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Abstract

In order to produce multicellular structures filamentous fungi combine various morphogenetic programs that are
fundamentally different from those used by plants and animals. The perithecium, the female sexual fruitbody of Neurospora
crassa, differentiates from the vegetative mycelium in distinct morphological stages, and represents one of the more
complex multicellular structures produced by fungi. In this study we defined the stages of protoperithecial morphogenesis
in the N. crassa wild type in greater detail than has previously been described; compared protoperithecial morphogenesis in
gene-deletion mutants of all nine mitogen-activated protein (MAP) kinases conserved in N. crassa; confirmed that all three
MAP kinase cascades are required for sexual development; and showed that the three different cascades each have
distinctly different functions during this process. However, only MAP kinases equivalent to the budding yeast pheromone
response and cell wall integrity pathways, but not the osmoregulatory pathway, were essential for vegetative cell fusion.
Evidence was obtained for MAP kinase signaling cascades performing roles in extracellular matrix deposition, hyphal
adhesion, and envelopment during the construction of fertilizable protoperithecia.
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Introduction

The perithecium is the female sexual reproductive organ, or

fruitbody, of Neurospora crassa within which ascospores, the products

of meiosis, are generated [1,2]. The perithecium is composed of at

least 14 morphologically distinct cell-types [2,3], and is formed by

various processes including: hyphal aggregation; adhesion; septa-

tion; branching; and cell differentiation. As a result of these

processes, filamentous fungi achieve multicellularity in a way that

is fundamentally different from that in plants or animals, with the

important point being that fungal tissues and organs are formed

from the growth, aggregation and differentiation of hyphae [2,4].

Fruitbody morphogenesis in N. crassa provides an excellent model

system for the study of fungal multicellular development.

Perithecium morphogenesis in N. crassa and other members of

the Sordariomycetes (e.g. Sordaria spp., Podospora spp., Gelasinospora

spp. and Chaetomium spp.) has three main stages (ascogonial,

protoperithecial and perithecial), each involving the differentiation

of several morphologically distinct cell-types [2,3]. The ascogonial

stage of development is observed as a very small (5–20 mm in

diameter) coiled hyphal branch, also described in N. crassa as a

hyphal knot [2,3]. The protoperithecial stage is initiated by

enveloping hyphae [3] that wrap around the ascogonium [3] to form an

almost spherical, or more specifically subspherical, structure [5].

Initiation of the protoperithecial stage represents a key morpho-

genetic event, when differentiation of distinct, multicellular tissues

commences [2]. Fruitbody expansion and internal differentiation

lead to the mature ‘female’ protoperithecium. Protoperithecia of

N. crassa can form one or more trichogynes. Each trichogyne is a

specialized ‘female’ hypha that is required for non-self fusion with

cells of the opposite mating-type. Trichogynes can grow to several

hundred micrometers in length [6] and can form branches [7].

The peptide sex-pheromone [8,9] released by the ‘male’ triggers

the homing response of ‘female’ trichogynes [6,7]. The fertilizing

agent (spermatium) may be: an asexual spore, the conidium, of

which there are three types in N. crassa (macroconidia, microconidia

and arthroconidia [3]); a germinated ascospore (meiospore); or

indeed any vegetative cell or hypha of the mating partner [10,11].

In heterothallic species, such as N. crassa, fertilization by an opposite

mating-type ‘male’ partner provides the necessary signal for the

transition from the protoperithecial to the perithecial stage of

fruitbody development [12]. In homothallic, self-fertile Sordariomy-

cetes such as Sordaria macrospora, that lack any type of conidium or

trichogyne, mating and hence, non-self fusion is not a requirement

for progression to the perithecial stage [2,12,13,14,15]. However,

certain members of the Sordariomycetes possess asci with four

ascospores and each ascospore contains nuclei of opposite mating-

type. As a result, each ascospore behaves as if it were homothallic;

this condition is termed secondary homothallism (or pseudoho-

mothallism) [16,17,18]. In secondary homothallic species, such as
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N. tetrasperma, mating involving trichogyne and spermatium fusion

does not commonly occur [16,17,18,19].

Upon successful mating-cell fusion (plasmogamy) in N. crassa,

the male nucleus travels through the trichogyne into the

ascogonium [3] of the yet unfertilized protoperithecium. Arrival

of the ‘male’ nucleus inside the ascogonium induces continued

differentiation and further expansion of the protoperithecium. It

also initiates the dikaryotic phase of the life cycle, which is

restricted to the developing ascogenous hyphae [3] within the

differentiating perithecium [11,20]. Increasing melanization of

the perithecial wall cells ultimately leading to the almost-black

mature perithecium, is a visual marker of continued sexual

development upon fertilization [21]. In N. crassa, dikaryotic cells

are generated and maintained by the formation of specialized

hyphal compartments called croziers [22]. Recurrent cycles of

crozier cell fusion generate binucleate cells subtending the tip cell

of ascogenous hyphae [1,22,23], inside which subsequent nuclear

fusion (karyogamy) yields a very short-lived diploid stage prior to

meiosis, ascospore development and ascospore delimitation

[24,25]. Whether crozier fusion can be considered a non-self

fusion or a self-fusion process, i.e. regulated by genes expressed

from both parent nuclei or from only one, remains unresolved.

Mitogen-activated protein (MAP) kinase phosphorylation cas-

cades are highly conserved and well characterized signaling

pathways in eukaryotes [26,27,28]. In Saccharomyces cerevisiae, a total

of 16 MAP kinases constitute five partially overlapping signaling

pathways that are involved in regulating pheromone-induced

mating, filamentous growth, cell wall modification and repair,

responses to high osmolarity and ascospore wall assembly

[26,29,30,31,32,33]. Three-tiered MAP kinase modules compris-

ing orthologs to nine of the budding yeast MAP kinases, have been

identified in N. crassa [34,35] and are regarded to be equivalent to

the pheromone response (PR) pathway, the cell wall integrity

(CWI) pathway, and the osmoregulatory (OS) pathway from

budding yeast [26,32]. Gene-deletion mutants of the PR-MAP

kinase pathway were amongst the first hyphal-fusion mutants

characterized in N. crassa [36,37,38,39], and connections between

their pleiotropic phenotype and defects in fruitbody morphogen-

esis have been previously recognized [23,40,41]. A model

summarizing all nine MAP kinase components and their functions

in N. crassa, including the cross-communication with other

signaling pathways involved in filamentous growth and sexual

morphogenesis, has recently been provided [41]. Hitherto, studies

have documented that all nine MAP kinase mutants are unable to

differentiate fertilizable perithecia, but the specific stages of

development at which defects occur have remained mostly

uncharacterized. Reports of defective sexual fruitbody develop-

ment resulting from MAP kinase mutations have been made in

Magnaporthe grisea [42], Fusarium graminearum [43], Podospora anserina

[44,45,46], Cochliobolus heterosporus [47], and Aspergillus nidulans

[48,49], but overall, detailed ultrastructural studies of these defects

are lacking. Furthermore, neither has a direct connection between

hyphal fusion and fruitbody morphogenesis been established.

This study, firstly analyzed the key morphogenetic stages

comprising protoperithecial development in the N. crassa wild-

type in greater detail than has been accomplished so far, secondly

addressed the specific role of MAP kinases in this process, and

thirdly asked the question: to what extent do defects in vegetative

hyphal fusion (VHF) influence protoperithecial morphogenesis?

Materials and Methods

Media and culture conditions
Strains were maintained on solid (2% agar) or in liquid Vogel’s

minimal medium (VMM) [50] with 2% sucrose using standard N.

crassa cultivation techniques [11]. For Ignite selection (bar

resistance gene), NH4NO3 was substituted by 0.5% (w/v) proline

as alternative nitrogen source to increase the potency of Ignite

selection at an effective final concentration of 400 mg/ml [51]. For

hygromycin B selection (hph resistance gene) [52] or nourseothricin

selection (nat1 resistance gene), [53] drugs were added at final

concentrations of 200 mg/ml and 30 mg/ml, respectively. To

induce the sexual cycle in N. crassa, strains were grown under

nitrogen- and carbon-limiting conditions on solid synthetic

crossing medium (SCM) [54] and low-sucrose (0.2% sucrose in

dH2O) agar (LSA), in most cases overlaid with cellophane.

Development of conidial germlings, including the quantification of

conidial anastomosis tube (CAT)-mediated cell fusion, was

assessed as described in detail previously [55,56].

Selection of gene-deletion mutants for morphogenetic
analysis

Previous work on sexual development in N. crassa has used

mutant strains generated by different methods and obtained from

a variety of sources (references in Table 1). Therefore, we decided

to verify earlier findings using gene-deletion strains (a.k.a. gene

knock-out (KO) strain) exclusively generated by homologous

recombination and obtained only from one source, in this case the

Fungal Genetics Stock Center (FGSC, Kansas City, Missouri,

USA) [57,58]. Our analysis included new gene-deletion strains

that, due to updated annotation of the N. crassa genome or

problems noted by the community with older strains, recently

became available. Replacement strains used in this study were

Dnrc-1 FGSC18162, Dos-4 FGSC18202, Dos-5 FGSC18203, and

Dos-2 FGSC17933. Homokaryons of Dnrc-1 FGSC18162 were

generated through single spore propagation of asexual conidia

(micro- and macroconidia) on hygromycin B selection medium.

Polymerase chain reaction (PCR) genotyping of N. crassa
gene-deletion mutants

All KO strains used in this study (Table 2) were produced and

verified by Southern blotting within the NIH Neurospora Genome

Knock-Out Project [59]. The genotype of the deposited strains

can be looked up in the regularly updated master spreadsheet of

the Neurospora Genome Project: http://www.dartmouth.edu/

,neurosporagenome/knockouts_completed.html. Additionally,

the replacement of targeted open reading frames (ORF) by the

hph-knock-out cassette was verified for each strain within this

study. For this, genomic DNA was purified after phenol/

chloroform extraction and analyzed by PCR (Figures S1 and

S2). Specific primer pairs were used to probe for: (1) the absence of

the target gene from its original locus; (2) the presence of the hph-

KO cassette at this locus; (3) the absence of the target ORF from

the whole genome; and (4) the presence or absence of mus51 and

mus52 loci that could indicate whether the obtained gene-deletion

strain had been successfully recovered after back-crossing to the

wild type. When reactions were performed as multiplex PCRs

[60], an additional pair of oligonucleotides binding within the

actin locus (NCU04173.3) was used as an internal positive control

for each reaction. Table S1 lists all primers used for genotyping in

this study.

