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Abstract

P73, one member of the tumor suppressor p53 family, shares highly structural and functional similarity to p53. Like p53, the
transcriptionally active TAp73 can mediate cellular response to chemotherapeutic agents in human cancer cells by up-
regulating the expressions of its pro-apoptotic target genes such as PUMA, Bax, NOXA. Here, we demonstrated a novel
molecular mechanism for TAp73-mediated apoptosis in response to cisplatin in ovarian cancer cells, and that was
irrespective of p53 status. We found that TAp73 acted as an activator of the c-Jun N-terminal kinase (JNK) signaling pathway
by up-regulating the expression of its target growth arrest and DNA-damage-inducible protein GADD45 alpha (GADD45a)
and subsequently activating mitogen-activated protein kinase kinase-4 (MKK4). Inhibition of JNK activity by a specific
inhibitor or small interfering RNA (siRNA) significantly abrogated TAp73-mediated apoptosis induced by cisplatin.
Furthermore, inhibition of GADD45a by siRNA inactivated MKK4/JNK activities and also blocked TAp73-mediated apoptosis
induction by cisplatin. Our study has demonstrated that TAp73 activated the JNK apoptotic signaling pathway in response
to cisplatin in ovarian cancer cells.
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Introduction

P73, a novel member of the tumor suppressor p53 family, is

similar to p53 both structurally and functionally [1,2]. The p73

gene encodes more than 20 protein isoforms due to the usage of

different promoters and alternatively post-transcriptional splic-

ing. The transcriptionally active TAp73 isoforms, containing

full N-terminal transactivation domain, can bind specifically to

p53 responsive elements and transactivates some of the p53

target genes, and subsequently induce cell cycle arrest and

apoptosis, while the DNp73 isoforms, with truncated N-

terminal transactivation domain, acts as a dominant-negative

inhibitor of both TAp73 and p53 [1,3,4]. Interestingly, TAp73

is also a mediator of cellular sensitivity to chemotherapeutic

agents in human cancer cells [1,4–7]. Many pro-apoptotic

genes, such as PUMA, Bax and NOXA, act as activators of the

mitochondrial apoptotic pathway, and have p73 responsive

elements in their promoter and can be up-regulated by p73 to

induce apoptosis in response to chemotherapeutic drugs. In

addition, p73-mediated up-regulation of the death receptor

CD95, a mediator of the extrinsic apoptotic pathway, also

contributes to p73-mediated apoptosis in cancer cells under

stress stimuli [8]. Yet, unlike p53, the molecular mechanisms

implicating in p73-mediated cellular apoptosis are still not

clearly understood. Understanding the precise underlying

molecular mechanisms will be useful in targeting p73 as a

good candidate gene for cancer therapy.

The JNK belongs to a superfamily of mitogen-activated protein

(MAP) kinases. The JNK protein kinases contain Jnk1, Jnk2 and

Jnk3. Jnk1 and Jnk2 are ubiquitously detectable. The Jnk3 is

mainly restricted to brain, heart and testis [9]. The JNK signaling

pathway responses to various stress stimuli, through the transduc-

tion of the upstream MAPKKK including MEKKs, and

subsequently activation of JNK by phosphorylated at Thr and

Tyr sites by the JNK direct upstream kinases MKK4/MKK7.

Activation of JNK phosphorylates and activates the downstream

transcription factor c-Jun and other transcription factors [9,10].

The JNK signaling pathway acts as a key positive modulator of cell

apoptotic response to stress stimuli [9–11]. In addition, the JNK

signaling pathway contributes critically to cisplatin-dependent

apoptosis in cancer cells [12–15].

In this study, we aimed to study the effect of TAp73 (TAp73a) on

cellular response to cisplatin in ovarian cancer cells and the

underlying molecular mechanisms. We were interested in whether

TAp73 would have any regulatory role in other apoptotic pathways,

such as the JNK signaling pathway, upon cisplatin treatment.

Results

TAp73a enhances cellular sensitivity to cisplatin in
ovarian cancer cells

To investigate the role of TAp73 in ovarian cancer cells in

response to cisplatin, human cisplatin-resistant ovarian cancer cell
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lines SKOV3 (null-p53) and OVCA433 (wild-type p53) were

stably transfected with the plasmid pEGFP-TAp73a (Figure 1A).

