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ABSTRACT Computational neuroscience has contributed
significantly to our understanding of higher brain function by
combining experimental neurobiology, psychophysics, modeling,
and mathematical analysis. This article reviews recent advances
in a key area: neural coding and information processing. It is
shown that synapses are capable of supporting computations
based on highly structured temporal codes. Such codes could
provide a substrate for unambiguous representations of complex
stimuli and be used to solve difficult cognitive tasks, such as the
binding problem. Unsupervised learning rules could generate
the circuitry required for precise temporal codes. Together, these
results indicate that neural systems perform a rich repertoire of
computations based on action potential timing.

Most neurons use action potentials (APs), brief and uniform
pulses of electrical activity, to transmit information. APs are
generated when the membrane potential of a neuron reaches a
threshold value. They travel down the axon toward synapses
terminating at postsynaptic neurons, where they initiate postsyn-
aptic currents (PSCs) that summate to trigger (or inhibit) new
APs.

A sequence, or ‘‘train,’’ of APs may contain information based
on rather diverse coding schemes. In motor neurons, for example,
the strength at which an innervated muscle is flexed depends
solely on the ‘‘firing rate,’’ the average number of APs per unit
time (a ‘‘rate code’’). At the other end of the spectrum lie complex
temporal codes based on the precise timing of single APs. They
may be locked to an external stimulus such as in the auditory
system or be generated intrinsically by the neural circuitry.

The wide range of coding schemes raises a number of
questions. What is the temporal precision of signals sent out by
a given neuron? Do all of its numerous postsynaptic target cells
receive the same information? If not, what determines the
individual signal? How can postsynaptic neurons read out the
information? What is the functional relevance of correlations
in the APs of several neurons? Which processes could generate
the neural circuitry required for precise temporal codes?

In sensory neurons that are strongly driven by external inputs,
data analyses based on reverse-correlation methods and infor-
mation theory have allowed to answer some of these questions
and to successfully ‘‘read the neural code’’ (1). In areas with
nonlinear feedback and strong convergence from different mo-
dalities these methods are of limited applicability. However, rapid
advances in neurophysiological techniques have recently opened
a new round of studies that combine experimental neurobiology,
computer simulations, and theoretical analysis.

Electrophysiological recordings from synaptically coupled
neurons in the neocortex have revealed that synapses do not
respond to each AP in the same manner; synaptic transmission
is not linear (2, 3). The nonlinearity arises because the PSC
caused by one AP depends on the timing of the previous APs.

Thus, although the APs on one axon are identical events, their
effects on a postsynaptic cell vary from AP to AP.

The history dependence can be quantified in terms of the
sensitivity of transmission to a particular frequency of activation.
There are two broad classes of frequency dependencies—
synapses in which transmission depresses during a high-frequency
AP train and synapses in which transmission facilitates. Measure-
ments of the PSC in target neurons show that connections that
depress can only transmit very low presynaptic discharge rates.

As the rate rises, synaptic depression has the surprising effect
that the amplitude of a single PSC becomes inversely proportional
to the firing rate (2, 3), resulting in a saturation of the time-
averaged PSC. This effect occurs at a specific frequency, which
has been termed the limiting frequency, because beyond this
frequency synaptic connections can no longer convey information
about the presynaptic discharge rate. However, since a certain
time is required for the synapse to depress when the presynaptic
frequency changes, these connections are very effective in de-
tecting time derivatives of discharge rates.

The second class of connections, facilitating synapses, has an
entirely different frequency dependence (4). Below the fre-
quency at which the time-averaged PSC is maximal—the
so-called peak frequency—facilitation enables such synapses
to compute the average discharge rate multiplied by the
integral of the rates within the synapse-specific time constant
of facilitation; i.e., the synapses can ‘‘count’’ the number of
presynaptic APs in immediately preceding bursts. Above the
peak frequency, facilitating synapses are similar to depressing
synapses, in that they are again characterized by a limiting
frequency below which they transmit discharge rates and above
which they transmit the time derivatives of these rates.

Therefore, each synapse selects a unique melange of fea-
tures of the presynaptic AP train and transmits only a specific
subset of the information contained in the entire train. Dif-
ferent aspects of the same train are read out by different target
cells. This rich repertoire of elementary synaptic computations
could easily support the formation of ‘‘synfire chains’’ (5) and
indicates that precise temporal activity patterns are important
for signal processing on the system level.

While early models of cortical processing suggested that
individual neurons are sufficient to represent detailed descrip-
tions of relevant features of the environment, it is now
generally accepted that unambiguous representations are
based on population codes. One of the reasons for this
conclusion is the observation that the firing rate of individual
neurons in general cannot provide an unambiguous descrip-
tion, even for simple stimuli.
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Neural responses to particular features are broadly tuned
and can be modulated by changes in more than one feature
dimension. Firing rates of individual cells are therefore am-
biguous descriptions of features and can only be interpreted by
comparison across responses of different neurons. This implies
the existence of distributed representations. In the presence of
multiple independent stimuli, these representations have to be
distinguished. Processing of distinct features then requires a
separation of the functional interactions within different pop-
ulations to avoid false conjunctions.