Protoperithecial Development in Neurospora crassa
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Assessment of female and male fertility
To evaluate female fertility, gene-deletion strains were inocu-

lated onto SCM or LSA plates and incubated for 2–4 days at 25uC
in constant light. In parallel, a wild type strain of opposite mating-

type was cultured on standard VMM for 2–3 days at 30uC until

sufficient conidia had developed. Protoperithecia, which usually

developed after 3–4 days on the KO mycelium, were fertilized

with opposite mating-type ‘male’ conidia from the wild type, either

‘dry’ or ‘wet’. For dry-fertilization, male conidia were collected on

the Petri dish lid, by inverting the culture, and subsequently

transferred onto the female mycelium by exchanging the lid onto

the female culture plate and gently tapping off the male conidia.

For wet-fertilization, male conidia were harvested in sterile water

and either evenly distributed onto the female mycelium by

flooding, or applied as 5 ml droplets at defined positions. The same

procedure was employed to test male fertility, except that the wild

type was used as female partner and conidia of the opposite

mating-type KO mutant were used as the ‘male’. Confrontation

crosses, whereby either of the two parental strains may act as male

or female partner, were performed by co-inoculating the KO

mutant strain with a wild type strain of opposite mating-type on

the same SCM or LSA plate, followed by incubation at 25uC over

the next 2–3 weeks.

In all crosses, development of protoperithecia and the differen-

tiation into mature perithecia was monitored under a stereomi-

croscope for three weeks post-fertilization. The appearance of

ascospores was defined as the determining feature of successful

sexual reproduction. Ascospores were collected from the Petri dish

lid, microscopically analyzed and then cultured on selection

medium to assess viability. In crosses where perithecia appeared

within that time period, but no ascospores could be recovered, the

perithecia were cracked open, using dissecting needles, to evaluate

ascus and ascospore development.

Evaluation of osmosensitive MAP kinase mutants
In order to phenotypically verify putative OS-MAP kinase

mutants, fungal development was tested under salt stress (3% and

6% w/v NaCl) and in the presence of the phenylpyrrol fungicide

fenpiclonil (1.5 or 4.5 mM). Conidial germling assays were

performed as described earlier [55]. Radial colony extension rates

were assessed on VMM agar plates, and if required, supplemented

with salt or fungicide as described above. For this, inoculated

plates were incubated overnight (,16 h) at 25uC. The next

morning, margins of four randomly chosen radii were marked in

each colony. In some cases, the plates were then transferred to

35uC and extension of the colony edges was marked every 2 h for

a period of 8 h. In all cases, maximal extensions rates were

measured and mean extension rates of duplicate samples were

calculated (n = 8 for each tested condition).

Table 2. N. crassa strains used in this study.

Strain FGSC/strain number Locus/Host strain Mating type Genotype

wild type FGSC2489 _ A 74-OR23-1VA

wild type FGSC4200 _ a ORS-SL6a

Dmek-1 FGSC11318 NCU06419.2 a* Dmek-1::hygR

Dmek-1 FGSC11319 NCU06419.2 A* Dmek-1::hygR

Dmak-1 FGSC11320 NCU09842.1 A* Dmak-1::hygR

Dmak-1 FGSC11321 NCU09842.1 a* Dmak-1::hygR

Dmik-1 FGSC11326 NCU02234.2 A* Dmik-1::hygR

Dmik-1 FGSC11327 NCU02234.2 a* Dmik-1::hygR

Dos-2 FGSC11436 NCU07024.2 A* Dos-2::hygR

Dnrc-1 FGSC11466 NCU06182.2 a* Dnrc-1::hygR, Dmus51::bar+

Dmak-2 FGSC11482 NCU02393.2 a* Dmak-2::hygR, Dmus51::bar+

Dmek-2 FGSC11524 NCU04612.2 a* Dmek-2::hygR, Dmus51::bar+

Dos-2 FGSC17933 NCU07024.2 A* Dos-2::hygR

Dnrc-1 FGSC18162 NCU06182.2 a (het) Dnrc-1::hygR, Dmus51::bar+

Dnrc-1 this study NCU06182.2 a HS* Dnrc-1::hygR, Dmus51::bar+

Dos-4 FGSC18202 NCU03071.2 a* Dos-4::hygR, Dmus51::bar+

Dos-5 FGSC18203 NCU00587.2 a* Dos-5::hygR, Dmus51::bar+

wt MAK-1-sGFP NCAL007 FGSC4200 a wt::Pccg1::mak-1-sgfp::bar+

Dmak-1 MAK-1-sGFP NCAL010 FGSC11320 A Dmak-1::hygR; Pccg1::mak-1-
sgfp::bar+

wt OS-2-sGFP NCAL016 FGSC2489 A wt::Pccg1::os-2-sgfp::bar+

Dos-2 OS-2-sGFP NCAL018 FGSC11436 A Dos-2::hygR; Pccg1::os-2-sgfp::bar+

Dos-2 OS-2-sGFP NCAL020 FGSC17933 A Dos-2::hygR; Pccg1::os-2-gfp::bar+

wt MAK-2-sGFP NCAL037 FGSC4200 a wt::Pccg1::mak-2-sgfp::nat1

Dmak-2 MAK-2-sGFP NCAL043 FGSC11482 a Dmak-2::hygR; Pccg1::mak-2-
sgfp::nat1

Asterisks denote strains that were genotyped by PCR; HS (homokaryon selection): denotes strains of which homokaryons were generated by repeated isolation of
monosporic microcolonies on selection medium.
doi:10.1371/journal.pone.0042565.t002
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Plasmid construction
The MAK-1-sGFP expression plasmid pAL1-MAK-1 was

constructed by first generating the GFP expression vector pAL1

through subcloning the sGFP coding region from pMF272 [61] into

pBARGRG1 [62] using BamHI/EcoRI restriction/ligation, and

subsequently ligating the mak-1 gene amplified from N. crassa wild

type cDNA using oligonucleotides mak1_BamHI_fw 59-GATCG-

GATCCATTCGCCATGGCTGATCTCGTG-39 and mak1_X-

maI_rv 59-GATCCCCGGGATTCGCCATGGCTGATCTCG-

TG-39 (BamHI and XmaI restriction sites underlined) into BamHI/

XmaI linearized pAL1 in-frame to sGFP. Plasmid pAL1-OS-2 for

the expression of OS-2-sGFP was generated by amplifying the

coding region for os-2 from N. crassa wt cDNA using oligonucleotides

os2_if_BamHI_fw 59-TTTCCTCGACGGATCCATGGCCGAA-

TTTATCCGC-39 and os2_GS_if_rv 59-AGACACCATCGAGC-

CTTGCGGCGGAACATCTTC-39 (underlined are the 15 bp

overlaps required for recombination), then amplifying the sGFP

coding region from pAL1-MAK-1 using oligonucleotides

GS_sGFP_if_fw 59-CCGCCGCAAGGCTCGATGGTGAGCA-

AGGGCGAGG-39 and sGFP_if_EcoRV_rv 59-ATCGATAAG-

CTTGATATCTTACTTGTACAGCTCGTCCATGCC-39, and

subsequently joining both purified PCR products with BamHI/

EcoRV-linearized and gel-purified pBARGRG1 using In-FusionH
PCR cloning (Clontech, UK). The same technique was used to

recombine the PCR products of the mak-2 ORF amplified from

wt cDNA using oligonucleotides mak2_if_BamHI_fw

59 -TTTCCTCGACGGATCCATGAGCAGCGCACAAAGAG-

G-39and mak2_GS_GFP_if_rv 59-AGACACCATCGAG-

CCCCTCATAATCTCCTGGTAGATCAACTGC-39, and the

coding region of GFP amplified from pAL1-MAK-1 using

oligonucleotides mak2_GS_GFP_if_fw 59-ATTATGAGGGG-

CTCGATGGTGTCTAAGGGCGAAGAGC-39and GFP_if_E-

coRV_rv 59-TCGATAAGCTTGATATCTTACTTGTACAGC-

TCGTCCATGC-39, into BamHI/EcoRV linearized and gel-

purified pAL4-Lifeact [63], in order to generate pAL7-MAK-2,

the expression plasmid for MAK-2-GFP. Upon propagation

through E. coli, recovered plasmids were verified by sequencing

and transformed into N. crassa wild type, Dmak-1, Dos-2 and Dmak-2

strains, respectively (Table 2). Expression of all GFP fusion

constructs was under control of the glucose-repressible Pccg-1

promoter [61,64].

Transformation and transformant selection
Transformations were performed using a standard electropora-

tion protocol for N. crassa as described previously [65]. MAK-1-

GFP, OS-2-GFP and MAK-2-GFP expressing strains were created

by random integration of pAL1-MAK-1, pAL1-OS-2 and pAL7-

MAK-2, respectively, into the genomes of wild type strains

FGSC4200 (mat a), FGSC2489 (mat A), and gene-deletion mutant

strains Dmak-1 (FGSC11320), Dos-2 (FGSC11436 and

FGSC17933), and Dmak-2 (FGSC11482), respectively (Table 2).

Transformants were selected by recovery on either nitrogen-free

selection medium containing Ignite (pAL1-MAK-1 and pAL1-OS-

2) or standard selection medium containing nourseothricin (pAL7-

MAK-2), and by expression of the fluorescent fusion construct in

conidial germlings using light microscopy. Furthermore, pheno-

typic rescue of the transformed gene-deletion strains served as the

most reliable marker for successful integration of a functional copy

of the MAP kinase-GFP fusion protein into the genome.

