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Abstract

Saffron, an extract from Crocus sativus, has been largely used in traditional medicine for its antiapoptotic and
anticarcinogenic properties. In this work, we investigate the effects of safranal, a component of saffron stigmas, in
attenuating retinal degeneration in the P23H rat model of autosomal dominant retinitis pigmentosa. We demonstrate that
administration of safranal to homozygous P23H line-3 rats preserves both photoreceptor morphology and number.
Electroretinographic recordings showed higher a- and b-wave amplitudes under both photopic and scotopic conditions in
safranal-treated versus non-treated animals. Furthermore, the capillary network in safranal-treated animals was preserved,
unlike that found in untreated animals. Our findings indicate that dietary supplementation with safranal slows
photoreceptor cell degeneration and ameliorates the loss of retinal function and vascular network disruption in P23H rats.
This work also suggests that safranal could be potentially useful to retard retinal degeneration in patients with retinitis
pigmentosa.
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Introduction

Retinitis pigmentosa (RP) refers to a heterogeneous group of

inherited neurodegenerative retinal disorders that cause pro-

gressive peripheral vision loss and poor night vision, which

eventually leads to central vision impairment. RP has been related

to more than 100 different mutations of the rhodopsin-encoding

gene (RHO), which altogether account for 30–40% of autosomal

dominant cases. The P23H mutation of this gene is the most

prevalent cause of RP [1]. In the United States, this mutation

alone accounts for about 12% of autosomal dominant RP cases

[2]. The majority of RP-causing mutations in the RHO gene,

including P23H, cause misfolding and retention of rhodopsin in

the endoplasmic reticulum of transfected cultured cells [3]. These

studies also suggest that the RP mechanism may involve a cellular

stress response [4] resulting in programmed photoreceptor cell

death or apoptosis, a final common pathway for different retinal

diseases [5].

No effective therapy has been found for RP. It would be thus

interesting to address potential treatments that would at least delay

the progression of the disease. Recent works have suggested that

supplementation with antioxidants may help delay or even prevent

retinal degeneration associated with RP. Antioxidants have been

shown to be effective in preventing retinal degeneration in mouse

models of RP [6]. These studies have shown that a mixture of

antioxidants (alpha-tocopherol, ascorbic acid and alpha-lipoic

acid) promotes cone survival in rd1 mice. The same mixture of

antioxidants slows down rod degeneration in rd10 mice [7]. On

the other hand, it has been reported that a mixture of lutein,

zeaxanthin, glutathione and alpha-lipoic acid is able to slow the

death of photoreceptors in rd1 mice [8,9].

The pistil of Crocus sativus, commonly known as saffron, has been

commonly used in traditional medicine as an anodyne and

sedative. In the retina, saffron is considered to help blood

circulation, cures macula lutea and retinopathy ischemic caused

by old age [10]. Modern pharmacological studies have demon-

strated that saffron and its constituents protects against damage,

exerting anti-ischemic [11,12,13,14], anticonvulsant [15], anxio-

lytic [16,17], antidepressant [18,19], anti-inflammatory [20],

hypotensive [21,22] and antitumor [23,24,25,26] properties.

Safranal (2,6,6-trimethyl-1,3-cyclohexadiene-1-carboxalde-

hyde), the main component of essential oil of saffron, exhibits

antioxidant activity [27,28,29] and has the ability to bind and

stabilize the DNA molecule [29,30]. In vitro studies have

demonstrated that it is capable of neutralizing free radicals

[27,29]. In vivo, it is capable of suppressing the genotoxicity caused

by methyl methanesulfonate [31,32]. In ischemic rats, safranal also

exerts a protective activity against oxidative damage in skeletal

muscle [13] and cerebral tissues [12,14], and has also been

reported to have anticonvulsant activity in mice with chronic

attacks, having been shown to reduce the duration of attacks, delay

tonic stages and protect mice from death [15]. Diet supplemen-
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tation with saffron extract protects photoreceptors from death by

exposure to bright light [33] and improves retinal function in early

age-related macular degeneration [34]. All these data suggest that

safranal is a powerful antioxidant that fights oxidative stress in

neurons [35]. However, to date, the effects of this compound on

experimental models of degenerative retinal hereditary diseases

have not been studied.

