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Many biochemical networks have complex multidimensional dynamics and there is a long history of
methods that have been used for dimensionality reduction for such reaction networks. Usually a de-
terministic mass action approach is used; however, in small volumes, there are significant fluctuations
from the mean which the mass action approach cannot capture. In such cases stochastic simulation
methods should be used. In this paper, we evaluate the applicability of one such dimensionality re-
duction method, the quasi-steady state approximation (QSSA) [L. Menten and M. Michaelis, “Die
kinetik der invertinwirkung,” Biochem. Z 49, 333369 (1913)] for dimensionality reduction in case of
stochastic dynamics. First, the applicability of QSSA approach is evaluated for a canonical system
of enzyme reactions. Application of QSSA to such a reaction system in a deterministic setting leads
to Michaelis-Menten reduced kinetics which can be used to derive the equilibrium concentrations of
the reaction species. In the case of stochastic simulations, however, the steady state is characterized
by fluctuations around the mean equilibrium concentration. Our analysis shows that a QSSA based
approach for dimensionality reduction captures well the mean of the distribution as obtained from a
full dimensional simulation but fails to accurately capture the distribution around that mean. More-
over, the QSSA approximation is not unique. We have then extended the analysis to a simple bistable
biochemical network model proposed to account for the stability of synaptic efficacies; the substrate
of learning and memory [J. E. Lisman, “A mechanism of memory storage insensitive to molecu-
lar turnover: A bistable autophosphorylating kinase,” Proc. Natl. Acad. Sci. U.S.A. 82, 3055–3057
(1985)]. Our analysis shows that a QSSA based dimensionality reduction method results in errors
as big as two orders of magnitude in predicting the residence times in the two stable states. © 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4731754]

I. INTRODUCTION

Virtually all cell functions from metabolism through cell
division and up to synaptic plasticity, the cellular basis of
learning and memory, are achieved via networks of interact-
ing molecules. Progress in molecular biology has led to iden-
tification of many elements of these networks, and these often
turn out to be quite complex. In order to better understand and
predict the actions of such networks mathematical models are
essential.3 An understanding of such molecular networks will
enable us not only to understand how these cell function nor-
mally, but also the source of their pathology in various disease
states.

Mechanistic modeling of even a moderately large bio-
chemical network can be quite a complex high dimensional
problem. Simulating such networks can be numerically chal-
lenging and time consuming,4 and it is often difficult to gain
an intuition into their function as well. Thus, it is worth-
while to explore methods for dimensionality reduction. Such
methods have been explored for over 100 years, and one
well known method is the quasi-steady state approximation
(QSSA).1 However, such methods were developed for the
deterministic mass action approach while molecular interac-
tions are inherently stochastic because they are determined by

collisions and bimolecular interactions that depend on thermal
energy and on the orientations of the interacting molecules. In
this paper, we test the accuracy of the QSSA approach within
the stochastic framework.4

One of the approaches to mechanistic modeling, the mass
action approach, assumes that molecular reactions can be
characterized by the concentrations of the different molecular
species. This approach describes the dynamics of a molecular
network via a set of coupled ordinary differential equations
(ODEs). Such an approach is usually a good approximation
when the molecular system is well mixed, and when the num-
ber of molecules is large, so that relative fluctuations from the
mean are typically small.

Many biological systems have a small number of
molecules that determine cell function, among them are gene
expression processes that govern cell fate.5 Such processes
that include transcription are outside the scope of this paper,
where we are primarily considering post-translational pro-
cesses. One biological system in which stochastic fluctuations
play a crucial role is synaptic plasticity—the molecular sub-
strate of learning and memory. The synaptic strength between
neurons is modulated by enzymatic reactions taking place in
the small volume of a neuronal spine, a volume much smaller
than that of a typical cell. At such a small volume, a small
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number of molecules are involved in the reaction such that
the stochastic fluctuations may be responsible for determining
the synaptic state. Various studies have examined the impact
of such stochastic fluctuations during the induction6–11 and
maintenance phases.12, 13 Stochastic fluctuations might be of
importance not only when the actual size of compartments
are small, but also when systems are not well mixed and as a
result, have effective microdomains in which relative fluctua-
tions are significant.