Stereomicroscopy
A Nikon SMZ 1500 fluorescence stereomicroscope (Nikon

Instruments Europe BV, UK), with a magnification range of

0.756 to 11.256, and a mercury arc lamp excitation light-source

were used to assess general colony morphology, monitor

development of sexual structures, and to evaluate expression of

fluorescent fusion proteins within transformant strains. GFP was

visualized with a GFP (excitation 470/40 nm; 505 nm LP dichroic

mirror; emission 530/40 nm) filter set. Images were acquired with

Nikon ACT-1 software on a Nikon digital DXM 1200F color

camera and stored as uncompressed tagged-image file format

(TIFF).

Widefield fluorescence and differential interference
contrast (DIC) microscopy

For DIC microscopy, an inverted Nikon TE2000-U Eclipse

widefield microscope (Nikon Instruments Europe BV, UK)

equipped with Wollaston polarizer, prism and analyzer was used,

along with a Nikon Plan Fluor 1006/1.4 N.A. DIC H oil

immersion, Nikon Plan Apo 606/1.2 N.A. DIC H water

immersion, and Nikon Plan Fluor 206/0.5 N.A. dry objectives

fitted with the corresponding DIC lens sliders. Images were

acquired with Nikon ACT-1 software on a Nikon digital

DXM1200F color camera and stored as TIFF. For widefield

fluorescence microscopy, the same microscope and objectives were

used with: a CoolLED pE-2 excitation system (http://www.

coolled.com); 470 nm LED array module with a Nikon B-2A filter

for GFP imaging, and a 380 nm LED array module with a Nikon

UV-2A for Calcofluor White (CFW) imaging. Image capture was

with a Hamamatsu Orca-ER C4742-80 camera (Hamamatsu

Photonics UK Ltd, Welwyn Garden City, UK) and MetaMorph

software v7.7.6.0 (Molecular Devices LLC, Sunnyvale CA, USA,

http://www.moleculardevices.com). Samples were prepared using

the inverted-agar-block method [66] and CFW staining was as

previously described [67]. Optical sectioning was performed with a

P-721 PIFOC Z objective focusing system connected to an E-625

PZT piezo servo controller (www.physikinstrumente.com) allowing

rapid z-stack acquisition with 0.2 to 0.5 mm step size. Apart from

basic brightness, contrast and display range adjustments using the

ImageJ freeware platform (rsbweb.nih.gov/ij/) no further manip-

ulation, such as deconvolution, were used to prepare the raw data

for presentation.

Low-temperature scanning electron microscopy (LTSEM)
All samples for LTSEM were prepared and incubated in the

same way as for other applications described previously [38],

either on VMM agar plates (mature hyphal colonies and conidial

germlings) or SCM or LSA plates (development of protoperithecia)

overlaid with sterile cellophane (525 gauge uncoated Rayophane,

A.A. Packaging, Preston, UK) to allow rapid sample preparation.

At desired time points ,12 mm2 cellophane rectangles carrying

the specimen were cut out, adhered to the cryospecimen carrier

(Gatan, Oxford, UK) with Tissue-Tek OCT compound (Sakura

Finetek, Torrance, USA) then immediately cryofixed by plunging

into subcooled liquid nitrogen. The specimen carrier was

transferred under low vacuum to the cold stage (2120uC) of a

4700II field-emission scanning electron microscope (Hitachi,

Wokingham, UK). On the stage the samples were partially

freeze-dried at 280uC to remove surface ice by sublimation;

cooled down to 2120uC; sputter-coated in a Gatan Alto 2500

cryopreparation system at 2180uC and coated with ,10 nm of

60:40 gold-palladium alloy (Testbourne Ltd., Basingstoke, UK) in

an argon gas atmosphere. The specimen was examined at 2160uC
with a beam accelerating voltage of 2 kV, a beam current of

10 mA, and working distances of 12–15 mm. Digital images were

captured at a resolution of 256061920 pixels using in most cases

the signal from the lower secondary electron detector, and saved as

TIFF.
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Results

Protoperithecial development in the N. crassa wild type
Ascogonial coil formation. An ascogonial coil initial differ-

entiates as a branch from a compartment of a vegetative hypha in

the sub-peripheral region of the colony. It usually emerges from a

trunk hypha (the thickest hyphae of the sub-peripheral mycelium) [3]

or one of its branches with a thickness of 5–10 mm (Figure 1A).

This ascogonial branch, with similar hyphal diameter to its ‘parent

hypha’, immediately coils around on itself and adheres to itself to

form a tight helical structure (Figure 1B), where the pitch of the

helix is equivalent to the width of the coiling hypha (Figures 1B,

2A and 2B). This is very similar to observations made in S.

macrospora [2] and S. humana [68]. After the tip of the ascogonial

coil had made a complete revolution, septa (dividing cross-walls)

were being formed in the earlier part of the coil (arrowheads in

Figure 1B). These septa were positioned approximately two-thirds

of a revolution of the helix apart from the previous septa

(Figures 2C and 2D). Branches emerged from the septated

ascogonial compartments, but not from the ascogonial-tip cell

(Figures 1C and 2E). These branches, in turn, enveloped the coil,

‘hugging’ its surface whilst following the grooves formed on the

surface of the ascogonial coil between adjoining hyphae

(Figures 1D and 2F). These enveloping hyphae, continue to

septate, branch, and further wrap around the ascogonial-coil core,

referred thereafter as the ascogonium. Enveloping hyphae are often

narrower (,5 mm width) than the ascogonial-coil hypha. Residues

of extracellular matrix (ECM) secretion, presumably required for

the tight adhesion between the revolutions of the ascogonial coil to

itself and between the coil and enveloping hyphae, are shown in

enlarged views in Figures 1G and 1H.

Protoperithecium expansion. After enveloping hyphae

which originated from the ascogonial compartments have enlarged

the structure to a diameter of 20–30 mm, additional enveloping

hyphae emerge, either as branches of the initial enveloping hyphae

(Figure 1D) or from neighboring vegetative hyphae and envelop

the young fruitbody further. ECM accumulates on the outer

surface of the forming protoperithecium at this early stage of

development, and eventually covers the whole structure evenly

(Figure 1I). Usually, after the structure has expanded to a diameter

of 40–50 mm and enveloping hyphae have established a compact

casing around the ascogonium, the product of fruitbody expansion

is a subspherical protoperithecium (Figure 1E).

Trichogyne emergence. Protoperithecial expansion in N.

crassa usually arrests when the fruitbody has reached a diameter of

80–100 mm. At this stage, elongated trichogynes will have emerged

(arrowhead in Figure 1F) resembling the endpoint of female-

autonomous protoperithecium maturation. For the transition into

perithecium morphogenesis, non-self, mating cell-fusion is re-

quired. Figure 3 summarizes the main stages of sexual fruitbody

development in N. crassa schematically. Table 3 provides an

overview of the range of sizes observed throughout these main

morphogenetic stages.

Genotypic verification of MAP kinase gene-deletion
mutants

PCR-based genotyping confirmed targeted gene deletion

in all MAP kinase mutants. PCR genotyping confirmed that

the targeted open reading frames have been successfully

exchanged for the hph-gene deletion cassette in all MAP kinase

KO mutants used in this study (Figures S1 and S2). Residual

presence of wild type genes indicated weak heterokaryotic

background for three of the nine strains, however, this can be

regarded as insignificant as it did not alter the dominant mutant

phenotypes of these strains (for additional information please refer

to Figure S1 and S2 legends.)

MAP kinase mutant phenotypes co-segregated with

hygromycin B resistance. PR- and CWI-MAP kinase gene-

deletion strains identical to those used in this study have previously

been verified as being correct by back-crossing and co-segregation

analyses [69]. Very recently, the same analysis has been conducted

for all OS-MAP kinase mutants available from the FGSC by the

same group, showing significant co-segregation of the mutant

phenotype with the hygromycin B-resistance marker in the

evaluated progeny of the ‘new’ os mutants: Dos-4 FGSC18202

(91%), Dos-5 FGSC18203 (95%) and Dos-2 FGSC17933 (100%)

(ratio of co-segregation indicated as percentages). In contrast, the

same mutant phenotype did not co-segregate in any of the ‘old’

(Dos-4, FGSC11479; Dos-5, FGSC11480 and Dos-2, FGSC11436)

OS-MAP kinase mutant progeny (S. Free, pers. comm.).

This data, taken together with our own PCR-based genotyping

analyses (previous section) and the consistency of the mutant

phenotypes within and between the MAP kinase cascades (see

following sections), provide very strong evidence that the

developmental phenotypes described in this study are exclusively

caused by the targeted mutations in all of the nine MAP kinase

gene-deletion strains used.

Vegetative morphogenetic defects in MAP kinase
mutants

Colony phenotypes of MAP kinase gene-deletion mutants

were distinct between the MAP kinase pathways, but

conserved within each cascade. As reported earlier [40,41],

CWI-MAP kinase (Dmik-1, Dmek-1 and Dmak-1) mutants showed

rosette-like colony growth caused by areas of increased mycelial

autolysis as typical features (Figure 4A). Mutants of the PR-MAP

kinase pathway (Dnrc-1, Dmek-2 and Dmak-2) were characterized by

short aerial hyphae and conidiation starting from the colony

center (Figure 4B), which was also consistent with previous

findings [36,37,41]. MAP kinase mutants from the OS-MAP

kinase pathway displayed ‘sticky’ and intensively orange-colored

macroconidiophores (conidia-bearing hyphae) or macroconidia, with

increased macroconidiation typically occurring around the edge of

the culture dish rather than in the colony center (Figure 4C). The

morphological alterations during conidiogenesis in os mutants have

previously been connected to conidial lysis [41,70,71]. We,

however, did not observe this under our tested conditions. Hyphal

lysis, including ‘bleeding’ of intensely orange colored droplets,

nevertheless, did occur within the vegetative mycelium (data not

shown), presumably from ruptured hyphal tips [72].