The aim of this study was to evaluate the effectiveness of

safranal as a neuroprotective agent on homozygous P23H line-3

rats. To do so, we used functional (ERG) and morphological

(histological labeling) techniques. The capacity of safranal to

prevent the loss of synaptic contacts in the outer plexiform layer

(OPL) was also evaluated. If safranal is shown to have positive

effects in this animal model, this could potentially lead to its

preventive use in patients affected by RP.

Results

Safranal preserves retinal function
To determine whether safranal was able to preserve photore-

ceptor function in P23H rats, we performed scotopic and photopic

flash-induced ERGs in vehicle- and safranal-treated animals at

P120. Figure 1 shows that ERG responses were much less

deteriorated in rats treated with safranal (P21 to P120) as

compared to those in control animals. Under scotopic conditions,

the maximum amplitudes recorded for a- and b-waves were 79%

and 74% higher, respectively, in safranal-treated animals than

those recorded in control animals (ANOVA, P,0.05 for scotopic

a-waves; n= 18 and n= 14, respectively; P,0.05 for scotopic b-

waves n= 22 and n= 16, respectively) (Fig. 1A, C, D). Similar

differences (86%) were observed in the maximum amplitudes of

photopic b-waves (ANOVA, P,0.05; n = 18 and n = 12, re-

spectively) (Fig. 1B, F). Maximum amplitudes recorded for

photopic a-waves were higher in safranal-treated animals as

compared to those measured in control animals, although the

differences were not significant (Fig. 1B, E). In animals treated

with safranal, the thresholds were lower than those in control rats,

for both scotopic b-waves (25.2 log cd?s/m2 vs. 23.1 log cd?s/m2)

and photopic b-waves (24.1 log cd?s/m2 vs. 21.9 log cd?s/m2)

(Fig. 1D, F).

Safranal slows photoreceptor degeneration
To determine whether safranal treatment protects against the

degeneration of photoreceptors, we quantified the photoreceptor

rows present in the ONL at P120 using the nuclear dye TO-PRO-

3. Figure 2 shows a retinal section from a wild-type animal, a P23H

rat treated with vehicle, and a P23H rat treated with safranal (P21

to P120). Few rows of photoreceptor cell bodies could be observed

in the vehicle-treated ONL (Fig. 2B), as compared to those present

in the retina of safranal-treated P23H animals (Fig. 2C). Because

retinal degeneration in control P23H rats was heterogeneous, we

opted to study the effects of safranal in different areas of the retina,

from the temporal to nasal zones. We found that ONL thickness

was greater in treated than in control animals in all examined

areas (Student’s t-test; Fig. 3). Safranal showed its strongest

neuroprotective effect at the ONL level in the central area of the

retina (Fig. 3C). In this area, 4-month-old untreated P23H rats

showed 1 to 2 rows of photoreceptor cell bodies (1.560.2),

whereas treated animals showed 3 to 5 photoreceptor rows

remaining (4.060.4).

Safranal helps maintain photoreceptor morphology
To assess whether safranal-treatment had a positive effect on the

morphology of photoreceptors, we examined the staining pattern

of antibodies against c-transducin, a specific marker for cones

[36,37], and recoverin, a marker for rods, cones and two bipolar

cell subtypes. Longer inner and outer rod segments were observed

for safranal-treated P23H rats than for vehicle-treated animals

(Fig. 4), where rod degeneration was evident to a greater degree.

Even more drastic changes with age were observed in the cone

photoreceptors of vehicle-treated P23H rats. At P120, their outer

segments were both short and swollen and very small in size

(Fig. 4B, C). The axons were also absent and pedicles emerged

directly from the cone cell bodies. The exact opposite occurred in

safranal-treated animals, where the outer segments, axon and

pedicles (Fig. 4E, F; arrows), and typical cone shape were

preserved. Additional images of sections are showed as supporting

information (Fig. S1).