The effect of TAp73a on cellular response to cisplatin was assessed

by both XTT cell viability assay and clonogenic assay. As shown in

Figure 1B and 1C, TAp73a significantly increased cellular

sensitivity to cisplatin in both null-p53 SKOV3 and wild-type

p53 OVCA433 cells, when compared to the vector controls. Such

effect was observed in both short-term (by XTT assay) and long-

term (by clonogenic assay) culture assays. Furthermore, cell

apoptosis induced by cisplatin was also increased by over-

expression of TAp73a, as evidenced by TUNEL assay and

cleaved PARP expression analysis (Figure 2A and 2B). These

results indicated that TAp73 promoted cellular sensitivity to

cisplatin via the induction of cell apoptosis, and such TAp73

function was p53-independent, as the effects were similar in both

wild-type p53 and null-p53 cells.

TAp73a mediates the activation of JNK signaling
pathway

Previous reports have shown that activation of JNK contributes

critically to cisplatin-induced cell apoptosis [12–15]. We thus

hypothesized that TAp73a-mediated cell apoptosis in response to

cisplatin might act through the activation of JNK signaling

pathway. The effect of TAp73a on the activation of JNK signals

was firstly analyzed by measuring the phosphorylation level of

JNK (p-JNK) and its substrate c-Jun (p-c-Jun) in TAp73a-

overexpressed cells. As shown in Figure 3A, both p-JNK and p-

c-Jun were obviously elevated in TAp73a-overexpressed cells,

when compared to the control cells. The increase of p-JNK and p-

c-Jun were further augmented in these cells in response to

cisplatin, only a slight increase of p-JNK and p-c-Jun was observed

in the control cells. The time and dose-dependent experiments

demonstrated that cisplatin-induced JNK activation occurred at as

early as 6 h, and up to 48 h after the cells treated with 4 mg/ml

cisplatin, and the effective cisplatin dosage for JNK activation was

at as low as 2 mg/ml for 12 h treatment in TAp73a-overexpressed

cells (SKOV3 C8; OVCA433 C1; Figure 3B). In addition, the

activation of JNK was dependent on the transactivational activity

of TAp73a as the p-JNK level was not changed in the cells stably

over-expressing DNp73a (Figure 3C and 3D), a truncated isoform

of p73 without transactivation activity. To verify whether the effect

of TAp73a overexpression in promoting the cellular sensitivity was

specific to cisplatin, we also performed the similar experiments

with the treatment of Taxol, which is also a first-line anticancer

drug used for ovarian cancer treatment. We found that Taxol was

not able to activate JNK pathway in TAp73 overexpressed ovarian

cancer cells, although TAp73a could enhanced the cell sensitivity

in response to Taxol (Figure S1).

Inhibition of JNK activity attenuates TAp73a-mediated
apoptosis in response to cisplatin

To further explore whether TAp73a-mediated the activation of

JNK contributed to apoptosis induction in response to cisplatin, a

specific inhibitor of JNK kinase activity, SP600125, was used.

After treatment of 20 mM SP600125 for 8 hours, the p-JNK level

was reduced up to 60% in the TAp73a-overexpressed cells

(SKOV3 C8 and OVCA433 C1, Figure 4A). In addition,

inhibition of JNK activation by SP600125 significantly reduced

cell apoptosis induced by cisplatin in TAp73a-overexpressed cells,

as evidenced by TUNEL assay and cleaved PARP expression

analysis (Figure 4B and 4C).

Activation of the JNK pathway by TAp73a implicated in

cisplatin-induced apoptosis was also demonstrated by the obser-

vation that silence of JNK1 and -2 in TAp73a-overexpressed cells

significantly blocked cisplatin-induced cell death. As shown in

Figure 4D, treatment of siRNAs against JNK1 and -2 in cancer

cells (SKOV3 C8; OVCA433 C1) obviously down-regulated

JNK1/2 expression compared to the scrambled siRNA controls,

and the treatment subsequently suppressed the phosphorylation

levels of JNK and its substrate c-Jun. As evidenced by TUNEL

assay and cleaved PARP expression analysis, the cisplatin-induced

apoptosis in TAp73a-overexpressed cells (SKOV3 C8; OVCA433

C1) was significantly attenuated by JNK silencing treatment

(Figure 4E and 4F). These results further confirmed that the

activation of JNK pathway by TAp73a contributed to TAp73a-

mediated apoptosis in ovarian cancer cells in response to cisplatin.