Defects during frutibody morphogenesis in MAP kinase
mutants

Deletion of MAP kinases exclusively affected female

fertility. None of the tested MAP kinase mutants generated

progeny when used as a female in heterozygous crosses with a

wild-type male. Whereas, ascospores were produced in reciprocal

and confrontation crosses (where the mutant effectively acted as

male) suggesting that male fertility, i.e. the ability of cells of a

particular strain to participate successfully in a non-self fusion

event leading to fertilization of an opposite mating-type female, is

uncoupled from the self-fusion defect.

Where available, both mating types of a particular gene-deletion

strain were tested; however, mating-type dependent effects were

never evident. Decreased ascospore viability was generally

observed in the progeny recovered from heterozygous crosses

involving MAP kinase mutant strains, as previously reported [23].

Nevertheless, the production of meiotic progeny involving a
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mutant strain as male contributor unambiguously demonstrated

successful completion of the sexual cycle despite the genetic defect.

Impairment of ascospore germination (a.k.a. ascospore lethality)

due to genetic defects of the mutant progeny is, by our definition, a

problem associated with the subsequent vegetative growth phase.

Defects during protoperithecium morphogenesis were

evident at the ultrastructural level. Assessment of female-

autonomous fruitbody development by stereomicroscopy showed

that six out of nine MAP kinase mutant-strains developed

protoperithecium-like structures beyond the stage of ascogonial

coils, the exceptions being the os mutants that did not initiate

sexual development under the test conditions (Figure 5). In

comparison to the wild type, which after 3–4 days post-inoculation

formed abundant, quite regular and subspherical protoperithecia

Figure 1. Protoperithecial morphogenesis of N. crassa wild type. LTSEM of the main stages of protoperithecial development. (A) Two
ascogonial coils differentiated from the vegetative mycelium of a two day-old culture. These two coils have formed on branches (bh) off the main
arterial trunk hyphae (th). Some of the surrounding branches have fused with each other, they are therefore considered to be fusion hyphae (fh).
Vegetative hyphal fusion is instrumental in the establishment of a fully co-operative interconnected mycelium. Scale bar, 50 mm. (B) Higher
magnification of the ascogonial coil boxed in (A). On careful inspection a septum can be seen on the lower part of the coil (aligned with arrowheads).
Scale bar, 5 mm. (C) A slightly expanded ascogonial coil again formed on a side branch of a trunk hypha, the coil is being wrapped around by
enveloping hyphae. Scale bar, 20 mm. (D) A slightly later stage where enveloping hyphae (arrowheads) originating from the ascogonium have
wrapped around the central ascogonial coil (ac). These enveloping hyphae exhibit septation and branching. The ‘parent hypha’ (ph) of the ascogonial
coil can be clearly defined, and is separated from the developing fruitbody by a basal septum (bs). (E) The subspherical shape of the
protoperithecium becomes evident after additional enveloping hyphae have formed a protective casing around the ascogonium. Trunk hyphae (th),
their branches (bh) and fusion hyphae (fh) can be clearly distinguished. Scale bar, 5 mm. (F) Mature protoperithecium, with visible ECM secretion
‘gluing’ enveloping hyphae together, and a trichogyne (arrowhead) emerging from its center. Scale bar, 20 mm. (G) Enlarged view of the boxed area
in (D) showing ECM strands between hyphae (arrowhead). Scale bar, 2 mm. (H) Enlarged view of the boxed area in (B) showing ECM strands
(arrowhead) between the tightly attaching revolutions of the ascogonial coil. Scale bar, 1 mm. (I) Enlarged view of the boxed area in (F) showing the
surface hyphae of the protoperithecium evenly covered in ECM. Scale bar, 5 mm.
doi:10.1371/journal.pone.0042565.g001
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that were 80–100 mm in diameter, the frequency, size and shape of

developing, protoperithecial-like hyphal aggregates varied consid-

erably between different mutants grown under identical condi-

tions. Fertilization of the female mutant mycelium with opposite

mating-type wild-type conidia did not trigger further fruitbody

differentiation. More conclusive morphological details of these

structures, however, were not discernible with this simple

technique and led to the employment of LTSEM for more

detailed microscopic analysis. Structural definition of the devel-

oped protoperithecial precursors was generally improved when

strains were cultured on LSA compared to SCM. Furthermore,

the more efficient suppression of conidiogenesis on LSA in

comparison to SCM greatly facilitated observations and sample

preparation. Special care was taken to ensure that any unusual

morphological features or altered surface properties were not due

to preparation artifacts, by having an identically prepared wild-

type control on each cryospecimen carrier alongside the actual

samples. The sublimation of surface ice during partial freeze-

drying after cryofixation [73,74] was the key advantage over light

microscopy techniques that allowed the true three-dimensional

surface topology of the developing protoperithecium to be resolved

(Figure 6). Key morphogenetic features typical for each of the

mutants of the three MAP kinase cascades are described in the

following sections.

OS-MAP kinase pathway: excessive ECM secretion might

prevent ascogonial coil formation. The OS-MAP kinase

pathway controls multiple cellular stress responses and, in

sequential interaction with the CWI-MAP kinase pathway, is

required for cell survival upon cell wall damage [75,76].

Commonly reported phenotypic defects in mutants of the three

Figure 2. Simulation of the transition from two-dimensional hyphal growth into a three-dimensional helical object representing
the ascogonial coil. (A) Mathematically drawn model of an ascogonial coil, helix (cos t, sin t, t) from t = 0 to 6p (3 full circles). The ascogonial mother-
cell is shown as a cylinder and the hyphal tip of the coiling branch is represented as a hemisphere. (B) A vertical cross-section through the coil shown
in (A) where the distance between the centers of each circular cross-section is equal to the hyphal diameter (2r). (C) Diagram indicating the angle 2.4
rad (,137.5u). (D) Position of septa from microscopical observations of numerous ascogonial coils in N. crassa. Septa are usually observed around two
thirds of a revolution (240u) apart, after the coil-tip has made more than one complete revolution (2p rad or 360u). The angle between projected septa
is likely to be optimized around 2.4 rad for maximum structural strength and this is represented here in the cut-away sections (i) of the coil shown in
(A). (ii) The positions of the subsequent septa are shown in top view. The angle between ‘septa’ approximates to 2p–2.4 rad (,222.5u). (E)
Diagrammatic representation of an unwrapped-coil (not to scale), showing septation (black vertical lines) and branching of successive enveloping
hyphae: (a), (b), and (c) (paler grey) of the coil. Branching is assumed here to occur equidistant between septa, although, in vivo the branching
sometimes appears nearer to one septum. A stalk-cell is often observed in vivo. The diagram illustrates this with a basal septum (0) making a ‘stalk-
cell’ compartment (s) next to the ascogonial mother-cell (am). (F) Extrapolated representation of a vertical cross-section of a simulated ascogonial
coil, which has been wrapped by enveloping hyphae that would have originated from the septated compartments shown in (E). Note that the
resulting coiled structure (not to scale) is approaching that of a sphere (represented by the dashed outer-circle). N.B. In vivo, enveloping hyphae tend
to be narrower in diameter than the ascogonial mother-cell.
doi:10.1371/journal.pone.0042565.g002
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central OS-MAP kinase components in filamentous fungi include:

the inability to grow on hyper-osmotic medium (e.g. .3% NaCl or

1 M sorbitol); hyphal lysis; increased pigmentation of macroco-

nidia; female sterility due to the lack of protoperithecia; and

increased resistance to phenylpyrrole fungicides, such as fludiox-

onil or fenpliconil [70,77,78].

Although the N. crassa Dos-4, Dos-5 and Dos-2 gene-deletion

strains analyzed in this study showed most of the above mentioned

defects, our analysis could not confirm the previously reported

hyphal fusion defect [41] (Figure S3). We therefore sought other

reasons for the absence of protoperithecia. Despite several

attempts and testing various culture conditions, we were unable

to find evidence of ascogonial coils in any of the three os mutants

(Figures 6A–6F). An interesting observation made during the SEM

studies was of extensive clusters of ECM depositions covering

hyphal surfaces (Figures 7A and D) and macroconidiophores

(Figures 7B and 7F) of the three os mutants, in a way not observed

in the wild-type control samples (Figures 7E and 7G). Interestingly,

detached conidia, however, were free of these surface depositions

(Figure 7C).

CWI-MAP kinase pathway: defects in hyphal aggregation

and adhesion aborted protoperithecial maturation. The

CWI-MAP kinase pathway senses and responds to cell-wall stress

during vegetative growth, and in response to a variety of other

signals including pheromone-induced morphogenesis. Common

phenotypes in mik-1, mek-1 and mak-1 mutants include altered cell

walls, defects in cell–cell adhesion and increased autolysis

[40,41,79].

Our analysis showed that CWI-MAP kinase mutants clearly

progressed beyond ascogonial coil formation and expansion, but

failed to form tightly packed protoperithecia through organized

aggregation and adhesion of enveloping hyphae (Figures 6G–6L).

Protoperithecial development terminated at a loosely coiled stage

that aborted, and the hyphal aggregates formed were reabsorbed

into the colony, presumably fostered by increased autolysis in these

mutants (Figure 7I).

Another interesting observation was early-onset of fruitbody

development at the leading edge of Dmik-1, Dmek-1, and Dmak-1

colonies in plates that had been centrally inoculated (Figure 7H).

This contrasted with the N. crassa wild type that only underwent

fruitbody formation once the centrally inoculated colony had

reached the edge of the culture plate. The latter occurred on SCM

or LSA at 25uC in plates up to a diameter of 30 cm.

PR-MAP kinase pathway: activation of the PR-MAP

kinase cascade occurred at the end stages of

protoperithecial morphogenesis. During yeast mating, the

PR-MAP kinase pathway regulates chemotropic interaction of

mating partners leading to non-self fusion and fertilization

(reviewed in [80]). Mutants of the orthologous PR-MAP kinases

NRC-1, MEK-2 and MAK-2 of Neurospora have been reported to

progress further in fruitbody development than mutants of the

other two MAP kinase cascades, but still remained female sterile

[41]. This was confirmed by our ultrastructural analysis, showing

that Dnrc-1, Dmek-2 and Dmak-2 strains of N. crassa formed densely

packed protoperithecia with evidence of hyphal adhesion and

normal ECM deposition on the outside (Figure 6M–6R). These

mutants, however, did not show signs of trichogyne differentiation,

which would be required for subsequent non-self fusion with the

male mating partner.