Safranal preserves bipolar cell dendrites and their
synaptic contacts with photoreceptors

Retinal ON rod bipolar cells are labeled with antibodies against

the a isoforms of protein kinase C (PKC). In rat retinas, dendritic

terminals of ON rod bipolar cells establish connections with rod

spherules through a large dendritic arbor in the OPL (Fig. 5A). In

the retinas of vehicle-treated P23H rats, rod bipolar cells at P120

showed few cell bodies and a retraction of their dendrites (Fig. 5B).

Dendritic branches were scarce, and some cells had virtually no

dendrites whatsoever. Moreover, immunopositive cell bodies were

not aligned in the orderly fashion found in wild-type rats. By

contrast, in P23H safranal-treated animals, bipolar cell dendrites

were preserved and there was a greater number of cell bodies

(Fig. 5C).

We then proceeded to study whether the protective action of

safranal on the rod bipolar cells was accompanied by the

preservation of their synaptic terminals and connectivity in the

outer plexiform layer. To determine this, retinal sections were

labeled with antibodies against bassoon, a protein constituent of

synaptic ribbons present in both rod spherules and cone pedicles in

the OPL. Typical bassoon-immunoreactive spots could be

observed in retinas of both wild-type and P23H animals (Fig. 5D,

E; arrows), but safranal-treated P23H animals showed more

bassoon-immunoreactive puncta (Fig. 5E) than control P23H rats

(Fig. 5F). The mean number of photorreceptor synaptic ribbons at

the OPL resulted significantly higher in safranal-administered

P23H animals that measured in control animals (Student’s t-test,

P,0.001, n = 6 and n = 8, respectively; Fig. 6). This would

indicate that the presynaptic contact elements between photo-

receptors and bipolar or horizontal cells were at least partially

preserved.

Double immunostaining for bassoon and PKC revealed the

relationship between rod photoreceptor axon terminals and

bipolar cell dendritic tips. In retinas from vehicle-treated P23H

rats labeled at P120 with antibodies against these two markers, few

bassoon-positive dots (Fig. 5H; red, arrows) could be seen paired

with PKC-labeled bipolar cell dendrites (green). However, in

safranal-treated retinas, the number of bassoon-immunoreactive

spots associated with bipolar cell dendritic tips was clearly higher

(Fig. 5I).

Safranal preserves horizontal cell dendrites and their
synaptic contacts with photoreceptors

Horizontal cell bodies are labeled with antibodies against

calbindin. In the retina, these cells are located on the outermost

inner nuclear layer (INL) and establish connections with both rod

and cone photoreceptors. In wild-type rats, calbindin labeling

revealed a punctate staining of dendritic arborization protruding

Safranal Attenuates Retinal Degeneration
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from horizontal cell bodies and connecting with cone axon

terminals, together with thin tangential axonal elongations in the

OPL, ending in an extensive arborization, connecting to the rods

(Fig. 7A). In vehicle-treated P23H rats at P120, a retraction and

loss of horizontal cell dendritic tips was observed alongside

a decrease in TO-PRO-3-stained photoreceptor rows (Fig. 7B). In

contrast, in safranal-treated rat retinas, a higher number of

horizontal cell terminals could be observed (Fig. 7C). A double

labeling with antibodies against bassoon and calbindin revealed

numerous pairings of photoreceptor axons and horizontal cell

terminals in safranal-treated P23H animals (Fig. 7I, arrows), in

contrast to the relatively fewer contacts observed in vehicle-treated

P23H rats (Fig. 7H). This was indicative of the effect that safranal

has on preserving synaptic contacts between photoreceptors and

horizontal cells.