There is a long history of methods for reducing the di-
mensionality of biochemical reaction networks. This set of
approximations called the QSSA is based on the assumption
that some of the molecular reactions are fast, and can there-
fore be assumed to quickly reach their steady state. Therefore,
some of the dynamical variables can be eliminated by replac-
ing them with their steady state values.4 Different variants of
this approach have been proposed over the years.14

When analyzing stochastic molecular systems the aim is
not to characterize only the mean molecular concentrations,
but also to characterize the distribution of the molecular num-
bers. The dynamics of these distributions are characterized by
the so-called chemical master equation.15 Often the only prac-
tical way to estimate the joint distributions of the different
chemical species is by using numerical Monte Carlo meth-
ods. The most commonly used method is the exact stochas-
tic simulation method proposed by Gillespie.16 However, in
complex networks this method is likely to be very slow. This
is especially the case when molecular networks include a mix
of slow and fast reactions. While simulating the fast reaction
uses most of the computational time, the slow reactions often
determine the primary shape of the dynamics, and the magni-
tude of the stochastic fluctuations. For example, in the case of
the simple enzyme catalyzed reaction most of the computa-
tional power and run time is devoted to calculating the bind-
ing and unbinding of the substrate to the enzyme, while the
property of interest is likely to be the product being formed
in the reaction; a computation that takes only a small fraction
of the computational power.17 Therefore, it is appealing to try
and reduce dimensionality by using the QSSA in order to sim-
plify the stochastic molecular networks, and speed up the cal-
culations of the distributions. Such an approach was proposed
by Rao and Arkin,18 who showed that such an approximation
can produce a reasonable approximation of the dynamics of
the mean concentration. Another advantage of dimensionality
reduction is that at lower dimensions it is sometimes possible
to obtain analytical solutions to the master equation.15

The focus of the current paper is whether the QSSA ap-
proach can approximate well not only the means of the distri-
butions of the dynamical variables, but also their fluctuations,
or more generally the complete distributions. We will test this
in two different molecular networks over a wide range of pa-
rameters. The two examples we have examined are: a simple
enzyme reaction with a basal rate of reversal of product back
to substrate and a kinase-phosphatase bistable switch simi-
lar to the one suggested by Lisman in 1985.2 In our analy-
sis, we have found in general that the QSSA based reduction
scheme fails to capture the distribution of substrate concentra-
tion around the mean as obtained from the full model. Also,
we found no significant relationship between accuracy of a

QSSA based reduction method in predicting the deterministic
transients and the accuracy of such a reduction method in pre-
dicting the stochastic fluctuation at steady state. Using linear
noise approximation (LNA) we found the narrow conditions
under which QSSA does approximate well the distribution of
the full stochastic system. For the bistable reaction system, we
found that a QSSA based reduction method made significant
errors in the prediction of residence times in each stable state
by about two orders of magnitude.

II. ENZYME REACTIONS

The quasi-steady state approximation has been applied
to a standard two-stage enzyme mediated catalysis reaction to
obtain the Michaelis-Menton kinetics. Consider the following
set of reactions:

E + S
k1

�
k−1

C
k2−→ E + P

P
k3−→ S.

The first reaction indicates the reversible binding of the
enzyme (E) and substrate (S) to form the enzyme-substrate
complex (C). The enzyme-substrate complex either dissoci-
ates back to free enzyme and free substrate or a product
molecule (P) is formed and released from the enzyme. The
second reaction represents an irreversible conversion of prod-
ucts back to substrate via a separate independent process. The
addition of the second reaction ensures that, at equilibrium,
the substrate concentration is not equal to zero. This is espe-
cially important because we are interested in the distribution
around steady state for stochastic simulations and such a dis-
tribution exists only for a non-zero steady state. This addi-
tional process is of direct interest since in networks of enzy-
matic reactions, individual dynamics of a particular substrate
may be affected by a background rate of conversion of prod-
ucts back to substrate.