Localization of MAP kinases during protoperithecial
development

Genetic complementation rescued sexual development in

all three MAP kinase mutants. Wild-type morphology was

restored by ectopic expression of OS-2-GFP, MAK-1-GFP and

MAK-2-GFP in Dos-2 (FGSC17933), Dmak-1 (FGSC11320) and

Dmak-2 (FGSC11482), respectively (Figure 8). In the rescued Dos-2

Figure 3. Main stages of protoperithecial development. The
ascogonium forms as a specialized, coiled, hyphal branch from a ‘parent
hypha’ of the vegetative mycelium. The coil expands, adheres to itself,
septates and branches. It sends out more branches, which envelop it.
Additional, enveloping hyphae from neighboring areas of the
vegetative mycelium, aggregate, reinforce and expand the protective
casing around the ascogonium. Secretion of ECM is a precursor to
hyphal adhesion during this process, which potentially also involves
hyphal fusion. Continued fruitbody expansion, cellular differentiation
through septation, branching and cell conglutination (conglutinate cells
are those that have adhered to each other), melanization and
emergence of the trichogyne mark the final stages of protoperithecium
maturation. Mating-cell fusion leading to fertilization and dikaryon
formation mark the transition into perithecial development. Autono-
mous developmental stages of the protoperithecium are highlighted
with grey shading. Table 3 summarizes the range of sizes observed for
these main developmental stages observed during protoperithecium
morphogenesis.
doi:10.1371/journal.pone.0042565.g003
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Table 3. Size ranges of developmental stages during protoperithecium morphogenesis.

Developmental stage Min. ø Max. ø Mean ø *

Trunk hypha 5 mm 10 mm 6 mm

Ascogonial coil 9 mm 13 mm 12 mm

Ascogonial coil with branches and enveloping hyphae 10 mm 24 mm 17 mm

Subspherical protoperithecium with enveloping hyphae 24 mm 100 mm 60 mm

Mature protoperithecium 37 mm 100 mm 74 mm

*Mean diameter were calculated from 100 individual measurements on 2–6 day old wild type cultures grown on LSA.
doi:10.1371/journal.pone.0042565.t003

Figure 4. Colony morphology of MAP kinase mutants. All MAP kinase mutants showed macroscopic colony phenotypes clearly distinct from
the wild type and between the three MAP kinase pathways, but highly conserved within each cascade. (A) CWI-MAP kinase mutants (Dmik-1, Dmek-1
and Dmak-1) typically showed increased autolysis resulting in rosette-like colony growth, and slow colony extension even on nutrient rich media. (B)
MAP kinase mutants of the PR pathway (Dnrc-1, Dmek-2 and Dmak-2) were characterized by short aerial hyphae and conidiation starting from the
colony center. (C) Colony phenotypes of OS-MAP kinase mutants (Dos-4, Dos-5 and Dos-2) comprised reduced aerial hyphae in the colony center,
elevated carotenoid biosynthesis and intense production of ‘sticky’ aerial hyphae and macroconidiophores were foremost at the plate edge. (D) Wild
type controls, and the ‘old’ Dos-2 strain FGSC11436, which displayed a colony phenotype different to that of the genuine os mutants (see Figure S4
for a more detailed genotypic and phenotypic comparison between the two Dos-2 mutants FGSC11436 and FGSC17933).
doi:10.1371/journal.pone.0042565.g004
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transformants the wild-type phenotypes that were recovered

included: the formation of ascogonial coils that developed into

mature protoperithecia; absence of excessive ECM secretion and

hyphal lysis; and turgid hyphae with smooth surfaces (Figures 8A

and 8B). The vegetative hyphal fusion defects of Dmak-1 [41] and

Dmak-2 strains [36,37,41] were also fully recovered in their

respective transformants (Figures 8C and 8E), as was their ability

to complete protoperithecial development (Figures 8D and 8F).

When used as females in heterozygous crosses with the wild type,

the rescued transformants of all three MAP kinase mutants

successfully completed sexual development, producing viable

ascospores. Notably, genetic complementation of Dos-2

FGSC11436 restored osmoresistance and fenpiclonil sensitivity,

but not the hyphal fusion defect of this strain suggesting the hyphal

fusion defect is uncoupled from the os-2 deletion (Figure S4).

Figure 5. Protoperithecial development in MAP kinase gene-deletion mutants. In comparison to the wild type, which formed regular,
subspherical protoperithecia 40–80 mm in diameter, only mutants of the PR- and CWI-MAP kinase cascades formed protoperithecial-like structures of
similar appearance. These however, did vary in size, shape and degree of pigmentation and were not clearly discernable as protoperithecia even to an
experienced microscopist using the stereomicroscopy technique shown here. It was these observations that warranted investigations using more
powerful microscopic techniques, as used for Figures 1 and 6–8. Protoperithecial-like structures could not be observed in any of the newly generated
OS-MAP kinase mutants. In contrast to the other os mutants, Dos-2 FGSC11436 showed disorganized mycelial architecture, typical of hyphal fusion
defects. The Dnrc-1 strains generated from FGSC18162 by vegetative homokaryon selection (HS) showed no phenotypic differences compared to
Dnrc-1 FGSC11466. In order to calibrate the results, all strains were inoculated onto cellophane over LSA medium (and SCM for comparison), and
incubated for 5–7 days at 25uC dependent on the rate of developmental of the mutant strain. By cutting out cellophane squares carrying mycelium
the same samples as shown here were subsequently prepared for LTSEM. Finally, these female cultures were fertilized with opposite mating type
conidia of the wild type to confirm female sterility. All scale bars, 50 mm.
doi:10.1371/journal.pone.0042565.g005
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Figure 6. ECM and hyphal adhesion seem essential for the organized assembly of enveloping hyphae into protoperithecia. (OS)
Despite several attempts, ascogonial coils, let alone protoperithecial-like structures, could not be identified in mycelia of the three OS-MAP kinase
mutants. Large areas of the mycelium were collapsed, indicating extensive lysis of vegetative hyphae. Hyphal loops (a.k.a. hyphal coils or lassoes), as
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Optical sectioning of protoperithecia. Optical sectioning

of fluorescently labelled protoperithecia revealed the tightly wound

hyphal network of living fruitbodies (Figure 9). CFW staining of

cell walls and expression of fluorescent fusion proteins within the

cytoplasm facilitated optical sectioning of complete ascogonial

coils and early-stage protoperithecia (Figure 9A). Due to the

limited depth which CFW penetrates into the centre of proto-

perithecia, only the fluorescent fusion protein signal was able to

provide detail of the internal organization of larger protoperithecia

(Figure 9B). Unfortunately, this approach still did not unequivo-

cally elucidate whether or not cell fusion had occurred between

hyphae within developing protoperithecia (Figure 9C).

Interestingly, for MAK-2-GFP expressing-strains higher fluo-

rescence could be detected within the central ascogonial-coil

region, whereas signals were on average 25% lower in the

adjoining enveloping hyphae and dropped another 20% in

shown here in Dos-2 (arrowhead in E) were occasionally observed in all three mutants. These structures are frequently found in the wild type, and
although their function is unknown, a connection to sexual development seems unlikely (see discussion). Scale bars: (A) 100 mm; (B, C, E) 50 mm; (D, F)
25 mm. (CWI) Dmik-1, Dmek-1 and Dmak-1 strains initiated ascogonial coils and differentiated enveloping hyphae. The assembled multicellular
structures, however, remained loose hyphal aggregations and ECM was absent, suggesting that hyphal adhesion was not sufficient to form
subspherical protoperithecia. Scale bars: (G) 10 mm; (H, I, K, L) 25 mm; (J) 50 mm. (PR) Dnrc-1, Dmek-2 and Dmak-2 strains produced ECM, and hyphal
aggregations resembled better-organized and more spherical ‘early-stage’ protoperithecia. Nevertheless, trichogynes have not been observed in
these strains, and sexual development did not progress beyond this stage. Scale bars: (M–R) 25 mm.
doi:10.1371/journal.pone.0042565.g006

Figure 7. Excessive ECM deposition in OS-MAP kinase mutants and aborted fruitbody development in CWI-MAP kinase mutants.
(A) All hyphal surfaces of Dos-2 (FGSC17933) were covered with punctate clusters of ECM depositions. Scale bar, 10 mm. Magnified view in inset; scale
bar, 5 mm. (B) Macroconidiophores of Dos-2 were also heavily covered in ECM material. Scale bars, 20 mm. (C) Granular ECM depositions were not
present on the surfaces of matured, detached macroconidia. Scale bar, 2 mm. (D) Higher magnification of the clustered ECM depositions on a mature
hyphal surface of Dos-2. Scale bar, 2 mm. (E) Smooth surface of a mature hypha of the wild type control. Scale bar, 2 mm. (F) ECM-covered
macroconidiophore of Dos-5. Scale bar, 20 mm. (G) Wild type macroconidiophore. Scale bar, 20 mm. (H) CWI-MAP kinase mutant strains displayed
early-onset initiation of fruitbody development at the colony periphery. Inset shows a magnified view of the protoperithecial-like ‘hyphal knot’
formed only about 400 mm behind the leading colony edge of Dmik-1. Scale bar, 100 mm; in inset 10 mm. (I) Immature multicellular structures in the
sub-periphery of Dmak-1 colonies aborted, then autolyzed and were subsequently reabsorbed into the mycelium, resulting in little evidence of any
recognizable protoperithecial-like structures. Scale bar, 50 mm.
doi:10.1371/journal.pone.0042565.g007
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neighboring vegetative hyphae (Figure 9D). A similar trend was

observed for MAK-1-GFP distribution, although with overall

weaker fluorescence intensities (Figure 9E). Although OS-2-GFP

could not be detected in the rescued mutant fruitbodies, it could be

detected in conidial germlings (A. Lichius, unpublished data).