Figure 1. Retinal function in control and safranal-treated P23H rats. (A–B) Example of scotopic (A) and photopic (B) ERG traces from a P120
rat treated with vehicle (left) or safranal (right). Units on the left of panels represent the luminance of the flashes in log cd?s/m2. (C–D) Stimulus
intensity curves for mixed scotopic a-waves (C) and b-waves (D) from rats administered safranal (squares) or vehicle (circles). (E–F) Intensity response
of photopic a-waves (E) and b-waves (F).
doi:10.1371/journal.pone.0043074.g001
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Safranal preserves the retinal capillary network
In RP, photoreceptor cell loss is associated with subsequent

atrophy of the retinal capillary network. NAPDH diaphorase

histochemistry was performed to visualize the retinal vascular

network and evaluate whether safranal-treatment was able to

prevent the loss of retinal capillaries. As we can see in Figure 8A,

P23H rats showed a poor retinal capillary network, in which

capillary loops appeared degenerated. In contrast, the capillary

network in safranal-treated animals was more extensive, with well-

preserved capillary loops (Fig. 8B). Measurements of the relative

capillary density (capillary area/retinal area) showed significantly

higher values in safranal-treated animals, as compared to those

obtained in control animals (Student’s t-test, P,0.01; Fig. 8C).

Discussion

Our study revealed that systemic treatment with safranal,

a constituent of saffron (Crocus sativus), is capable of preserving

retinal structure and function in homozygous P23H transgenic

rats. Previous studies have shown that safranal exerts cytoprotec-

tive effects in a wide spectrum of tissues [13,31,38], including the

nervous system [12,15,17,35]. Moreover, it has been demonstrated

that saffron extracts protect against ocular degenerative disorders

caused by exposure to bright light [33] or age-related macular

degeneration [34]. In this work, we have analyzed the effects of

safranal on a rat model of autosomal dominant RP characterized

by slow-pace retinal degeneration. We have focused not only on

photoreceptor morphology and function, but also on safranal’s

secondary effects on photoreceptor connectivity, the structure of

inner retinal cell layers and capillary network condition.

Transgenic P23H albino rats have been bred to mimic the RP

most commonly found in human populations [1,2]. These rats

develop a progressive photoreceptor dysfunction, which is

generally consistent with the clinical findings reported for human

P23H RP patients [39,40]. In this animal model, the loss of

photoreceptors is accompanied by degeneration of the inner retina

[41], which includes a substantial degeneration of retinal ganglion

cells [42,43]. P23H rats retain vision for a relatively long period of

their lives, as described for P23H humans, who exhibit signifi-

cantly better visual acuity and greater ERG amplitudes than

patients who are affected by other RP mutations [39,44]. The slow

retinal degeneration that occurs in P23H line 3 rats makes this

animal model better suited to the study of the disease in humans

than other P23H lines and genetic mouse models, thus giving our

results additional clinical relevance. In our experiments, safranal

was administered from P21 to P120, when vehicle-treated animals

can be considered to have suffered from extensive retinal

degeneration [45,46].

In this study, we found that safranal treatments ameliorated the

loss of both rods and cones in P23H rats, and preserved their

morphology, as evidenced by specific immunostaining of both

photoreceptor cell types. These effects were consistent with the

higher amplitudes of both scotopic and photopic responses found

in safranal-treated animals as compared to control animals. Both

cone and rod structure and function were preserved to a similar

degree, as evidenced by the analogous effects found on scotopic

and photopic ERG recordings. All these results agree with the

findings of a previous study in which the neuroprotective effects of

tauroursodeoxycholic acid (TUDCA) were evaluated in P23H rats

[46]. The results also echo the results of previous studies, which

show that saffron extracts may protect photoreceptors from

damaging light, maintaining both their morphology and function.