Using a mass action approach, a three-dimensional sys-
tem of differential equations describes the kinetics of the full
model

dS

dt
= −k1ES + k−1C + k3P, (1)

dC

dt
= k1ES − (k−1 + k2)C, (2)

dP

dt
= k2C − k3P, (3)

ET = E + C. (4)

The QSSA assumes that the time scale at which the
substrate is being consumed (or product is being formed),
the concentration of enzyme-substrate complex is essentially
not changing. Hence, the dimensionality of the set of dif-
ferential equations, that govern the kinetics of the first re-
action, can be reduced, by setting the time derivative of the
enzyme-substrate complex to zero. The QSSA results in a
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one-dimensional ODE that describes the kinetics of the re-
duced model4

C∗(t) = ET S(t)

km + S(t)
, (5)

P (t) = ST − S(t) − C∗(t), (6)

dS

dt
= −k1(ET − C∗(t))S(t) + k−1C

∗(t) + k3P (t), (7)

where km = (k−1 + k2)/k1.
The initial conditions are set such that the mass balances

S + C + P = ST and E + C = ET are satisfied. ST and ET are
the total substrate and enzyme concentrations, respectively.
Since C*(t) is now a function of S(t), not all initial conditions
choices appropriate for Eqs. (1)–(4) can be imposed in the
reduced system. Here we start from the maximum allowed
value of S, which is set at the initial condition by solving the
mass balance equation: ST = S(0) + C*(0) + P(0) with P(0)
= 0. For comparison purposes, the initial conditions of the
full model used in our simulations are identical to the reduced
model.

Figure 1(a) (solid lines) shows the numerical solution of
the system ODEs for the full model. Overlaid on the same
plot is also the numerical simulation for the 1D ODE for time
evolution of substrate in the reduced model (dashed line). In
the example shown, the parameters are chosen such that the
following condition for validity of QSSA is satisfied:14

km + ST � ET . (8)

Hence, the substrate trace for the reduced model is reasonably
close to the substrate trace for the full model. Note that both
the full model and the reduced model settle down to the same
steady state.

The main interest in this paper is not the deterministic
solution to the ODEs governing the dynamics of the system.
Instead, our focus here is the stochastic simulation. Formally,

the joint distribution of the number of free substrate molecules
(nS) and number of complex molecules (nC) in a stochastic
system is given by the following chemical master equation:

dρ(nS, nC)

dt
= (nC + 1)k−1ρ(nS − 1, nC + 1)

+ (nET
− nC + 1)(nS + 1)k1ρ(nS + 1, nC − 1)

+ (nC + 1)k2ρ(nS, nC + 1)

+ (nST
− nS − nC + 1)k3ρ(nS − 1, nC)

− (nST
− nC − nS)k3ρ(nS, nC)

− (nET
− nC)nSk1ρ(nS, nC)

− nC(k−1 + k2)ρ(nS, nC), (9)

where nST
is the number of free product molecules plus the

total number of substrate molecules in bound and free form,
and nET

the total number of E molecules in bound and free
form.

It is usually not possible to obtain analytical solutions of
the master equation. Instead, a numerical solution to Eq. (9)
can be obtained by implementing the stochastic simulation
algorithm suggested by Gillespie.16 Figure 1(b) shows the re-
sult of fifteen runs of Gillespies algorithm for the same set
of parameters as that in Figure 1(a). Note that the Gillespie
algorithm simultaneously solves for the number of molecules
of all the species in the reaction mixture. Also note that in
Figure 1(b), for comparison with Figure 1(a), the output of
the Gillespies algorithm has been suitably scaled with reac-
tion volume, V, and Avagadros number, Na, to represent con-
centrations instead of numbers of molecules.

For the stochastic system the aim of QSSA is to reduce
the dimensionality of the two-dimensional master equation as
described in Eq. (9) to a one-dimensional master equation of
the form

dρ(n)

dt
= [r(n + 1)ρ(n + 1) − r(n)ρ(n)]

+ [g(n − 1)ρ(n − 1) − g(n)ρ(n)], (10)
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FIG. 1. (a) Quasi-steady state approximation. Comparison of deterministic solution of the complete enzymatic system and the reduced system with the quasi-
steady state assumption. The dashed line is the substrate trace for the 1D equation with quasi-steady state assumption. For the chosen parameters that satisfy
the QSSA validity criterion, the dashed line is reasonably close to the substrate trace for the full model. The substrate trace for both the full and the reduced
model settle down to the same steady state (parameters: k1 = 0.01 [1/(sec∗ μM)], k−1 = 0.02, k2 = 0.002, k3 = 0.001 [1/sec], ET = 25 μM, ST = 100 μM).
(b) Stochastic simulation of the chemical master equation for the complete set enzymatic reactions using the Gillespie algorithm. Overlaid on top, is the reduced
stochastic simulation by implementing a Gillespie-like algorithm for the reduced chemical master equation, using the quasi-steady state assumption (Eq. (17)).
The mean of the stochastic simulation is well approximated by the deterministic simulation. The distribution of substrate concentration for the reduced stochastic
simulation is different than the distribution obtained for the full stochastic model. The volume of the reaction mixture is 10−17 l.
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where r(n) and g(n) are the sink and source functions, respec-
tively. In such an equation, the sink function and the prob-
ability function must be subject to the following boundary
conditions:

r(0) = 0, (11)

