a2 ln�Time� � a3pH � a4NaCl��

� �max � �1 �
N

Nmax
� � N (13)

dN

dt
�

1

1 � exp���b0 � b1Temp � b2 ln�Time� � b3pH � b4NaCl

� b5Temp � pH � b6Temp � NaCl � b7pH � NaCl��

� �max � �1 �
N

Nmax
� � N (14)

The model for determining the �max value of B. cereus was obtained
from ComBase Predictor (http://modelling.combase.cc/ComBase
_Predictor.aspx). The �max model for B. cereus employed by ComBase
Predictor is as follows (kindly provided by J. Baranyi):

ln��max� � �8.426 � 0.1554 � Temp � 1.434 � pH � 3.907 � bw

� 0.009679 � Temp � pH � 0.1553 � Temp � bw

� 2.171 � pH � bw � 0.001929 � Temp2 � 0.1216 � pH2

� 64.86 � bw
2 (15)

where Temp and pH are as described above and bw corresponds to

�1 � aw. aw was calculated using the following equation (29):

aw � 1 �
NaCl � �5.2471 � 0.12206 � NaCl�

1, 000
(16)

Nmax was set at 108 CFU/g. Equations 13 and 14 were solved numeri-
cally using the fourth-order Runge-Kutta method to obtain predictions of
the bacterial concentrations using the “odesolve” package in the R statis-
tical software.

Evaluation of model performance. The performance of the developed
lag time model was evaluated using the following procedures. The area
under the receiver-operating characteristic curve (AUC) (14), maximum
rescaled R2, and percent concordance were used as measures of the good-
ness of fit of the developed model. In addition, the performance of the lag
time model was evaluated using the acceptable prediction zone method
(26). The prediction errors or relative errors (REs) for the individual fitted
cases were calculated according to the following equation:

RE for � � �fitted � observed�/fitted (17)

An RE of less than 0 represents fail-safe predictions, and an RE greater
than 0 represents fail-dangerous predictions. The proportion of RE (pRE)
in the acceptable prediction zone of �0.6 to 0.3 was used to quantify the
performance of the lag time model. The performance of the lag time
model was classified as acceptable for a pRE value of �0.70 (26). The
performance of the combined models (equations 13 and 14) for the bac-
terial number over time was evaluated using the root mean squared error
(RMSE) (20).

B. cereus growth in foods under static conditions. Six types of Japa-
nese deli food (cooked pumpkin, cooked okara [soy pulp, a residue of tofu
production], cooked burdock roots and carrots, cooked satoimo [a taro],
cooked freeze-dried tofu, and lightly salted cooked freeze-dried tofu) were
used for the model validation. All sample foods were either obtained from
a local manufacturer (pumpkins, okara, burdock, and carrot) or cooked
in the laboratory (satoimo and freeze-dried tofu). The pH and NaCl con-
centration of the sample foods were determined using a pH meter (D-51;
Horiba, Kyoto, Japan) and a compact salt meter (C-121; Horiba), respec-
tively. Samples of 25 	 1 g of each deli food were aseptically divided into
plastic pouches (deposition as follows: 12 �m polyethylene terephthalate
[PET], 15 �m oriented nylon [ONY], and 6 �m cast polypropylene
[CPP], with a thickness of 33 �m) at each sampling interval. An aliquot of
0.1 ml of the B. cereus (3 to 4 log CFU/g) vegetative cell suspension, which
was prepared as described above, was inoculated onto each deli food. The
inoculated foods were aerobically stored at 10 or 15°C for up to 7 days
(168 h). Sampling was generally conducted at 12- and 6-h intervals for the
samples at 10 and 15°C, respectively. Each experiment consisted of two
independent replicates and two plates per replicate at each time interval.