In addition to the positive preventive effects of safranal on

photoreceptor number, morphology and function, P23H safranal-

treated rats experienced improved connectivity between photo-

receptors and their postsynaptic neurons: horizontal and bipolar

cells. Both presynaptic and postsynaptic elements, as well as

synaptic contacts between photoreceptors and bipolar or horizon-

tal cells, were preserved in safranal-treated P23H rats. Further-

more, the number of both rod cell bodies and the density of

bipolar and horizontal dendritic terminals were higher than in

vehicle-treated rats. These results indicate that the safranal effect

on retinal morphology and function extends not only to

photoreceptors, but also to other retinal cell types. Another

interesting possibility is that the preservation of the photoreceptor

population prevents the occurrence of secondary degenerative

changes in their postsynaptic neurons, thereby preventing the

remodeling of the entire retinal circuitry [47].

Previous works have demonstrated that, in the case of RP,

photoreceptor cell loss is associated with subsequent atrophy of the

retinal capillary network [48] and lower retinal blood flow [49]. In

our results, P23H rats showed a poor retinal capillary network, in

Figure 2. Photoreceptor cell bodies number. Representative retinal section stained with TO-PRO (blue), c-transducin (green) and recoverin (red)
from a wild-type animal (Sprague Dawley, SD, A), a P23H rat treated with vehicle (B) and a P23H rat treated with safranal (C). All images were collected
from the central area of the retina, close to the optic nerve. Note that the number of photoreceptor rows in the vehicle-treated P23H rat is low (B), as
compared to those present in the retina of the safranal-treated P23H animal (C). ONL: outer nuclear layer, INL: inner nuclear layer, IPL: inner plexiform
layer. Scale bar: 20 mm.
doi:10.1371/journal.pone.0043074.g002

Safranal Attenuates Retinal Degeneration

PLoS ONE | www.plosone.org 4 August 2012 | Volume 7 | Issue 8 | e43074



which capillary loops appear to have degenerated. In contrast,

P23H safranal-treated rats showed more extensive capillary

networks and better-preserved capillary loops as compared to

the control animals. This suggests a positive effect of this

compound, not only in preserving both the outer and inner

retinal layers, but also in retarding capillary degeneration.

It has been proposed that the cytoprotective effects of safranal

are exerted through antioxidative actions [27,28,29]. Antioxidants

play an important role in health by protecting cells and tissues

Figure 3. Assessment of photoreceptor rows in control and safranal-treated P23H rats. (A–B) Vertical sections from the temporal to nasal
area of the retina at the optic nerve level in P23H rats administered with vehicle (A) or safranal (B), stained with TO-PRO (blue), c-transducin (green)
and recoverin (red). (C) Quantification of the number of rows at the ONL along retinal sections (measured at 0.5 mm intervals) in control and safranal-
administered P23H animals (n = 6 in both cases). * P,0.05, ** P,0.01, *** P,0.001; Student’s t-test.
doi:10.1371/journal.pone.0043074.g003
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from the damaging effects of free radicals and singlet oxygen. The

retina is one of the tissues with the highest rates of oxygen

consumption and the highest energy demand. In this context, cell

degeneration causes an energy deficit, leading to an increase of

reactive oxygen species (ROS) levels, and an abnormal elevation of

cytosolic Ca2+ [50]. The antioxidant activity of safranal can also

protect DNA and tRNA in the form of ligand-polynucleotide

complexes from harmful chemical reactions [29]. Previous studies

have shown the protective effect of safranal against DNA damage

in the organs of mice [31,32].