Because groups of active neurons dynamically change with
changing stimuli, a selective binding of responses in general
cannot be achieved by fixed connections. Rather, static ana-
tomical connections constitute a super-set of connections
between all neurons that may eventually need to interact. Thus,
a dynamic mechanism is required to transiently strengthen
interactions within changing populations and to isolate them
from signals related to other representations. Synchronization
of neural responses participating in the representation of the
same content would be a particularly useful mechanism to
dynamically bind related responses for further joint process-
ing—the so-called Correlation Hypothesis (6).

Recent experimental investigations in cat and awake monkey
visual cortex have revealed that neurons in the same or in
different cortical areas can synchronize their activity with a
precision of a few milliseconds if they are activated by a single
stimulus (7, 8). Synchronization disappears if these neurons are
activated by two different, independent stimuli. In accordance
with the Correlation Hypothesis, the same two neurons thus can
synchronize their activity if they engage in the representation of
the same stimulus and desynchronize if they belong to two
different populations that represent two independent stimuli.
These results suggest that precise synchronization can serve to
dynamically define neuronal populations and thereby contribute
at the system level to information processing in the brain.

In the visual cortex, synchronization is achieved rapidly and
is often accompanied by approximately periodic activity (7).
Both phenomena can be replicated in simplified model net-
works where, as desired, the relative timing of APs encodes
stimulus features (9). A related encoding scheme utilizes
ubiquitous subthreshold oscillations (10) of the membrane
potential to represent slowly varying external signals by the
phases of APs relative to the underlying oscillation (11). In the
olfactory system there is evidence for yet another coding
scheme in which neurons fire preferentially in certain cycles of
a large-scale oscillation (12). Further variants are to be ex-
pected because any state-dependent parameter of the single-
neuron dynamics, such as the membrane time ‘‘constant,’’ may
potentially serve a computational role within a temporal code.

The auditory pathway is a particularly attractive system to study
neural codes in which the timing of APs is tightly governed by the
temporal structure of the external stimulus. Behavioral experi-
ments show that barn owls can locate sound sources in complete
darkness to within about one degree of azimuthal angle. This
requires information processing with a temporal precision of less
than 5 ms. How is this possible, given that time constants of typical
neurons are at least one order of magnitude larger?

First, the relevant time constants of neurons in the early
auditory pathway are comparatively short. The typical width of a
postsynaptic potential is about 0.5 ms. This is at least one order
of magnitude smaller than in the visual cortex. Second, temporal
precision is mediated by precisely phase-locked APs. On the
cochlear level, a sound wave is separated into different frequency
components. Neurons in downstream nuclei are sensitive to
stimuli in a narrow frequency band only. The APs of these
neurons occur preferentially around a typical phase with respect

to the external sound wave. Third, strong convergence patterns
suggest that the signal-to-noise ratio is improved by pooling (13).

A simple model for AP generation allows us to understand the
observed phase locking (14). If the model neuron is driven by APs
that arrive coherently and with a pronounced periodic structure,
then the output APs are phase locked. The input, however, can
be coherent only if all transmission lines from the cochlea
converging on one neuron have matching delays. To achieve this
coherence, delay lines have to be tuned during an early devel-
opmental period.

The selection of appropriate delays can be reproduced by an
unsupervised learning procedure (14). In the model, a synapse to
a downstream neuron is strengthened if the presynaptic AP
precedes the postsynaptic AP slightly (by 0–1 ms). The connec-
tion is weakened if the presynaptic AP occurs a few milliseconds
after the postsynaptic AP. The effect of such a correlation-based
learning rule is an adaptation of the auditory pathway to the exact
timing of pulses arriving from the left and the right ear, a
necessary step for the localization of external sound sources.

The above experimental and theoretical findings show that
neurons possess a rich repertoire of elementary algorithms to
process highly structured temporal codes. Together with ap-
propriate learning rules, this computational repertoire results
in large-scale activity with pronounced temporal correlations,
as seen under in vivo conditions.

We are thus led to a view of neural coding that is quite distinct
from the classical picture of information processing based solely
on firing rates. When a sensory stimulus arrives, various neural
subsystems run through complex iterations of computations
based on AP timing. Within each iteration, a multitude of
fragments of information from different neurons reach the
synapses of a single neuron. Only some fragments are ‘‘selected’’
by the synaptic dynamics and contribute to the discharge of new
APs, which are injected back into the network, thus serving to
amplify these ‘‘relevant’’ aspects of information for further pro-
cessing. The picture is complicated by the fact that this sequence
of fragmentation, selection, and amplification is performed in a
massively parallel manner and without fixed cycle times. Sensi-
tivity to synchronized activity entrains this neural orchestra on the
system level in a dynamic fashion and allows it to play coherent
and stimulus-dependent tunes as well as internally generated
variations of previous themes.
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