B. cereus growth in food under fluctuating-temperature conditions.
The model performance was validated under fluctuating-temperature
conditions. B. cereus vegetative cells were inoculated into two cream pasta
sauces (pH 6.20 and 1.05% NaCl; pH 5.95 and 1.59% NaCl) in the same
manner as the other deli foods mentioned above. The inoculated pasta
sauces were aerobically stored under fluctuating temperature conditions
that consisted of 10°C storage with some temperature fluctuations over an
80-h storage period. The temperature data were recorded using a temper-
ature logger (Thermo recorder TR-71S; T&D Corporation, Nagano, Ja-
pan) and were used for the simulation of B. cereus growth using the de-
veloped models (equations 13 and 14).

Enumeration of B. cereus. Each food sample (25 	 1 g) was combined
with 225 ml of 0.1% peptone water in a 400-ml stomacher bag and was
processed for 1 min in a stomacher (Organo Ltd., Tokyo, Japan). The
sample suspension was then serially diluted in 0.1% peptone-water. The
diluted sample was plated in duplicate (0.1 ml) on Kim and Goepfert (KG)
agar with NaCl and glycine (NGKG) (15) (Nissui Pharmaceutical Ltd.,
Tokyo, Japan), which is a selective medium for B. cereus, and incubated at
35°C for 24 h.

RESULTS
Comparison of the lag times (�) estimated by two methods. The
�s estimated by the changes in OD values (�0.006) were very
closely correlated to the �s estimated from the curve-fitting (equa-
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tions 7 and 8) procedure (Fig. 1). Because the �s estimated by
curve fitting procedure to OD values were consistent with those
estimated by viable counts (8), the small but significant OD
changes employed in the present study appropriately estimated
the lag time of bacterial growth.

The parameters such as �max and � were obtained through the
curve-fitting procedure of the OD growth data. The products of
�max and � were not constant but were distributed as shown in Fig.
2. The distribution of values of �max 
 � was fitted with a log-
normal distribution. Furthermore, there was no NaCl concentra-
tion and/or pH dependency on the �max 
 � (Fig. 3). Since an
apparent inverse proportionality between �max and � was not
confirmed, a separate modeling of the � from �max was investi-
gated in the present study.

Modeling the probability of the end of lag time. The growth
initiation response of B. cereus to various environmental condi-
tions was monitored, resulting in a total of 45,222 data points
collected during the incubation period. The 45,222 data points

were analyzed using the developed logistic regression models de-
scribed in equations 9 and 10. The estimated parameters and their
95% confidence intervals are given in Table 1 along with the per-
formance statistics of the AUC, maximum rescaled R2, and per-
cent concordance. Figure 4a shows an example of the cumulative
probability distribution estimated from the developed models de-
rived from equations 11 and 12. Figure 4b shows the correspond-
ing probability density distribution that is calculated by the differ-
entiation of equations 11 and 12. The performance statistics
indicate a good performance of both models, with little difference
between them (Table 1 and Fig. 4). Although Akaike’s informa-
tion criterion (AIC) for equation 9 was slightly larger than that for
equation 10 (Table 1), we chose the simpler model, equation 9, for
further study because with the simpler model, the effects of each
environmental factor are easier to calculate and interpret.

Validation with independent OD growth data in the interpo-
lation region. The developed model for the probability of end of

FIG 1 Relationship of the estimated lag times between the conventional curve
fitting procedure (8) and the method employed in the present study.

FIG 2 Distribution of the product of estimated specific growth rate (�max)
and lag time (�). The dotted line is a fitted probability distribution as a func-
tion of log-normal (mean � 1.34, standard deviation � 0.52).

FIG 3 pH and/or NaCl dependency of the �max�. �, 0.5% NaCl; Œ, 1.0%
NaCl; o, 1.5% NaCl; �, 2.0% NaCl.