ρ(i) = 0 ∀ i < 0. (12)

In fact, for this kind of chemical master equation, there is
a general recursive analytical solution of the form15

ρ(n) = g(n − 1)

r(n)
ρ(n − 1) ∀ n = 1, 2, 3 . . . ∞. (13)

This provides the solution as a function of ρ(0), and the full
solution is obtained by the condition that the probabilities sum
to 1.

A method for reducing dimensionality of the system of
chemical master equations for stochastic simulation (Eq. (9)),
in order to obtain an explicit expression for g and r, was pro-
posed by Rao and Arkin,18 where it was suggested that the
equation derived from law of mass action in a deterministic
system (Eq. (7)) can be used to directly write a reduced chem-
ical master equation for stochastic evolution of the substrate
molecule. The idea is to take the reduced differential equation
obtained from a QSSA based reduction and identify the sink
and the source terms to construct a reduced chemical master
equation. The process is outlined more clearly underneath.

We first rewrite Eq. (7) in terms of number of molecules
instead of concentrations by replacing concentration values
(c) with molecule numbers (n) using the relationship
c = n/(NaV ), where Na is Avogadros number and V is the
volume of the reaction mixture. The following equation is
obtained:

nC∗ = nET
nS

kmNaV + nS

, (14)

nP = nST
− nS − nC∗ , (15)

dnS

dt
= − k1

NaV
(nET

− nC∗ )nS

+ k−1nC∗ + k3nP . (16)

Subsequently, the origin of each term in Eq. (16) is identi-
fied as a source or sink term, in order to write the following
chemical master equation:

dρ(nS)

dt
= [r(nS + 1)ρ(nS + 1) − r(nS)ρ(nS)]

+ [g(nS − 1)ρ(nS − 1) − g(nS)ρ(nS)], (17)

where sink and source functions are identified as following:

r(n) = k1

NaV
(nET

− nC∗ (n))n,

(18)
g(n) = k−1nC∗ (n) + k3nP (n),

where nC∗ and nP are defined by Eqs. (14) and (15).

Algebraic simplification of Eq. (16) can give rise to
another possibility for the choice of r(n) and g(n) as
follows:

r1(n) = V ′
maxn

k′
m + n

,

(19)
g1(n) = k3(nST

− n),

where V ′
max = ET (k2 + k3)NaV and k′

m = kmNaV . There is
no clear reason to prefer one choice of r(n) and g(n) over
another. As long as the boundary conditions of the system
are satisfied, theoretically, any choice of r(n) and g(n) should
suffice. It is interesting to note though that any reasonable
choice of r(n) and g(n) preserves the mean of the stationary
stochastic distribution, the specific choice, however, signif-
icantly affects the variance around this mean. This implies
that the choice of a reduced master equation is not unique,
and indeed there is an infinite number of reduced master
equations that are all consistent with the same mass-action
equation.

Equation (17) can be solved either analytically or by us-
ing the numerical Gillespie algorithm.18 In Figure 1(b) the
results of fifteen runs of the reduced stochastic simulation
(black) are overlaid on the traces the full stochastic simula-
tions (cyan). The reduced stochastic simulation in this figure
is for the choice of rn and gn as in Eq. (18). The mean of the
stochastic simulations (Fig. 1(b)) is quite close to the deter-
ministic simulation (Fig. 1(a)) for both the reduced and full
stochastic simulation.

In this paper our focus is on the fluctuations of the distri-
butions around the mean. To simplify this task we concentrate
on the distributions at steady state. This is done by running the
full and reduced model stochastic simulations for a long time
and comparing the distribution of the full and reduced models
at steady state. We use the part of the substrate trace where the
deterministic counterpart has already reached steady state (t ≥
6000 s in the example) and calculate the probability of a cer-
tain concentration of substrate when the system is in overall
equilibrium. The cumulative distribution of this probability
is plotted in Figure 2. The Kolmogorov Smirnov test shows
that the distribution for the complete reaction system is sig-
nificantly different from that for the reduced system. We have
also plotted the analytical solutions of the master equations
using Eq. (13) in this figure.