TAp73a-mediated up-regulation of GADD45a is
responsible for the activation of JNK signaling pathway

GADD45a has been identified as a binding partner and

activator of the JNK upstream kinase MEKK4/MTK1, and its

binding to MEKK4/MTK1 can activate the downstream gene

MKK4 and JNK [17,18]. On the other hand, GADD45a is a well-

defined target gene of p73 [19,20]. Thus, we hypothesized that

GADD45a might play a role in the activation of JNK signaling

pathway mediated by TAp73. The effect of TAp73 on GADD45a
expression was first assessed. As shown in Figure 5A and 5B, the

expression of GADD45a was up-regulated in both mRNA and

protein levels in TAp73a-overexpressed cells. In response to

cisplatin, TAp73a-mediated up-regulation of GADD45a protein

was further increased (Figure 5B). As GADD45a can directly

interact with MEKK4/MTK1 to activate its substrate MKK4

kinase [17,18], we then measured the phosphorylation level of

MKK4 in TAp73a-overexpressed cells. As shown in Figure 5B,

increase of phosphorylated MKK4 was observed in TAp73a-

overexpressed cells and further enhanced in response to cisplatin

treatment. These results suggested that TAp73a mediated the

activation of JNK signaling pathway possibly through up-

regulation of its target gene GADD45a and subsequent activation

of MKK4, an upstream component of JNK signaling pathway.

To further verify these findings, a pair of siRNAs against

GADD45a (Si1-GADD45a and Si2-GADD45a) was used to

transiently knockdown the GADD45a expression. The phosphor-

ylation levels of MKK4, JNK and c-Jun were accordingly reduced

upon the down-regulation of GADD45a, even in response to

cisplatin treatment (Figure 5C). Therefore, we confirmed that

TAp73a-mediated up-regulation of GADD45a was responsible

for the activation of the JNK signaling pathway in ovarian cancer

cells.

GADD45a is responsible for TAp73a-mediated apoptosis
To determine whether silence of GADD45a has an effect on

cisplatin-induced apoptosis in TAp73a-overexpressed cells, cells

were treated with GADD45a siRNAs and cell apoptosis was

measured. As shown in Figure 6, cisplatin-induced apoptosis was

dramatically decreased in GADD45a-silenced TAp73a-overex-

pressed cells (SKOV3 C8; OVCA433 C1). These findings

suggested that TAp73a-mediated the up-regulation of GADD45a
was responsible for the activation of the JNK signaling pathway

and cell apoptosis in ovarian cancer cells.

Discussion

In this study, we demonstrated that, for the first time, to our

knowledge, TAp73 partially mediated cellular apoptosis in

response to cisplatin through the activation of JNK signaling

pathway in ovarian cancer cells. We found that, in response to
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Figure 1. Overexpression of TAp73a enhanced cellular sensitivity to cisplatin. (A) The GFP-TAp73a overexpressing stable clones in SKOV3
(C8, C24 and C28) and OVCA433 (C1, C7 and C12) cells were verified by western blot analysis. (B and C) Both XTT viability assay and clonogenic assay
showed significantly reduced cell proliferation in TAp73a-overexpressed cells of SKOV3 and OVCA433 compared to the empty vector controls (V) in
response to cisplatin treatment. The percentage of cells/colonies surviving in cisplatin relative to cells/colonies in drug-free medium control was
measured. Data was shown as mean 6 SD from three independent experiments (*: p,0.05; **: p,0.01).
doi:10.1371/journal.pone.0042985.g001
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cisplatin, TAp73a activated the JNK signaling pathway via the up-

regulation of its downstream gene GADD45a, and the response

was TAp73-dependent and p53-independent.

Established evidence has shown that the transcriptionally active

TAp73 enhanced cellular sensitivity to chemotherapeutic drug

cisplatin in human cancer cells [5–7,21]. In addition, a recent report

has demonstrated that TAp73 expression in ovarian cancers was

much higher in responsive cancers compared with unresponsive

cancers [22]. Our study confirmed that TAp73 did enhance cellular

sensitivity to cisplatin in ovarian cancer cells. Although TAp73 is

functionally similar to p53, functional p53 expression has been

shown to be necessary for TAp73-mediated cell apoptosis under

DNA damage stimulation [23]. On the other hand, some studies

suggested that p73-mediated chemosensitivity is independent of the

p53 expression in some cancer cells [5,24]. In our present study,

TAp73a-mediated apoptosis was observed in p53-null SKOV3

cells, indicating that TAp73-mediated apoptosis was p53-indepen-

dent, at least in our cell model, further emphasizing the independent

role of p73 among its family members in DNA damage response.