TABLE 1 Estimated parameters of logistic regression models

Equation and
parameter Estimate (mean)

95th percentile

SE2.5% 97.5%

Equation 9a

Intercept �21.449 �22.025 �20.879 0.292
ln (time) 3.105 3.043 0.574 0.032
temp 0.560 0.546 3.169 0.007
pH 0.960 0.899 1.022 0.031
Salt �0.955 �1.017 �0.894 0.031

Equation 10b

Intercept �14.619 �16.257 �12.984 0.834
ln(time) 3.322 3.254 3.392 0.035
Temp �0.364 �0.476 �0.253 0.056
pH �0.877 �1.134 �0.620 0.131
Salt 4.526 3.782 5.273 0.380
Temp 
 pH 0.200 0.182 0.219 0.009
Temp 
 salt �0.202 �0.221 �0.184 0.009
pH 
 salt �0.488 �0.598 �0.379 0.055

a AUC of equation 9, 0.95; max rescaled R2, 0.70; concordance, 95.8%; AIC, 22,971.
b AUC of equation 10, 0.95; max rescaled R2, 0.71; concordance, 96.1%; AIC, 22,055.
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lag time in equation 9 was validated using independent data sets
derived from the conditions of the interpolation region of the
developed model. The �s predicted by the developed model were
calculated at a P value of 0.5. For these independent data, 52 of 54
(3 pH conditions 
 3 NaCl conditions 
 2 temperature condi-
tions in triplicate) REs (%RE � 97.7%) were within the acceptable
prediction zone (�0.6 to 0.3) (Fig. 5). No prediction problems or
regional biases were encountered. Thus, the model for the proba-
bility of end of lag time had an acceptable goodness of fit and was
validated for interpolation.

Validation using bacterial growth data in cooked foods un-
der static conditions. The experimentally observed changes in the
number of B. cereus cells on various Japanese deli foods and
the growth simulation given by equation 13 incorporated into the
ComBase Predictor �max model using the pH and NaCl concen-
tration of each food (Table 2) are shown in Fig. 6 and 7. The
overall predictions during storage, regardless of the storage tem-
perature or the type of food, were consistent with the observed B.

cereus number, with relatively small RMSEs (Fig. 6 and 7). The �s
were estimated from the observed growth data using the DMFit
software (4) (Table 2). The accuracy of the model prediction was
good under all food and temperature conditions (Table 2). All of
the observed �s fell within the 95% prediction interval of the pre-
dicted probability distribution. Compared with other predictions
of �s of B. cereus vegetative cells based on polynomial models, such
as the Pathogen Modeling Program (PMP) (6), the ComBase Pre-
dictor, and the model devised by Ölmez and Aran (25), the ob-
served results and those predicted by the model developed in the
present study indicated relatively shorter �s. While the pRE
(�0.70) was in the acceptable prediction zone of the � (�0.6 to
0.3), demonstrating acceptable performance of the developed lag
time model, the other models were not acceptable (pRE � 0.70).
The probability distributions of the end of the lag time derived
using the differentiation of equation 11 for the growth of bacteria
in cooked okara (soy pulp, tofu residue) are shown in Fig. 8 as a
representative result. The observed �s fell within the 95% predic-
tion intervals of the newly developed model. Thus, this newly
developed model for the lag time enabled a description of the
probability distribution of the lag time and could also be com-
bined with a bacterial growth differential equation model to accu-
rately simulate bacterial growth.

Validation using bacterial growth data under fluctuating
temperatures. The experimentally observed changes in the num-
ber of B. cereus cells in cream pasta sauces under fluctuating tem-
perature conditions and the growth simulation given by equation
12 incorporated into the ComBase Predictor �max model using the
values of pH and NaCl concentration of each pasta sauce are
shown in Fig. 9a. The overall model predictions during storage,
regardless of the conditions (pH or salt concentration) of the
sauce, were consistent with the observed B. cereus number, with
RMSEs of less than 0.2 log CFU/g. Although the probability of the
end of lag time basically increased with time, the changes in the
probability of the end of lag time followed the temperature shifts
(Fig. 9b). The changes in the probability of the end of lag time
seemed to adjust to the increase in B. cereus during the storage
period. The pRE of B. cereus cell numbers within the acceptable
prediction zone (�0.8 to 0.4) (26) was 87.5%, representing an
acceptable performance (Fig. 10). Moreover, no prediction prob-

FIG 4 Representative changes in the probability of the end of lag time at pH 6.0 and 0.5% NaCl. (a) The cumulative probability distribution predicted by
equation 11 (solid lines) and equation 12 (dashed lines). (b) Probability density distributions calculated by differentiation of equation 11 (solid lines) and
equation 12 (dashed lines).