The significant difference obtained in the distribution
around mean between the full stochastic model and the re-
duced model suggests that constructing a reduced chemi-
cal master equation from deterministic equations reduced by
QSSA may not always yield desired accuracy in stochas-
tic simulations, even though the traditional condition for
validity of quasi-steady state approximation (Eq. (8)) is
satisfied.

One could hypothesize that a good approximation of the
deterministic transient would produce a good approximation
of the distribution at steady state in stochastic simulation.
The condition for the validity of the QSSA is described by
Eq. (8). We define λ = (km + ST)/ET as a parameter quanti-
fying the QSSA approximation, the larger λ the better is the
approximation in the deterministic case. We quantified how
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FIG. 2. Comparison of the cumulative distribution of probability of a certain
concentration of the substrate in the reaction volume after the corresponding
deterministic simulation has reached steady state. The cumulative distribution
for the numerical solution of the chemical master equation for the complete
reaction system has same mean (full: 29.92, reduced (Eq. (18)): 30.66, re-
duced (Eq. (19)): 29.88, reduced analytical (using Eqs. (13) and (19)): 30.12)
as that of the reduced system but a different standard deviation (full: 2.60,
reduced (Eq. (18)): 8.36, reduced (Eq. (19)): 3.21, reduced analytical (us-
ing Eqs. (13) and (19)): 3.16). The Kolmogorov Smirnov test shows that the
three distributions are significantly different. The analytical and the numeri-
cal solution of the reduced chemical master equation (Eq. (17)) yield identical
results.

well the quality of the reduced stochastic simulation by the
Kullback-Leibler (KL) divergence between the steady state
distributions of the full and reduced models (See Appendix).
In Figure 3(a), we plotted the KL divergence as a function of
λ. Each different color in this plot corresponds to the same
steady state value, but with different parameters that are still
consistent with this steady state. Here we see no obvious rela-
tionship between the fidelity of the deterministic simulations,
as quantified by λ, and the fidelity of the stochastic simula-
tions. It is possible that such negative results arise from λ not
faithfully quantifying the fidelity of the deterministic simu-

lations. Therefore, we directly measured the fidelity of the
deterministic simulations during their transient phase using
a normalized mean squared error (NMSE), as described in
the Appendix. In Figure 3(b), we show the KL divergence as
a function of the NMSE. The different colors here code for
different values of λ. These results, as those in Figure 3(a),
show no apparent dependence between the fidelity of QSSA
in stochastic simulations during steady state and deterministic
dynamics during the initial transient.

In order to gain insight into why the QSSA fails in this
case, we have developed a LNA of this model.15, 20, 21 The
LNA approximation is typically applicable to mesoscopic
systems. The approximation allows us to gain simple expres-
sions for the variance; an expression from which we can gain
insight. We have used this approach both for the full two-
dimensional system and for the reduced one-dimensional sys-
tem as defined in Eqs. (17) and (18). In order to obtain the
variance of LNA one has to solve the algebraic system of
equations

Jσ + σJ T + �B = 0, (20)

where J is the Jacobian of the system of the differential equa-
tions evaluated at the steady state, B the diffusion matrix of
this system, and � is the volume of the system.15, 20 In this
equation σ is the covariance matrix in terms of the number of
particles, and has to be rescaled if it is used to calculate the
concentration of particles.

For the complete two-dimensional system at steady state
these take the form

J =
[

j11 j12

j21 j22

]
(21)

=
[

−k1E − k2 k1S + k−1 − k3

k1E −k1S − k−1 − k2

]
,
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FIG. 3. Relationship between the accuracy of the quasi-steady state approximation in predicting the deterministic transients and the accuracy of the reduced
stochastic model to predict steady state distributions. (a) The accuracy of the stochastic simulations quantified by the KL divergence between the full and
reduced models as a function of the parameter λ which quantifies the QSSA approximation in the deterministic case. The points denoted by (*) are consistent
with the data points in the paper by Barik et al..17 The circle is around the data point from the example in the previous figures. (b) The accuracy of stochastic
simulations quantified as in (a) by the KL distance, as a function of the actual accuracy of the deterministic simulation. Here the accuracy of the deterministic
simulations is quantified by the average normalized mean distance (NMSE) between the full and reduced models (see Appendix).
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B =
[

b11 b12

b21 b22

]

=
[

k1ES + k−1C + k3P −k1ES − k−1C

−k1ES − k−1C k1ES + (k−1 + k2)C

]
.