Discussion

Protoperithecial morphogenesis in the N. crassa wild
type

To provide a baseline comparator for the analyses of MAP

kinase gene-deletion mutants we commenced with a detailed

description of protoperithecial morphogenesis in the wild type

using live-cell imaging and LTSEM. We conclude that this process

can be conveniently divided into four main morphogenetic stages

of hyphal differentiation, leading from the vegetative mycelium to

the fertilizable protoperithecium. Notable key aspects highlighted

by our analyses include: (1) the initial stage being the ascogonial

coil, a tight-helical branch with outer dimensions not exceeding

15 mm in diameter, that forms the ascogonium in the center of the

developing protoperithecium; (2) septation of the ascogonial coil is

a precursor to the emergence of enveloping hyphae; (3) enveloping

hyphae, which differentiate as branches of either the ascogonium

or one of its neighboring compartments, enlarge the structure; (4)

additional enwrapping by enveloping hyphae that may originate

from the surrounding vegetative mycelium determine shape, and

(5) regulated deposition of extracellular matrix involved in the tight

adhesion of ascogonial coil and enveloping hyphae seals the

subspherical encasing of the developing fruitbody.

We also take this opportunity to clarify that ascogonial coils in

N. crassa and related ascomycetes are developmentally different to

vegetative hyphal coils (a.k.a. hyphal lassoes). The formation of

hyphal lassoes has been described by several authors, and

interpreted to be abortive ascogonial coils or ‘pseudo-ascogonia’

in N. crassa [81,82], N. tetrasperma [83] and S. macrospora [84].

However, we are not aware of any evidence to support this

interpretation in N. crassa as has been recently discussed for hyphal

lassoes in Aspergillus nidulans [85].

The formation of a subspherical fruitbody from tubular hyphae

can most efficiently be achieved by the combination of a tight coil

and enwrapping branches. Hyphal lassoes are too loosely wound

to generate the compact ascogonial coil observed in the center of

developing protoperithecia.

Gene deletions that impact on sexual progression mainly
affected the female partner

All gene-deletion mutants investigated in this project were

blocked in sexual development only when used as females in

heterozygous crosses with the wild type. Using conidia of mutant

strains as the male fertilizing agent for opposite mating-type, wild-

type females did not block sexual development and resulted in the

successful production of ascospores. Exclusive female sterility is

consistent with earlier findings [36,40,86] and confirms asymmetry

of female and male function during mating in N. crassa [20].

Mutant strains that are highly male-fertile, but completely female-

sterile, are not surprising, as the female function is more complex

and thus presents a larger mutational target than the male

function. Female function is therefore more easily lost through

targeted gene-disruption than is male function [87]. Thus far, the

only reported example of a N. crassa mutant that has been shown to

be female and male sterile is the Dprm-1 strain [88].

MAP kinase mutants were defective at different stages of
protoperithecial morphogenesis

Light microscopy illustrated that six out of nine mutants in this

investigation formed protoperithecium-like structures that did not

mature when judged by size and degree of pigmentation compared

with the wild type protoperithecium. For CWI-MAP kinase

mutant strains this is the first report that protoperithecium-like

structures develop to these advanced stages. Furthermore,

Figure 8. Genetic complementation rescued protoperithecial development in all three MAP kinase mutants. (A) Young
protoperithecium of a rescued Dos-2 transformant (NCAL020) enwrapped by enveloping hyphae. Granulated ECM depositions as seen on Dos-2
hyphae (Figure 7A) could no longer be observed in the rescued Dos-2 transformants, which showed smooth hyphal surfaces evenly covered in ECM
(compare to wild type in Figure 7E). Scale bar, 20 mm; in inset 5 mm. (B) Mature protoperithecium of the rescued Dos-2 transformant. Scale bar,
20 mm. (C) VHF (arrowheads) undergone in the rescued Dmak-1 transformant (NCAL010). Scale bar, 20 mm. The inset shows an ascogonial coil of this
strain from which a straight hypha emerges which resembles a trichogyne initial (arrowhead). Scale bar, 5 mm. (D) Mature protoperithecium of the
rescued Dmak-1 transformant. Scale bar, 20 mm. (E) CAT-mediated cell fusion (arrowheads) in a rescued Dmak-2 transformant (NCAL043). Scale bar,
20 mm. (F) Mature protoperithecium of a rescued Dmak-2 transformant. Scale bar, 20 mm.
doi:10.1371/journal.pone.0042565.g008
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morphological differences between protoperithecium-like struc-

tures observed in CWI-MAP kinase and PR-MAP kinase mutants

indicated that the deleted genes have different functions during

protoperithecial morphogenesis.

Two essential characteristics of developmentally arrested

mutant protoperithecia became evident: (1) enveloping hyphae,

which were only arranged as loose knots with significant gaps

between them, and (2) excess or absence of ECM deposition.

Loose-knit protoperithecia were observed for the MAP kinase

mutants of the CWI pathway. Furthermore, these mutants did not

appear to deposit ECM, which markedly contrasted with MAP

kinase mutants of the PR pathway and the wild type. MAP kinase

mutants of the OS pathway produced excess ECM, which formed

granulated clusters on all hyphal surfaces, accumulating in greater

quantities on conidiophores. These latter MAP kinase mutants

were characterized by the complete absence of developing

fruitbodies, consistent with previous reports [89,90].

Figure 9. Optical sectioning of developing protoperithecia. Montages of selected optical sections through developing protoperithecia of the
rescued Dmak-2 strain expressing MAK-2-GFP (NCAL043). (A) The small dimensions of a late stage ascogonial coil are fully accessible to optical
sectioning when labelled with CFW and MAK-2-GFP. Scale bar, 5 mm. (B) With increasing size, CFW dye is unable to penetrate the interior of the
developing fruitbody, and consequently cannot be used to optically section the interior of the ascogonium. Fluorescently labelled MAK-2, however,
allows visualization of the whole protoperithecium. Scale bar, 10 mm. (C) Optical sectioning of a mature protoperithecium reveals the complex and
tightly wound hyphal network comprising this structure. Scale bar, 20 mm. (D) Middle section of a protoperithecium expressing MAK-2-GFP. The
corresponding surface plot shows that fluorescence intensity peaks in the central core region, suggesting that MAK-2-GFP accumulates in the
ascogonial coil tissue. (E) MAK-1-GFP fluorescence in the rescued Dmak-1 strain (NCAL010) also peaked in the central ascogonium region, however,
was not as pronounced as in the case of MAK-2. Scale bar, 10 mm. Movies S5, S6, S7, and S8 show full z-stacks of optically sectioned protoperithecia.
doi:10.1371/journal.pone.0042565.g009
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Controlled extracellular matrix deposition was crucial for
adhesion of enveloping hyphae

Our results suggested that the organized assembly and adhesion

of enveloping hyphae is essential for protoperithecium morpho-

genesis. If hyphal adhesion was possible to a small degree,

protoperithecial development progressed further, compared to

mutants where ECM deposition seemed to be deregulated. The

inability of MAP kinase mutants of the OS pathway to initiate

sexual development is potentially due to excessive ECM secretion

on the hyphal surface, which could prevent efficient coiling and

adhesion, and correlated with numerous collapsed and ‘bleeding’

hyphae, and ‘sticky’ conidiophores. MAP kinase mutants of the

CWI pathway only formed loose hyphal aggregates that lacked

ECM. These aggregates aborted and became quickly autolyzed

PR-MAP kinase mutants progressed furthest by forming compact,

organized protoperithecial-like structures. However, emergence of

trichogyne-like hyphae was not observed in PR-MAP kinase

mutants, suggesting that fruitbody development stalled before a

mature stage was reached even in these strains. These MAP kinase

pathway-dependent differences in superficial ECM deposition led

us to propose that regulated ECM deposition should be regarded

as a defining stage of protoperithecial development in N. crassa. In

addition, some of the ECM produced may play an important role

for the formation of conglutinate cells and pseudoparenchymatous

tissues [2,4,5].

Apical dominance might restrict sexual development and
senescence in the colony sub-periphery

Another aspect that influenced fruitbody development and its

analysis, respectively, was the early-onset of autolysis in the

mycelia of CWI-MAP kinase mutants. This phenomenon has been

reported for a number of homologous strains in different fungal

species and is generally regarded as one determining feature of

fungal cell-wall mutants [41,79,91]. Autolysis of immature

protoperithecia occurred in the wild type, but much less

frequently. Early autolysis resulted in very quick degradation of

aborted protoperithecia in the center and sub-periphery of

colonies of all CWI-MAP kinase mutants of N. crassa. As a likely

consequence of this, intact protoperithecial aggregates could only

be located and analyzed close to the colony edge, interestingly,

even before the mycelium had reached the edge of the culture

dish. In the wild type or other developmental mutants we studied,

it was not common to observe protoperithecial formation

commencing before tips of peripheral leading-hyphae had

encountered the edge of the Petri dish. Premature entry into

sexual development and early-onset autolysis of the initiated

fruitbodies are both signs of accelerated senescence of these

mutants. Wild type colonies can extend to considerable sizes

before initiating protoperithecial development in response to

physical confinement at the colony edge. This ‘edge-effect’

stimulus of fruitbody formation has been documented for species

closely-related to N. crassa [92], including S. macrospora [84,93] and

S. brevicollis [94], supporting the hypothesis that apical dominance

of the leading-edge of the actively growing colony suppresses

ascogonial coil initiation, and consequently delays aging in the

sub-periphery of the wild type. The particular phenotype of

increased senescence in CWI-MAP kinase mutants greatly

impeded experimental analysis of fruitbody development, but

provided one possible explanation why protoperithecial initials of

these mutants had escaped detection by earlier investigators.