FIG 5 Relative error (RE) plots comparing the observed and predicted values
(at P � 0.5) of the lag time of B. cereus fitted by equation 9. The dotted lines
represent the acceptable prediction zone for an RE of �0.6 (fail-safe) to 0.3
(fail-dangerous).
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lems or regional biases were encountered (Fig. 10). Thus, the de-
veloped model illustrated acceptable accuracy under fluctuating
temperatures.

DISCUSSION

The function adjusting the lag time plays a key role in describing
the bacterial numbers over time using a differential equation
model such as the Baranyi and Roberts model (4). The function

1

1�
1

q0
exp���maxt�

, which adjusts the lag time in the Baranyi and

Roberts model, shows a sigmoidal increase over time with values
between 0 and 1. With the adjusting function, the differential
equation model can exhibit lag duration in a growth curve. How-
ever, although the adjusting function in the Baranyi and Roberts
model is based on the assumption �0 that is based on constancy of
�max 
 �, the values of �max 
 � are not always constant, as shown
in the present study (Fig. 2) as well as the other literature (2, 10, 21,
31). The distribution of the values for �max 
 � presented here is
similar to those in previous studies. Since this conceptual relation-
ship should therefore be applied with caution, there is room for
improvement in the adjusting function of lag time combined with
a differential equation. Because lag time is apparently highly vari-
able for various reasons, it might be difficult to describe the lag
time as a deterministic function. To take into account the various
factors influencing lag time duration, a probabilistic approach
would be better to describe the complexity of lag time. Thus, an
alternative modeling of lag time describing it as a probability func-
tion without any biological and/or conceptual assumption was
investigated in the present study.

The model developed in the present study for the probability of
the end of the lag time is not based on any biological and/or con-
ceptual assumption. Because a logistic regression model was sim-
ply fitted to the experimental data, the flexibility of the model is
improved over that of other procedures that rely on prior assump-
tions. A mechanistic approach to modeling that is based on bio-
logical and/or conceptual assumptions is critical to future im-
provement; however, until the mechanism governing bacterial lag
time is understood, the benefit of modeling the lag time based on
biological and/or conceptual assumptions is unclear. Thus, em-
pirical modeling driven by experimental data remains an impor-
tant procedure.

The developed logistic regression model for the probability of
the end of lag time demonstrated high goodness of fit as represent-
ing a high AUC value (0.95) and high concordance (95.8%). In
contrast, the maximum rescaled R2 value was not very high (0.70).
However, because it has been reported that the R2 does not accu-
rately reflect the goodness of fit of the logistic regression model, as
it does that of the linear regression model (1), this result was not
surprising. From the validation results shown in Fig. 3 and Table
2, it has been illustrated that the developed model enabled accu-
rate prediction of the lag time. The lag time could be successfully
described as a probability function of time and environmental
factors that can be directly measured.

The OD growth kinetics data were used in the present study to
develop the model for the probability of the end of lag time during
the growth kinetics. In order to determine accurate timing of the
end of lag time, OD measurement with short measuring intervals
(10 min) was employed. However, the most important point is not
the measurement of OD value itself but an appropriate determi-

TABLE 2 Comparison of the observed and predicted lag times of B. cereus inoculated on cooked foods

Food pH NaCl (%) Temp (°C)

Lag time (h)

Observeda

Predictedb [95%
PIc] CBPd PMPe Reference 25f

Freeze-dried tofu 6.92 1.7 15 16.5 13.2 [4.0–42.3] 24.5 23.0 22.3
10 28.3 32.6 [10.0–105.9] 52.4 103.7 70.3