ROS and oxidative stress may cause apoptosis [51,52] through

mechanisms both dependent on and independent of caspase. In

this sense, it has been demonstrated that saffron extracts are able

to block neuronal cell death induced by both internal and external

apoptotic stimuli [53,54]. In a previous study performed on rats

suffering from a myocardial ischemia-reperfusion injury, safranal

exhibited a strong antiapoptotic potential, as evidenced by

downregulating Bax and caspase3 expression [55]. Additionally,

saffron extracts were proved to reduce apoptosis in photoreceptors

isolated in primary retinal cell cultures and exposed to damaging

Figure 4. Photoreceptor morphology in control and safranal-treated P23H animals. Vertical sections of retinas from P23H rats treated with
vehicle (A–C) or safranal (D–F). Nuclei stained with TO-PRO (blue). (A, D) recoverin (red) stained retinas showing a more profuse degeneration in
control animals (A) than that observed in safranal-treated rats (D). (B, E) Cone specific staining with c-transducin (green) showing smaller cell size and
shorter and swollen outer segments in control animals (B, arrowheads) as compared to safranal-treated rats (E) where all cone structures from outer
segment (E, arrowhead) to pedicle (E, arrow) can be observed. (C, F) Double immunolabeling for recoverin and c-transducin. All images were
collected from the central area of the retina, close to the optic nerve. ONL: outer nuclear layer, OPL: outer plexiform layer. Scale bar: 10 mm.
doi:10.1371/journal.pone.0043074.g004
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blue light [56]. The antiapoptotic characteristic of saffron

components makes them interesting candidates for the treatment

of retinal neurodegenerative disease.

Currently there is no effective therapy available to halt the

evolution of RP or to restore vision once it has been lost. Despite

the use of therapies aimed at curbing cell death, the loss of

photoreceptors in terms of number and function usually leads to

a dramatic remodeling of retinal circuits, which would probably

further compromise the transmission of visual information [41]. In

this context, the use of therapies like safranal, effective not only in

preventing the loss of photoreceptors, but also in slowing the

degeneration of inner retinal layers and the capillary network, may

be especially interesting, in combination with other therapies

based on the implantation of new photoreceptors and anti-

inflammatory agents, among others.

Methods

Animals and treatments
Homozygous P23H line-3 albino rats, obtained from Dr. M.

LaVail (UCSF School of Medicine; http://www.ucsfeye.net/

mlavailRDratmodels.shtml), were used as subjects for this study.

All animals originated from a colony bred at the Universidad de

Alicante. They were housed under controlled humidity (60%),

temperature (2361uC) and photoperiod (LD 12:12) conditions.

Current regulations for the use of laboratory animals (NIH,

ARVO and the European Directive 86/609/EEC) were observed

to ensure minimal suffering and numbers required for experimen-

tation. The study had the approval of the Research Ethics

Committee of the University of Alicante. Safranal (17306, Fluka

Chemie AG, Switzerland) was administered to P23H rats at

400 mg/kg (i.p.) twice a week from P21 to P120. Control animals

received the same volume of saline at the same experimental times.

In order to adjust the amount of safranal administered, each

animal’s body weight was measured prior to injecting the drug.

Figure 5. ON rod bipolar cells and their synaptic connectivity. Immunolabeling of retinal vertical sections from wild-type rats (Sprague
Dawley, SD) (A, D, G) and P23H animals treated with vehicle (B, E, H) or safranal (C, F, I). Nuclei stained with TO-PRO (blue). (A–C) Staining of retinal ON
rod bipolar cells with PKC (green). Note that cell bodies and dendrites were preserved by safranal. (D–F) Labeling of photorreceptor synaptic ribbons
with antibodies against bassoon (red). (G–I) Double immunolabeling for PKC and bassoon, showing the preservation by safranal of synaptic contacts
(arrows) between photoreceptors and bipolar cells. All images were collected from the central area of the retina, close to the optic nerve. ONL: outer
nuclear layer, OPL: outer plexiform layer, INL inner nuclear layer. Scale bar: 20 mm.
doi:10.1371/journal.pone.0043074.g005

Figure 6. Synaptic contacts in OPL. Quantification of the number of
photorreceptor synaptic ribbons at the OPL along retinal sections in
control and safranal-administered P23H animals (n = 8 and n = 6,
respectively in). *** P,0.001; Student’s t-test.
doi:10.1371/journal.pone.0043074.g006
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ERG recordings
Following overnight adaptation to darkness, animals were

prepared for bilateral ERG recording under dim red light.