The JNK cell death pathway functions as an important

regulator of cell apoptosis in response to various stress stimuli

and actually plays a central role in apoptotic pathways, including

extrinsic (death receptors) [11] and intrinsic (mitochondrial)

pathways [11,25]. Previous studies have shown that cisplatin-

mediated activation of the JNK signaling pathway in cancer cells

contributed critically to cisplatin-dependent apoptosis [12–15].

Up-regulation of Fas L expression resulted from activation of

JNK and its substrate c-Jun played a key role in cisplatin-induced

apoptosis in ovarian cancer cells [15]. Our results showed that

JNK and its substrate c-Jun were activated in TAp73a over-

expressed cells, and further augmented in response to cisplatin

treatment. Suppression of JNK activation by JNK inhibitor or

JNK siRNAs in these cells abrogated TAp73a-mediated apop-

tosis. These results suggested that up-regulation of JNK activity

contributed to TAp73-mediated apoptosis induction in ovarian

cancer cells in response to cisplatin. This was the first time to

show that TAp73 functioned as an upstream activator of the

JNK pathway to activate JNK signals to induce cell apoptosis.

To further explore the underlying mechanisms by which

TAp73 up-regulated the JNK phosphorylation level, a p73 target

gene GADD45a was aware. GADD45a is a well-defined

downstream gene of TAp73 and p53 [19,20] and it can be

induced by DNA damage agents, and plays an important role in

the induction of apoptosis [26]. Interestingly, previous studies

have shown that the activation of JNK apoptotic pathway by

GADD45a was closely implicated in GADD45a-mediated

apoptosis induction [27,28]. GADD45a directly interacted with

MEKK4/MTK1 to activate the substrate MKK4 kinase, and

consequently up-regulate the JNK activation, an event that is

involved in apoptosis induction [17,18]. Our study has demon-

strated that the expressions of both GADD45a and active

MKK4 were up-regulated in TAp73a-overexpressed cells, and

this effect was further augmented after cisplatin exposure. On the

other hand, when GADD45a was silenced, the activations of

MKK4, JNK and c-Jun were abolished, even under the

treatment of cisplatin, and the TAp73a-mediated cisplatin-

induced apoptosis was also significantly blocked. These results

indicated that TAp73 was able to activate the JNK apoptotic

Figure 2. Overexpression of TAp73a promoted cell apoptosis in response to cisplatin. (A) TAp73a-overexpressed cells (SKOV3 C8, C24 and
C28 and OVCA433 C1, C7 and C12) and the empty vector controls (V) of SKOV3 and OVCA433 were treated with 4 mg/ml cisplatin for 48 h. Apoptotic
cells were assessed by TUNEL assay. More than 500 cells were counted for each group, the results presented were the relative of the apoptotic cells
to total cells and at least three independent experiments were performed (**: p,0.01). (B) TAp73a-overexpressed cells and empty vector controls
were treated with different doses (indicated) of cisplatin for 24 h, and the cleavage of PARP was detected by western blot analysis.
doi:10.1371/journal.pone.0042985.g002
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Figure 3. TAp73a activated the JNK pathway. (A) Increase of p-JNK and p-c-Jun was detected in TAp73a–overexpressed cells (SKOV3 C8, C24
and C28 and OVCA433 C1, C7 and C12) and further enhanced upon cisplatin treatment (4 mg/ml for 24 h), when compared to the controls (P:
parental cells; V: empty vector control). (B) TAp73a-overexpressed cells (SKOV3 C8 and OVCA433 C1) were exposed to 4 mg/ml cisplatin for different
periods of time, or to different doses of cisplatin for 12 h. The p-JNK level was measured by western blot analysis. (C) DNp73a (GFP-DNp73a) was
over-expressed in SKOV3 (D2) and OVCA433 (D18) cells. (D) No JNK activation was observed in DNp73a-overexpressed cells (SKOV3 D2 and OVCA433
D18).
doi:10.1371/journal.pone.0042985.g003
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Figure 4. Activation of JNK was involved in TAp73a-mediated apoptosis induced by cisplatin. (A) TAp73a-overexpressed cells (SKOV3 C8
and OVCA433 C1) were treated with 20 mM SP600125 for different periods of time (indicated). The phosphorylation levels of JNK and c-Jun were
measured. (B and C) TAp73a-overexpressed cells (SKOV3 C8 and OVCA433 C1) and the empty vector controls (V) were treated with 20 mM SP600125
or DMSO and then with cisplatin. The cell apoptosis were assessed by TUNEL assay (error bars indicated mean 6 SD from three independent
experiments; *: p,0.05) and the cleavage of PARP analysis. Inhibition of JNK attenuated TAp73a-mediated apoptosis in response to cisplatin. (D)
TAp73a-overexpressed cells (SKOV3 C8 and OVCA433 C1) were treated with JNK siRNAs (Si-JNK) or the scrambled control siRNA (Control). The
activations of JNK and c-Jun were absent upon cisplatin treatment, and associated with markedly reduced cell apoptosis (E and F).
doi:10.1371/journal.pone.0042985.g004