Freeze-dried tofu, lightly salted 7.09 0.40 15 6.1 8.4 [2.6–27.3] 22.1 14.4 9.8
10 7.2 20.8 [6.4–67.4] 53.2 61.2 37.7

Satoimo (taro) 5.49 0.49 15 8.2 14.2 [4.3–46.0] 32.6 18.1 20.5
10 22.9 35.0 [10.8–113.6] 63.0 69.6 77.6

Pumpkin 6.18 0.57 15 7.8 11.8 [3.6–38.1] 27.6 12.2 13.6
10 35.7 28.9 [8.9–94.1] 62.3 49.4 51.0

Okara (soy pulp) 6.37 1.25 15 15.4 13.7 [4.2–44.3] 27.4 15.6 20.1
10 30.8 33.7 [10.3–109.4] 61.3 66.7 67.8

Burdock root and carrot 5.72 1.45 15 29.6 17.8 [5.4–57.7] 34.2 20.0 32.1
10 53.2 43.7 [13.4–142.3] 73.2 83.2 104.9

pREg 0.75 0.25 0.33 0.33
a Estimated by fitting growth curve using DMFit.
b Predicted value at P � 0.5.
c PI, prediction interval.
d Prediction by the ComBase predictor (physiological state value was set as default: 0.000611).
e Prediction by the Pathogen Modeling Program.
f Prediction by the model of Ölmez and Aran.
g Proportion of relative error (pRE) in the acceptable prediction zone of lag time (�0.3 to 0.6).
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nation of the lag time ending. Although the defined small but
significant OD change in the present study successfully reflected
the lag time ending (Fig. 1), the OD change would not reflect real
end of lag time in the case of a smaller inoculum. Because the
changes in OD value are below the detection limit at lower inoc-
ulum levels, such as �104 CFU/ml, the changes in OD value would
be biased toward zero and could not detect the end of lag time
appropriately. In such cases, the end of lag time can be estimated
by other procedures, such as time-to-detection measurement with
a 2-fold dilution method (5, 7), plate counts, and other high-

resolution enumeration methods. The end of lag time determined
by those methods would also be applied to the probabilistic model
development as described in the introduction. This feature would
allow us to increase the choices for more accurate and flexible
model development.

Many authors have observed that abrupt changes in environ-
mental conditions, such as temperature, pH, and aw, during the
growth phase induce an “intermediate” lag phase (17, 21–23, 34,
37). It has been reported that abrupt environmental changes cause
cells to perform extra work before reinitiating their growth. Some

FIG 6 Experimentally observed changes in the number of B. cereus cells on Japanese deli foods and the growth prediction calculated using equation 13 at
10°C.
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authors have proposed models for the effects of temperature shifts
on the lag time of Escherichia coli (34), Lactobacillus plantarum
(36), and Listeria monocytogenes (35). Delignette-Muller et al. (11)
highlighted a linear relationship between the work to be done and
the magnitude and direction of temperature shifts. Although the
intermediate lag times caused by abrupt changes in environmental
conditions are commonly neglected in tertiary models that simu-
late bacterial numbers over time, Muñoz-Cuevas et al. (23) re-
cently proposed a procedure for incorporating intermediate lag

times induced by temperature shifts. Moreover, Le Marc et al. (17)
proposed a procedure for incorporating intermediate lag times in-
duced by pH and/or osmotic shifts. Muñoz-Cuevas et al. (23) suc-
cessfully described the intermediate lag time by reflecting the changes
in h(t) (remaining work to be done) as a square root function of
temperature and aw. These procedures are based on the theoretical
parameter h0, which is derived from the assumption of a constant
product of �max and �. This approach is totally mechanistic, and the
relationship between �max and � is indispensable.