Animals were anesthetized by injection (i.p.) of a ketamine

(100 mg/kg) plus xylazine (4 mg/kg) solution, and kept on

a heating pad at 38uC. Their pupils were dilated by topical

application of 1% tropicamide (Alcon Cusı́, Barcelona, Spain), and

a drop of Viscotears 0.2% polyacrylic acid carbomer (Novartis,

Barcelona, Spain) was instilled on the cornea to prevent

dehydration and to allow electrical contact with the recording

electrodes. The electrodes used were DTL fiber electrodes with an

X-Static silver-coated nylon conductive yarn, from Sauquoit

Industries (Scranton, PA, USA). A 25-gauge platinum needle

inserted under the scalp between both eyes served as the reference

electrode. A gold electrode was placed in the mouth for grounding

purposes. Anesthetized animals were placed on a Faraday cage

and all experiments were performed in complete darkness.

Scotopic flash-induced ERG responses were recorded for both

eyes in response to light stimuli produced by a Ganzfeld

stimulator. Light stimuli were presented for 10 ms at 9 different

increasing intensities (ranging from 25.2 to 0 log cd?s/m22).

Three to ten consecutive recordings were averaged for each light

stimulus. A 10 s interval between flashes was used for dim flashes,

and up to 20 s for those of the highest intensity. Photopic

responses were obtained after light adaptation at 10 cd/m2 for

20 min, and stimuli were the same as those under scotopic

conditions. ERG signals were amplified and band-pass filtered (1–

1000 Hz, without notch filtering) using a DAM50 data acquisition

board (World Precision Instruments, Aston, UK). Stimulus

presentation and data acquisition (4 kHz) were performed using

a PowerLab system (ADInstruments, Oxfordshire, UK). Record-

ings were saved on a computer for later analysis. For both scotopic

and photopic intensity-response curves, thresholds were defined as

the minimal luminance required to reach the criterion amplitude

of 10 mV.

Retinal sections
Animals were sacrificed by a lethal dose of pentobarbital, and

their eyes were enucleated, fixed in 4% paraformaldehyde and

sequentially cryoprotected in 15, 20 and 30% sucrose. They were

then washed in 0.1 M phosphate buffer pH 7.4 (PB), and the

cornea, lens and vitreous body were removed. The retinas were

then processed for vertical sections. For this purpose, they were

embedded in OCT and frozen in liquid N2. Sixteen mm-thick

sections were then obtained at 225uC, mounted on Superfrost

Plus slides (Menzel GmbH & Co KG, Braunschweig, Germany),

and air-dried. Prior to subsequent use, slides were thawed and

washed 3 times in PB, and then treated with blocking solution

(10% normal donkey serum in PB plus 0.5% Triton X-100) for

1 h.

Retinal immunohistochemistry
To permit objective comparison, retinas from vehicle-treated

and safranal-treated rats were fully processed in parallel. Primary

Figure 7. Horizontal cells and their synaptic connectivity. Vertical sections of retinas from wild-type rats (Sprague Dawley, SD) (A, D, G) and
P23H animals treated with vehicle (B, E, H) or safranal (C, F, I). (A–C) Horizontal cells labeled with antibodies against calbindin. Note that the number
of horizontal cell terminals in safranal-treated rats was higher than in vehicle-treated animals. (D–F) Labeling of photorreceptor synaptic ribbons with
antibodies against bassoon (red). (G–I) Double immunolabeling for calbindin and bassoon showing a larger number of synaptic contacts (arrows)
between photoreceptor and horizontal cells in safranal-treated rats (H) than observed in the control rats (I). All images were collected from the central
area of the retina, close to the optic nerve. ONL: outer nuclear layer, OPL: outer plexiform layer, INL inner nuclear layer. Scale bar: 20 mm.
doi:10.1371/journal.pone.0043074.g007
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antibodies used in this work are summarized in Table 1. Sections