(22)

From these expressions one obtained that the LNA ap-
proximation for the variance of the substrate (σ 11) is

σ11 = �
ES

E + S + Km + k3/k1
·

×
(

1 +
(Kn − Km)2 + (S + Kn)(S + Km) k2

k−1+k2

(E + k3/k1)(S + Kn) − (S + Kn)E

)
,

(23)

where Kn = (k−1 − k3)/k1.
We can also use the reduced QSSA equations

(Eqs. (17) and (18)) to obtain the variance using the LNA.
This results in

σ
qss

11 = −�

2

b11

jqss

, (24)

where jqss = j11 − j12j21/j22.
In order to analytically compare the variance using the

LNA approximation for the full system (Eq. (23)) and the sys-
tem reduced by QSSA (Eq. (24)) we use a time scale separa-
tion following the approach outlined in Thomas et al..21

For the system defined here, the time constant of the sub-
strate is: τ s = (k1E + k3)−1 and the time constant of the
complex is: τ c = (k1S + k−1 + k2)−1. The ratio of the two
time constants, defined as γ = τ s/τ c, should be large when
the QSSA approximation holds. For the full system γ = (S
+ Km)/(E + k3/k1). Using the definition of γ in Eq. (23) we
obtain

σ11 = − �

1 + γ

×
(

b11

2j11
+ b22j

2
12

2 ∗ j11j22jqss

− b12j12γ

j22jqss

+ b11γ

2jqss

)
.

(25)

The two terms on the left are negligible for γ � 1 and
the term on the right becomes equivalent to σ

qss

11 . This leaves
us with the third term, which is the difference between the
variance of the full system using an LNA approximation and
the reduced system using the standard QSSA method used for
deterministic systems. This difference does not vanish even
under the conditions of time scale separation, as defined by
the condition γ � 1.

The relative error of the QSSA equation can then be de-
fined as

ε2
r = σ11 − σ

qss

11

σ
qss

11

= 2k−1 + k2

2(k−1 + k2)

S + Kn

S + Km

= 2k−1 + k2

2(k−1 + k2)
ρ, (26)
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FIG. 4. The dependence of the relative error between the variance of the full
system and the variance of the system reduced using the QSSA approach.
Solid lines are the analytical results using the LNA approach (Eq. (26)), and
symbols with error bars are obtained directly from simulations. Different col-
ors represent different parameters sets. In each parameter set all parameters
are fixed, except for k1 which is varied, to obtain different values of ρ.

where ρ = S+Kn

S+Km
. Note that the relative error vanishes (εr

	 1) only when Km � S and Km � Kn. Taken together with
the time scale separation constraint, this implies that QSSA
would produce a good approximation of the variance only
when Km � E as well. These conditions lead to a narrow set
of conditions under which the QSSA is appropriate for esti-
mating noise in enzymatic reactions.21

The generality of the analysis outlined here might be lim-
ited by the use of the LNA, and these results might not be
valid when the LNA fails. To test this we carried out simu-
lations for the complete 2D system, and the reduced system
using the Gillespie algorithm to numerically estimate εr. In
Figure 4 we plotted the numerically estimated εr as a function
of ρ. The results show that the relative error increases mono-
tonically with ρ; qualitatively very similarly to the analytical
prediction (solid lines).

III. A BISTABLE KINASE-PHOSPHATASE
MOLECULAR SWITCH

Stochastic fluctuations have a significant impact in
bistable systems, where these fluctuations determine the tran-
sitions between the two stable fixed points. A simple example
of such a bistable system was proposed by Lisman.2 Lisman’s
original model did not explicitly describe the reaction scheme.
We have postulated a reaction scheme which is qualitatively
consistent with Lisman’s original model. This results in the
following reaction scheme:

K + KP

r1

�
r−1

C1
r2−→ 2KP

P + KP

r3

�
r−3

C2
r4−→ K + P

K
r5−→ KP .