Trichogyne emergence concludes protoperithecial
development

MAP kinase mutants of the PR pathway (nrc-1, mek-2 and mak-2)

have previously been reported to progress further in fruitbody

development than mutants of the other two MAP kinase cascades

[41]. This notion was confirmed by our analysis, which due to the

absence of trichogyne-like hyphae, further suggests that the PR

pathway might also act during the transition from protoperithecial

to perithecial development. Thus, signaling through the PR

pathway may not exclusively be involved in trichogyne homing

and mating-cell fusion, but also in trichogyne initiation. As

trichogynes are formed in the wild type in the absence of opposite

mating-type pheromone, the involvement of a self-signaling

molecule, which triggers morphogenetic transitions up until this

point, is indicated. Crosstalk between all three Neurospora MAP

kinase pathways during regulation of female sexual development is

very likely as suggested previously [40,41].

Taken together, we propose that deregulated MAP kinase

signaling leads to the inability to develop protoperithecia in an

organized manner, i.e. to assemble a tightly wound ascogonial coil

with enveloping hyphae ‘hugging’ its surface through adhesion

and regulated ECM deposition. Hyphal attachment following tip-

growth arrest is a precursor to vegetative hyphal fusion (VHF) and

might provide an important trigger for the activation of the fusion

machinery [95]. The lack of contact-induced tip growth arrest and

hyphal tip attachment is a commonly observed phenotype in VHF

mutants [96], including CWI- and PR-MAP kinase gene-deletion

strains. Therefore, the inability to attach and trigger the transition

to the next morphogenetic stage may provide a functional

connection between VHF and fruitbody development. In the

event that certain developmental checkpoints are not reached,

further fruitbody morphogenesis is aborted and the material

becomes reabsorbed and recycled within the colony. This has

important implications for the preparation and timing of

experimental analysis of protoperithecial-defective strains.

The role of self-fusion during protoperithecial
morphogenesis remains unclear

All nine MAP kinase mutants analyzed in this study were

defective in sexual development, but only six were defective in

vegetative hyphal self-fusion. The link between vegetative cell

fusion and sexual development has repeatedly been made (e.g.

[23,67,69]) but whether self-fusion events are involved in the

formation of the fully functioning/co-operative multicellular

structure of the protoperithecium has not been established.

Unfortunately, despite very careful observations, we were unable

to clearly identify self-fusion connections within the developing

protoperithecium. An obstacle for these analyses is that unless one

can actually observe the fusion-process occurring, it is difficult to

reliably differentiate a fusion event from a septation event inside

the fruitbody. Our findings from optically sectioning early-stage

protoperithecia suggest that MAK-2 and MAK-1 participate in

differentiation processes inside the ascogenous tissue. Considering

the importance and presence of both MAP kinases at germling

fusion sites in N. crassa [96,97], this leaves the possibility for cell

fusion to occur in the developing protoperithecium. OS-2, on the

other hand, was not detected in ascogenous tissue, nor was it

detected at advanced stages of fruitbody differentiation following

ascogonial coil initiation. Fusion between dissected-out paraphyses

(sterile hyphae that grow between asci) in perithecia has been

observed in S. macrospora [2] and N. crassa (K.M. Lord & N.D.

Read, unpublished results), and in ascogenous tissue cell-fusion

occurs in croziers [22]. Combined with results of independent
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studies that recently identified additional hyphal fusion mutants of

N. crassa with normal protoperithecial development [69,98], we

can conclude that: (1) not all genes essential for VHF are required

for protoperithecial development, and thus signaling processes

regulating fusion in both processes are likely to be different, and (2)

consequently, proteins that are essential in both processes might

regulate different cellular events, not necessarily connected to cell

fusion.

Conclusions

Our analysis indicates that MAP kinase gene deletions did not

lead to the disruption of protoperithecial development at a

conserved stage, but that blockage occurred at distinct stages

dependent on the affected MAP kinase cascade. The loss of an

individual MAP kinase could not be compensated within the MAP

kinase signalling network, further supporting the notion that each

cascade functions during a specific stage of protoperithecium

development and in a sequential manner. The morphogenetic

phenotypes of the nine MAP kinase mutants in Neurospora suggests

that the OS and CWI pathways act upstream of the PR pathway.

The successful phenotypic rescue of all three terminal MAP kinase

mutants proved that signaling through all three cascades is

essential for perithecial development. The finding that os genes are

dispensable for hyphal fusion, while essential for protoperithecial

morphogenesis, complicates our attempts to understand whether

hyphal fusion is required for fruitbody formation. However, this

does not exclude the possibility that hyphal fusion is required,

because fusion events inside the developing protoperithecium are

likely to be regulated differently than VHF in the mature

mycelium.

Finally, this study highlights that MAP kinases play roles in

some of the key processes involved in the early stages of

multicellular development in fungi, particularly: extracellular

matrix deposition; hyphal adhesion; and hyphal envelopment,

during the construction of protoperithecia. These are fundamental

features displayed by fungi achieving the multicellular state by

hyphal aggregation. The evolution of fungi with multicellular

differentiated tissues has been estimated to have occurred at least

500 million years ago, to have occurred independently in the

Ascomycota and Basidiomycota [99], and possibly more than once

in the Ascomycota [100]. Indeed, the morphology of the

perithecium has been shown from fossil evidence to be conserved

for over 400 million years [101,102]. In the future, it will be

extremely important to determine the molecular basis of how fungi

achieve multicellularity, in order that we can identify and analyse

the key molecules (e.g. cell adhesion molecules) involved in this

process. It will also be interesting to determine whether fungi share

some of this molecular machinery with animals, from which they

have been estimated to diverge 2,635 million years ago [103]. The

analysis of multicellular development in experimentally and

genetically tractable fungi such as N. crassa and S. macrospora

should provide useful models from which to gain significant

insights into these processes in even more complex eukaryotes [2].

Supporting Information

Figure S1 PCR-genotyping set up 1. (A) Schematic overview

of the PCR set up initially used for genotypic verification of gene-

deletion strains. (a) Simplified representation of the gene-deletion

process by homologous recombination. The open reading frame

(ORF) of the hph cassette and the target gene ‘X’ are in antisense.

As macroconidia, which were used for KO cassette transforma-

tion, are multinucleate, gene deletion does not necessarily occur in

all nuclei of a single spore. This may result in heterokaryotic cells

that contain both wild type and deletion mutant nuclei, therefore

being hygromycin B resistant, but still expressing a wild type copy

of the target gene X. (b) Presence of the target gene X in the

genome of an individual strain was analyzed using one gene-

specific primer positioned inside the wild type ORF (X_300_fw)

paired up with a primer positioned inside the 39 flank used for

homologous recombination (3r_X). In case, PCR 1 produces a

fragment of the predicted size, the target gene is still present in that

strain. The 3r_x primer was used together with a matching

forward primer (3f_X) to amplify a fragment of the 39-flank as

internal PCR control (PCR 2). (c) Presence of the hph-cassette in

the target locus was analyzed with PCR 3, using the hph-cassette-

specific hph_300_fw primer paired up with 3r_X. Again as

internal PCR control (PCR 4) hph_300_rv was used together with

hph_test_fw to amplify a part of the hph gene. Due to the poor

binding capacities of hph_test_fw, which consequently gave only

very little product (all PCR 4 bands are rather weak), this

approach was soon abandoned and replaced by the improved

PCR genotyping set up 2 shown in Figure S2. Green arrows

represent forward primers, red arrows represent reverse primers.

The hph-cassette is oriented in antisense relative to the target gene

locus. Therefore, in PCRs 3 two seemingly non-matching reverse

primers were used. (B) Functionality of all genotyping primers was

initially verified using wild type gDNA template. (C) According to

the schematics in (A) presence of the hph-cassette in the targeted

loci could be confirmed for all six MAP kinase gene-deletion

mutants of the PR-MAP kinase and CWI-MAP kinase pathway.

The hph-specific PCRs 4 did only result little product, if at all.

However, functional presence of that gene is sufficiently backed up

by the fact that all strains grew on 100 mg/ml hygromycin B.

Extremely weak, residual wild type background could only be

detected for Dnrc-1 and Dmak-2, but not for any of the other four

kinase mutants. This residual wild-type background, however, was

in no case sufficient to rescue the dominant mutant phenotype,

which was identical amongst all three PR-MAP kinase mutants

(Figure 4B). Furthermore, the wild type-like phenotype of the

heterokaryotic Dnrc-1 FGSC18162 replacement strain switched to

a mutant phenotype identical to that of Dnrc-1 FGSC11466 after

the first generation of vegetative homokaryon purification in eight

of ten isolated clones providing sufficient proof for their

correctness (data not shown). (D) All three PR-MAP kinase

mutants (Dnrc-1 FGSC11466, Dmek-2 FGSC11524 and Dmak-2

FGSC11482) have been confirmed to still carry the Dmus-51

deletion, whereas, all three CWI-MAP kinase mutants (Dmik-1

FGSC11326, Dmek-1 FGSC11318 and Dmak-1 FGSC11320) have

been complemented in that gene after back-crossing. This is

consistent with the genotypic annotation of these strains in the

master spreadsheet maintained at the Dartmouth Neurospora

Genomics Project site. In Dmek-2 FGSC11524 homokaryon

purification has been accomplished not by back-crossing, but

vegetatively through single spore isolation of uninuclear microco-

nidia. Consequently, the Dmus-51 could not be complemented by

the mating partner. Due to low viability of the progeny after back-

crossing Dnrc-1 FGSC11466 and Dmak-2 FGSC11428 strains had

to be deposited as heterokaryons. To date, there are no reports

that deletion of mus-51 or mus-52 in Neurospora, or other ku70- or

ku80-orthologous deletions in other fungi, have an influence on the

phenotype, apart from their intended molecular effect of

eliminating non-homologous end-joining recombination [104].

Therefore, presence of these mutations is not expected to influence

phenotypic analyses of this study in any way.