were single- or double-immunostained overnight at room temper-

ature with combinations of antibodies against different molecular

markers diluted (as indicated in Table 1) in PB containing 0.5%

Triton X-100. Alexa Fluor 488 (green)-conjugated anti-rabbit IgG

and/or Alexa Fluor 555 (red)-conjugated anti-mouse IgG donkey

secondary antibodies from Molecular Probes (Eugene, OR, USA)

were then applied at a 1:100 dilution for 1 h. The sections were

finally washed in PB, mounted in Citifluor (Citifluor Ltd; London,

UK) and coverslipped for viewing using laser-scanning confocal

microscopy on a Leica TCS SP2 system. Immunohistochemical

controls were performed by omitting either the primary or

secondary antibody. The final images from control and experi-

mental subjects were processed in parallel using Adobe Photoshop

10 software. The thickness of the outer nuclear layer (ONL) was

measured by counting the number of photoreceptor rows in retinal

sections labeled with the nuclear stain TO-PRO-3 iodide (1:1000

dilution; Molecular Probes), at distances of 0.5, 1.5, 2.5 and 3.5

mm from the optic nerve, toward both the temporal and nasal ora

serratas.

Histochemistry of reduced nicotinamide adenine dinucleotide

phosphate diaphorase (NADPH-d) was performed on whole-

mount retinas to visualize the retinal vascular network [57]. To

accomplish this, retinas were first incubated in a solution of 1 mg/

ml NADPH with 0.1 mg/ml of nitroblue tetrazolium (NBT) in 1%

Triton X-100 for 1–2 h at 37uC under conditions of darkness.

After several washes, the sections were processed for immunocy-

tochemistry using the procedure described above. The morpho-

metrical analysis was performed with the aid of ImageJ software

(National Institutes of Health, Bethesda, MD, USA). The relative

capillary density was expressed as the ratio between the total

capillary area and the retinal surface.

Figure 8. Retinal capillary network. (A–B) Whole-mount retinas from P23H rats treated with vehicle (A) or safranal (B), stained with NAPDH
diaphorase. Note that the retinal capillary network was more extensive, with more capillary loops in safranal-treated animals. (C) Measurements of the
relative capillary density (capillary area/retinal area) showing higher values in safranal-treated rats than in control animals (n = 6 and n = 3,
respectively). ** P,0.01; Student’s t-test.
doi:10.1371/journal.pone.0043074.g008

Table 1. Primary antibodies.

Molecular marker Antibody Source Dilution

Calbindin D-28K Rabbit polyclonal Swant 1:500

Protein kinase C, alpha isoform Rabbit polyclonal Santa Cruz Biotechnology 1:100

Bassoon Mouse monoclonal Stressgen 1:1000

Recoverin Mouse monoclonal J.F. McGinnis, University of Oklahoma 1:2000

Transducin, Gac subunit Rabbit polyclonal Cytosignal 1:200

doi:10.1371/journal.pone.0043074.t001
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Statistical analyses
SYSTAT software (London, UK) was used to perform statistical

analyses. An ANOVA test was used to evaluate the effects of

safranal on ERG responses, and a two-tailed Student’s t-test was

performed to compare the number of rows of photoreceptor cell

bodies found in each experimental group. The latter test was also

used to evaluate differences between groups in terms of measured

capillary density. Normal distributions and homogeneity of

variance were found for all analyzed categories. P values of less

than 0.05 were considered to be statistically significant. Data were

plotted as the average 6 standard error of the mean (SEM).

Supporting Information

Figure S1 Cone morphology in control and safranal-
treated P23H animals. Vertical sections of retinas from a SD

rat (A) and P23H rats treated with vehicle (D, F, H) or safranal (B,

C, E, G, I) stained with c-transducin, specific for cone cells.

Vehicle-treated P23H animal showed smaller cell size and shorter

outer segments and pedicle, as compared to observed in safranal-

treated rats. All images were collected from the central area of the

retina, close to the optic nerve. ONL: outer nuclear layer, OPL:

outer plexiform layer. Scale bar: 20 mm.

(TIF)
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