The phosphorylated form of kinase molecule, KP, is ac-
tive while the dephosphorylated form of kinase K is inactive.
In the first reaction, an active kinase molecule phosphorylates
an inactive kinase molecule. This process is called autophos-
phorylation. In the second reaction, an active kinase molecule
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is dephosphorylated by binding to a phosphatase molecule.
The third reaction represents the basal level of phosphatase
activity that converts an active kinase molecule to an inac-
tive kinase molecule. This reaction is not in Lisman’s original
model but we added it to avoid an absorbing state. Note that
here the enzyme and the substrate are different states of the
same molecular species; making it difficult to obtain a valid-
ity condition for the QSSA.

The “full” deterministic model for the above set of reac-
tions, obtained by applying the of law of mass action, is

dKP

dt
= −r1KKP + (r−1 + 2r2)C1

−r3KP P + r−3C2 + r5K, (27)

dC1

dt
= r1KKP − (r−1 + r2)C1, (28)

dC2

dt
= r3PKP − (r−3 + r4)C2, (29)

KT = K + KP + 2C1 + C2, (30)

PT = P + C2, (31)

where K is the concentration of the free dephosphorylated ki-
nase, KP is the concentration of the free phosphorylated ki-
nase, P is the concentration of free phosphatase, C1 is the con-
centration of the kinase autophosphorylation complex, and C2

is the concentration of the kinase dephosphorylation complex.
KT and PT are total kinase and total phosphatase concentra-
tions, respectively. The initial conditions are C1(0) = C2(0)
= 0, P(0) = PT, K(0) = KT for low steady state and KP(0)
= KT for high steady state. This set of equations has two sta-
ble equilibrium solutions. This means that even with the same
set of parameters, starting from various initial conditions will
lead to one of two different stable steady states. Such a
system of equations is said to represent a bistable system.
Figure 5(a) (solid lines) shows the result of numerical sim-
ulation of Eqs. (27)–(31) for two initial conditions. When
KP (0) = 25 μM, the steady state concentration of KP is
18.4 μM and when KP (0) = 4 μM, the steady state concen-
tration of KP is 0.8 μM.

Applying the quasi-steady state assumption ( dC1
dt

= 0 and
dC2
dt

= 0) to Eqs. (27)–(31), we obtain a one-dimensional
ODE for the concentration of phosphorylated kinase that de-
scribes the kinetics of the reduced model (Eq. (32))

dKP

dt
= r1r2KP + r5(r−1 + r2)

r−1 + r2 + 2r1KP

[KT − KP − 	] − r4	,

where 	 = r3KP PT

r−3 + r4 + r3KP

. (32)

This QSSA equation is now analogous to Lisman’s model
though it quantitatively differs from it. Numerical simulations
of Eq. (32) are shown as dashed lines in Figure 5(a). Fixed
points of the system can be obtained analytically by setting
the left hand side of Eq. (32) to zero. Note that the fixed points
(steady states) of the reduced 1D system are identical to the
fixed points of the full model of Eqs. (27)–(31).

In order to construct a chemical master equation, the ori-
gin of each term in Eq. (32) is taken into account to define the
source and sink terms as follows:

source = r1r2KP + r5(r−1 + r2)

r−1 + r2 + 2r1KP

[KT − KP − 	] ,

sink = r4	.

Note that here again, different possible choices of source
and sink terms can be formulated keeping the steady state
the same. Figure 5(b) shows the source and sink terms plot-
ted separately as a function of KP. The points of intersec-
tion of the solid and the dashed lines are the fixed points of
Eq. (32). Figure 5(c) shows the potential energy wells for
the two steady states for the given set of parameters (See
Appendix). Stochastic fluctuations between the two stable
steady states in the 1D reduced model are seen as transitions
between the the two energy minima.