FIG 7 Experimentally observed changes in the number of B. cereus cells on Japanese deli foods and the growth prediction calculated using equation 13 at
15°C.
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In contrast, the procedure developed in the present study is a
completely data-driven empirical approach without any concep-
tual and/or biological assumptions. The procedure allows us to
determine lag time independent of h0 and �max. This approach
allowed us to develop a flexible model. As mentioned above, the
model developed in the present study successfully simulated bac-
terial numbers over time with temperature fluctuations (Fig. 6a).
Moreover, the results of the changes in the probability of the lag
time ending (Fig. 6b) may reflect the intermediate lag time corre-
sponding to temperature shifts. While the approach of the present
study is not mechanistic, as is the approach by Muñoz-Cuevas et
al. (23), this simple data-driven empirical modeling procedure
using logistic regression offers the possibility of considering the
intermediate lag time as a change in the probability of the end of
lag time. Further studies are required to investigate the ability to
estimate the intermediate lag time between the developed empir-
ical method and other mechanistic approaches.

The bacterial lag time is affected by the current environmental
conditions, as well as various other factors, such as the history of

FIG 9 (a) Experimentally observed changes in the number of B. cereus cells in
cream pasta sauces and the growth prediction under fluctuating temperatures
calculated using equation 13. The dotted line represents changes in tempera-
ture. Filled and open circles represent the observed B. cereus number (log
CFU/g) in sauces I (pH 6.20, 1.05% NaCl) and II (pH 5.95, 1.59% NaCl),
respectively. The dashed and solid lines represent model predictions for sauces
I and II, respectively. The root mean squared errors for sauces I and II were
0.17 and 0.18, respectively. (b) Probability of the end of lag time corresponding
to temperature changes. The dotted line represents changes in temperature.
The dashed and solid lines represent model predictions for sauces I and II,
respectively.

FIG 8 Probability density distributions of the end of lag time for cooked okara at 15°C (a) and 10°C (b) derived using the differentiation of equation 11. The
shaded area represents the 95% prediction interval, and the filled circle represents the observed lag time estimated by using DMFit software.

FIG 10 Relative error (RE) plots comparing the observed and predicted values
of the number of B. cereus cells calculated by equation 13 under fluctuating
temperature conditions. The dotted lines represent the acceptable prediction
zone for an RE of �0.8 (fail-safe) to 0.4 (fail-dangerous). Filled and open
circles represent the results for sauces I (pH 6.20, 1.05% NaCl) and II (pH 5.95,
1.59% NaCl), respectively.
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the population or cell, preculturing conditions, the magnitude
and rate of change in the environment (11, 21, 22, 35), initial cell
counts (3, 27, 30), and strain variability. In the present study, we
did not employ these factors as parameters; however, we could use
the effects of the population history, initial cell counts, and strain
variability as parameters in a logistic regression model due to the
flexible nature of the model. Because logistic regressions employ
various types of data as explanatory variables (1), we could de-
velop a model for the probability of the end of lag time that would
consider the effects mentioned above if sufficient data sets became
available. The availability of data sets is a critical and challenging
problem for the modeling procedure developed in the present
study and should be addressed in future studies.

Using single-cell behavior as an approach to accounting for vari-
ability among bacterial cells has recently received attention, and the
variability of single-cell lag times has been modeled as a probability
distribution (12, 13, 19, 32, 33). This modeling approach has drawn
attention to risk assessors, because the nature of such models empha-
sizes the variability of the lag time. The model developed in the pres-
ent study enabled us to illustrate the probability distribution of the lag
time by differentiation of the model equation, as shown in Fig. 4b and
8. However, the distribution derived from the developed model re-
flects the distribution of the population lag time. If single-cell lag time
data were applied to a logistic regression, such as that developed in the
present study, the lag distribution of single-cell variability could be
described. This possibility will be considered for future studies in-
volving the model developed here.

In conclusion, the newly developed model for the probability
of end of lag time will allow us to develop more flexible models
without additional biological assumptions. Although some prob-
lems to be examined remain, this modeling procedure represents
an effective alternative for predicting bacterial lag time.
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