TAp73 Enhances Chemosensitivity in Ovarian Cancer

PLOS ONE | www.plosone.org 6 August 2012 | Volume 7 | Issue 8 | e42985



pathway by up-regulating GADD45a expression in ovarian

cancer cells in response to cisplatin.

Interestingly, previous report has proposed a cross talk between

the JNK pathway and p73, and suggested that JNK was an

important regulator in p73-mediated apoptosis in response to

cisplatin [13]. They showed that p73 was a substrate of JNK kinase.

JNK phosphorylated p73 at certain sites to enhance p73

transcription activity and p73-mediated apoptosis in cancer cells

in the presence of cisplatin. In the present study, we demonstrated

that over-expression of TAp73 activated the JNK activity in ovarian

cancer cells, in response to cisplatin. TAp73 acted as an upstream

activator of the JNK apoptotic pathway via the up-regulation of

GADD45a, and the subsequent activation of MKK4 (Figure 7).

Thus, our results provided a new angle to the cross talk between p73

and the JNK pathway in cell apoptosis response.

Collectively, our results clearly support a novel pathway of

TAp73-mediated cellular sensitivity to cisplatin in ovarian cancer

cells. We demonstrated that TAp73a induced the apoptotic

response through the activation of the GADD45a-MKK4-JNK

cell death cascade and provided a novel scenario for the cross talk

between p73 and the JNK apoptotic pathway under stresses. This

TAp73-dependent and p53-independent cellular response would

play an important role in DNA damage response in ovarian cancer

cells, as p53 function was defective in most of the cancer cells. A

better understanding of the underlying mechanisms in TAp73-

mediated apoptotic response is valuable in targeting p73 as a

therapeutic candidate gene.

Materials and Methods

Cell culture and drug treatment
Human ovarian cancer cell lines SKOV3 (null p53) and

OVCA433 (wild-type p53) were the gift from Prof. Tsao, Department

of Anatomy, the University of Hong Kong, where SKOV3 was

obtained from ATCC, Manassas, VA [29], and OVCA433 was

established and described previously [30]. They were maintained in

Figure 5. TAp73a activated the JNK pathway through up-regulating GADD45a and the subsequent activation of MKK4. (A) Increase
of GADD45a mRNA expression in TAp73a-overexpressed cells (SKOV3 C8, C24 and C28 and OVCA433 C1, C7 and C12). (B) Increase of GADD45a
protein expression and the MKK4 phosphorylation level in TAp73a-overexpressed cells (SKOV3 C8, C24 and C28 and OVCA433 C1, C7 and C12). (C)
GADD45a was knocked down in TAp73a-overexpressed cells (SKOV3 C8 and OVCA433 C1) by siRNAs (Si1-GADD45a and Si2-GADD45a) treatment.
The activation of MKK4, JNK and c-Jun were diminished, even under the cisplatin treatment.
doi:10.1371/journal.pone.0042985.g005
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Minimum Essential Medium (MEM) (Invitrogen Corporation, Grand

Island, YN), with 10% Fetal Bovine Serum (Invitrogen), and

incubated in a 37uC humidified incubator containing 5% CO2.

Cis-Diamineplatinum(II) dichloride (Cisplatin, CDDP) (Sigma-

Aldrich Corp., St. Louis, MO), and the JNK-specific inhibitor

SP600215 (Calbiochem, San Diego, CA) were dissolved in milli-Q

water and dimethyl sulfoxide (DMSO) (Sigma), respectively, and

then stored at 220uC. These solutions were further diluted in

culture medium before cell treatment. DMSO was diluted in

medium alone as the control.

Plasmids, siRNA and transfection
The pEGFP-TAp73a and pEGFP-DNp73a plasmids were

constructed by PCR amplification of the full length coding region

of TAp73a and DNp73a on cDNAs of ovarian cancer cells. And

the PCR products were digested and then cloned in frame into the

pEGFP expression vector (Clontech laboratories, Mountain View,

CA). For stable clones, the pEGFP-TAp73a and pEGFP-DNp73a
transfectants were selected by G418 (Invitrogen) for 14 days and

then the single colonies were picked up and verified by western

blot analysis. The siRNAs against JNK and GADD45a and the

scrambled siRNA (negative control) (Applied Biosystems by Life

Technologies, Foster City, CA) were transfected to cells at 20 nM

final concentration. Lipofectamine 2000 (Invitrogen) was used for

cell transfection according to the manufacturer’s instructions.