(TIF)

Figure S2 PCR-genotyping set up 2. (A) Schematic overview

of the improved PCR set up used for genotypic verification of
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gene-deletion strains. (a) Simplified representation of the gene-

deletion process by homologous recombination. For detailed

description please refer to Figure S1 legend. (b) Presence of the

target gene X in an individual strain was analyzed using two

gene-specific primers positioned inside the wild type ORF

(X_1000_rv and X_500_fw) paired up with primers positioned

outside of the 59 and 39 flank used for homologous recombination

(X-59200_fw and X-39300_rv). If PCR 1 and PCR 2 produced

amplicons of the predicted size, then a copy of the target gene

was still present in that strain. (c) Presence of the hph-knock-out

cassette in the target locus was analyzed with primers specific for

the cassette (hph_800_fw and hph_300_rv), paired up with the

same primers outside of both flanks as described before.

Analogous to (b), products from PCR 3 and PCR 4 confirmed

that the hph-cassette has been integrated exactly at the targeted

location in the genome, and thus replaced the native gene.

Amplification products from PCRs 1–4 have relative size

differences of at least 200 bp to one another, in order to facilitate

differentiation after gel-electrophoresis. Green arrows represent

forward primers, red arrows represent reverse primers. The hph-

KO cassette is oriented in antisense relative to the target gene

locus. Therefore, in PCRs 3 and 4 two seemingly non-matching

reverse primers were used. (B–D) Genotypic verification of os

mutants. All primers were initially tested using wild type gDNA

template (left column). In all ‘new’ Dos-2, Dos-4, and Dos-5

mutants the hph-KO cassette has replaced the targeted gene at its

specific locus, confirming that the genes were correctly removed

through homologous recombination. The ORFs of the targeted

genes could not be detected somewhere else in the genomes of

Dos-2 and Dos-4, respectively, whereas, in Dos-5 weak bands in

PCRs 1, 2 and the os-5-specific amplicon indicate residual

presence of the wild type locus, suggesting that this strain is still

heterokaryotic. Nevertheless, this extremely weak wild-type

background was not enough to alter the dominant mutant

phenotype of strain Dos-5 FGSC18203, which notably was 100%

consistent with that of Dos-4 FGSC18202 and Dos-2 FGSC17933

(Figure 4C). The presence of mus-52 was found in all three Dos

mutant strains, whereas mus-51 was absent from Dos-4 and Dos-5

indicating that only Dos-2 has successfully been recovered from

back-crossing. As outlined in the master spread-sheet of the

Neurospora Genome Project, Dos-4 FGSC18202 and Dos-5

FGSC18203 have been homokaryon-purified vegetatively by

isolation of hygromycin B-resistant microconidia, and thus Dmus-

51 could not be complemented. However, apart from its intended

molecular phenotype (eliminated non-homologous recombina-

tion) no further macro- or microscopic phenotypes are known to

be caused by these mutations. A pair of primers amplifying a part

of the actin locus was used as internal PCR controls, generating a

700 bp fragment in each reaction. Indicated PCRs 1 and 2 refer

to the PCR set up shown in (A).

(TIF)

Figure S3 Phenotypic characterization of OS-MAP ki-
nase mutants. A by-product of our morphogenetic analyses of

protoperithecial development was the finding that vegetative

hyphal fusion in the mature colony and between conidial

germlings of the OS-MAP kinase mutants Dos-4 FGSC18202,

Dos-5 FGSC18203 and Dos-2 FGSC17933 mutants was functional

and indistinguishable from the wild type. (A) VHF in the mature

colony of all three os mutants (Dos-4, FGSC18202; Dos-5,

FGSC18203 and Dos-2, FSGC17933) was indistinguishable from

the wild type controls (mat A, FSGC2489 and mat a, FGSC4200).

A fusion defect was only observed in the ‘old’ Dos-2 FGSC11436

strain. See Movies S1, S2, S3, and S4 for hyphal fusion phenotypes

of these strains. (B) Fusion competency of the ‘new’ os mutants was

furthermore confirmed in germling-fusion assays. Again, only

FGSC11436 was found to be cell fusion defective. Arrowheads

indicate fusion connections. All scale bars, 10 mm. As this

contradicted previous reports [41], we wanted to confirm the

genuine phenotype of these strains by testing two additional, well-

documented characteristics of OS-MAP kinase mutants: osmo-

sensitivity and resistance to phenylpyrrole fungicides [70]. All

three ‘new’ os mutant strains showed increased osmosensitivity

under salt stress, and increased resistance against the fungicide

fenpiclonil, confirming that they are genuine OS-MAP kinase

mutants of N. crassa. Ectopic expression of OS-2-GFP restored

osmotolerance and fungicide sensitivity in Dos-2 transformants

(NCAL020-1 and -2). (C) Whereas, the wild type strains were able

to grow in the presence of 6% NaCl, colony extension in all three

os mutants was significantly impaired already in the presence of

3% salt, and completely blocked with 6% NaCl in the medium.

(D) Only the three os mutants were resistant to the fungicide,

whereas resistance was lost in the genetically complemented Dos-

2::OS-2-GFP strains. (E) In comparison to the VMM controls,

CAT-mediated cell fusion was significantly reduced in the os

mutants in the presence of 3% NaCl, which was recovered close to

wild-type levels in the rescued Dos-2::OS-2-GFP transformants

(NCAL020-1 and -2). Germling fusion was effectively inhibited

through 1.5 mM fenpiclonil in the wild type and rescued Dos-

2::OS-2-GFP transformants, but unaffected in the three genuine os

mutants. Taken together, these findings confirm that Dos-4,

FGSC18202; Dos-5, FGSC18203 and Dos-2, FSGC17933 are

genuine osmosensitive MAP kinase mutants, and that they are

dispensable for cell fusion in N. crassa.

(TIF)

Figure S4 Phenotypic and genotypic characterization of
Dos-2 FGSC11436. (A) Differences in colony development,

measured as radial colony extension, under salt and fungicide

stress were compared between wild type, Dos-2 FGSC11436, Dos-

2 FGSC17933 and corresponding genetically complemented

transformants NCAL018 and NCAL020, respectively. The wild

type was able to grow in the presence of 6% w/v NaCl in the

medium, but unable to grow in the presence of the fungicide

fenpiclonil (1.5 and 4.5 mM). This behavior was not altered

through ectopic expression of OS-2-GFP in the wild type-

transformant strains NCAL016-1 and -2. Due to its hyphal fusion

defect, colony development of Dos-2 strain FGSC11436 was

slower on the control medium. In addition, this strain showed

increased sensitivity to salt stress and was unable to grow on

medium supplemented with 6% NaCl. However, it was resistant

to fenpiclonil. Osmosensitivity was rescued through ectopic

expression of OS-2-GFP in the FGSC11436 transformants

NCAL018-2 and -3, and its sensitivity to fenpiclonil was restored.

With respect to osmosensitivity and fenpiclonil resistance, Dos-2

strain FGSC17933 and its corresponding OS-2-GFP transfor-

mants NCAL020-1 and -2, respectively, showed identical

characteristics. (B) Normal hyphal morphology at the colony

periphery of Dos-2 FGSC11436 under non-stress conditions and

in the wild type in the presence of 6% salt. In the presence of 3%

salt, both Dos-2 mutants show swollen hyphae and irregular

growth pattern. Scale bars, 100 mm. (C) Multiplex PCR

confirming that the native os-2 locus has been correctly

exchanged for the hph-knock-out cassette. The 59 os-2 signal is

of the wrong size and thus most likely an unspecific product.

Alternatively, this signal might indicate an unintended genetic

alteration at the 59-flank of the os-2 locus. Indicated PCRs 1-4

refer to the PCR set up shown in Figure S2. (D) Genetic

complementation of Dos-2 FGSC11436 with os-2-gfp did not

rescue the central-conidiation phenotype, nor did it rescue the
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VHF defect of that strain. Collectively, the results strongly suggest

that although the os-2 gene has been correctly deleted in

FGSC11436, leading to increased osmosensitivity and fenpiclonil

resistance, the cell fusion defect must be caused by an additional,

unintended genetic alteration in that strain, and thus is not part of

the genuine os mutant phenotype.

(TIF)

Table S1 Oligonucleotides used for PCR-genotyping.
Please refer to Figures S1 and S2 to deduce primer positions and

pairing.

(DOCX)

Movie S1 Time-courses of successful VHF in the
‘correct’ Dos mutants is easily revealed by cytoplasmic
streaming through fusion connections. Movie S1 showing

Dos-5 FGSC18203, Movie S2 showing Dos-4 FGSC18202, and

Movie S3 showing Dos-2 FGSC17933.

(MP4)

Movie S2 Time-courses of successful VHF in the
‘correct’ Dos mutants is easily revealed by cytoplasmic
streaming through fusion connections. Movie S1 showing

Dos-5 FGSC18203, Movie S2 showing Dos-4 FGSC18202, and

Movie S3 showing Dos-2 FGSC17933.

(MP4)

Movie S3 Time-courses of successful VHF in the
‘correct’ Dos mutants is easily revealed by cytoplasmic
streaming through fusion connections. Movie S1 showing

Dos-5 FGSC18203, Movie S2 showing Dos-4 FGSC18202, and

Movie S3 showing Dos-2 FGSC17933.

(MP4)

Movie S4 Time-course showing the fusion incompe-
tence in the ‘wrong’ Dos-2 strain FGSC11436, whose
fusion hyphae ignore each other, and lack the growth

arrest response upon physical contact required to
establish a fusion connection.
(MP4)

Movie S5 Z-stack sequence of an optically sectioned
late-stage ascogonial coil, expressing MAK-2-GFP,
stained with the cell-wall marker dye CFW.

(MP4)

Movie S6 Z-stack sequence of an optically sectioned
early stage protoperithecium, expressing MAK-2-GFP,
stained with the cell-wall marker dye CFW.
(MP4)

Movie S7 Z-stack sequence of an optically sectioned
mature protoperithecium, expressing MAK-2-GFP.

(MP4)

Movie S8 Z-stack sequences of optically sectioned
protoperithecium expressing MAK-2-GFP, which shows
elevated accumulation in the center.
(MP4)
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