RT-PCR
Total RNA of cells was extracted using Trizol reagent (Invitro-

gen), and cDNA was synthesized with High Capacity RNA-to-

Figure 6. GADD45a contributed to TAp73-mediated apoptosis in response to cisplatin. Cell apoptosis was diminished in TAp73a-
overexpressed cells (SKOV3 C8 and OVCA433 C1) in response to cisplatin after GADD45a siRNAs treatment. The cell apoptosis was measured by (A)
TUNEL assay (error bars indicate mean 6 SD from three independent experiments; *: p,0.05; **: p,0.01) and (B) the cleavage of PARP assay.
doi:10.1371/journal.pone.0042985.g006

Figure 7. A proposed model for the regulatory role of TAp73 in
DNA damage response. DNA damage agent, cisplatin induces TAp73
accumulation and the subsequent up-regulation of its pro-apoptotic
target genes to induce cell apoptosis. Simultaneously, up-regulation of
TAp73 target gene, GADD45a activates the JNK apoptotic pathway via
its interaction with MEKK4/MTK1 to induce apoptosis.
doi:10.1371/journal.pone.0042985.g007
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cDNA Master Mix kit (Applied Biosystems). The specific primers

(GGAGGAAGTGCTCAGCAAAG and TCCCGGCAAAAACA

AATAAG) were used to amplify human GADD45a cDNA.

Western blot analysis
Cells were harvested with 0.05% trypsin/EDTA (Invitrogen)

and proteins were extracted using conventional RIPA lysis buffer

[16]. The antibodies against GFP, JNK and GADD45a were

purchased from Santa Cruz Biotechnology Inc. (Santa Cruz, CA).

The antibodies against MKK4, PARP and c-Jun and the active

forms of JNK, c-Jun (ser63) and MKK4 were obtained from Cell

Signaling Technologies (Beverly, MA).

Cell viability analysis
Cell viability was assessed by XTT (2,3-bis [2-methoxy-4-nitro-

5-sulfophenyl]-2H -tetrazolium-5-carboxanilide inner salt) kit II

(Roche Diagnostics GmbH, Mannheim, Germany) according to

the manufacturer’s protocol. Briefly, cells were seeded in triplicate

in 96-well plate and treated with cisplatin (4 mg/ml) at the

following day. The cell viability was measured after one day of

treatment for four consecutive days.

Clonogenic assay
The colony-forming ability of cells was measured by clonogenic

assay. Cells were plated in triplicate in medium containing

cisplatin (0.15 mg/ml) or drug-free medium at a concentration of

500 cells per well in 6-well plate. After 48 h incubation, all of these

cells were allowed to grow in drug-free medium for 10–12 days.

Surviving colonies were fixed in 75% ethanol and then stained in

1% giemsa (Merck, Damstadt, Germany). Colonies consisting of

more than 50 cells were counted.

Apoptosis assay
Apoptotic cells were examined by TUNEL assay (In Situ Cell

Death Detection Kit, Roche) according to the manufacturer’s

instructions. Briefly, Cells were seeded on coverslips one day

before 4 mg/ml cisplatin treatment for 48 h. After fixation and

permeabilisation, cells were stained with TUNEL reaction

mixture, and counterstained with DAPI (49,6-diamidino-2-pheny-

lindole) (Sigma).

Statistical analysis
Data was expressed as mean 6 SD of three independent

experiments. SPSS 16.0 software (SPSS) was used for data

analysis. Student’s t-test was used to assess the difference

between groups. A P value ,0.05 was considered statistically

significant.

Supporting Information

Figure S1 TAp73a enhanced cellular sensitivity to
Taxol, but not via the JNK pathway. (A) XTT viability

assay showed TAp73a-overexpressed cells of SKOV3 and

OVCA433 were more sensitive to Taxol treatment, compared to

the empty vector controls (V). (B) After cisplatin or Taxol

treatment for 24 h, the phosphorylation level of JNK was not

increased in SKOV3 and OVCA433 cells treated with Taxol,

even with TAp73a over-expression cells (C: control; D: cisplatin:

T50 and T500: 50 ng/ml and 500 ng/ml Taxol).

(TIF)
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