Stochastic simulations for the kinase-phosphatase switch
are carried out by implementing the Gillespie algorithm for
the reaction scheme described above. Figure 6(a) shows a
stochastic simulation of the complete reaction system. The
solid lines represent the fixed point of the system. Note that
the mean of the stochastic fluctuations in a given stochastic
equilibrium well approximates the deterministic steady state
(solid lines). Also note that a large fluctuation is enough to
tip the system into the other stable state. This switching of
states is very sensitive to the magnitude of stochastic fluctu-
ations around the mean. To reduce the dimensionality of the
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FIG. 5. (a) Deterministic simulation for the kinase-phosphatase switch showing bistability. The solid lines are obtained from the simulation of the full system.
The dashed lines are from simulations with QSSA. Blue lines are for initial condition KP(0) = 25 μM and black lines are for initial condition KP(0) = 4 μM. (b)
The source and sink terms for the quasi-steady state reduced model as a function of phosphorylated kinase concentration. The points of intersection of the solid
and dashed lines are the fixed points of the system. (c) Potential energy wells for the fixed points in the reduced model. Note that the fixed points of the
reduced model are identical to the fixed points of the full model. (Parameters: r1 = 0.001 [1/(sec∗ μM)], r−1 = 0.002, r2 = 0.02 [1/sec],
r3 = 0.08 [1/(sec∗ μM)], r−3 = 0.001, r4 = 0.0539, r5 = 0.00212 [1/sec], KT = 60 μM, PT = 5 μM.)
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FIG. 6. Stochastic switching between bistable states. (a) Green line is the
stochastic simulation of the complete reaction system using the Gillespie al-
gorithm. The initial conditions are set to the upper steady state value. The
black horizontal line indicates the two stable steady state concentration levels
for each species. Note that the mean of the stochastic fluctuations within an
equilibrium state is close to the steady state concentration. (b) The red line is
the stochastic simulation using the reduced master equation and a Gillespie-
like algorithm. Note the difference in the scale of x axis in the plots on the
left and right.

stochastic simulation, a scheme similar to that employed in
the previous section is used. Equation (32) written in terms of
number of molecules instead of concentration is

dnKP

dt
= +Vmax1nKP

+ r5kmax1

kmax1 + nKP

[
nKT

− nKP
− Vmax2nKP

kmax2 + nKP

]

− Vmax3nKP

kmax2 + nKP

, (33)

where

Vmax1 = 1

2
r2, Vmax2 = nPT

, Vmax3 = r4nPT

kmax1 = 1

2

r−1 + r2

r1/NaV
, kmax2 = r−3 + r4

r3/NaV
.

Similar to Eqs. (17) and (18), the following one-dimensional
chemical master equation is obtained:

dρ(nKP
)

dt
= [r(nKP

+ 1)ρ(nKP
+ 1) − r(nKP

)ρ(nKP
)]

+ [g(nKP
− 1)ρ(nKP

− 1) − g(nKP
)ρ(nKP

)],

(34)

where

r(n) = Vmax3n

kmax2 + n

(35)

g(n) = Vmax1n + r5kmax1

kmax1 + n

[
nKT

− n − Vmax2n

kmax2 + n

]
.

Equations (34) and (35) can be solved using a Gillespie like
algorithm.18 Figure 6(b) shows the results of the numerical
simulation of Eq. (34). The switching is much faster in the re-
duced system (note the different time scale). This is because
the variance of KP is larger in case of the reduced stochas-
tic simulation. Figure 7 shows the stationary distribution of
the probability density of a particular concentration of KP for
the full model and the reduced model. An analytical expres-
sion for such a stationary distribution is also obtained using
Eq. (13). Notice that the probability density functions for the
reduced model is very different from that for the full model.
The bimodal representation in the two cases is due to the
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FIG. 7. Histogram showing difference in upstate and downstate distribu-
tion for the full model and quasi-steady state model for stochastic simula-
tions. Kp > 5.7 μM is classified as upstate and Kp < 5.7 μM is classified as
downstate.

bistable nature of the system. Another statistic that charac-
terizes this system is the characteristic dwell time at or near
each of the stable states. To do this calculation we set an up-
state threshold and a downstate threshold. We count the time
after the system goes below the downstate threshold until it
hits the upstate threshold as “downstate residence time” and
the time after the system goes above the upstate threshold un-
til it hits the downstate threshold as “upstate residence time.”
We set the same threshold for the full and the reduced model.
For a simulation run over a long time (5 × 108 s), there are
many transitions between the states, with a different residence
time for each transition; resulting in a distribution of the res-
idence times. In our observation, we found that the mean of
both “upstate residence time” and “downstate residence time”
were significantly different between the full and reduced mod-
els (Fig. 8). Specifically, the full model predicts much longer
residence times in both the ‘up” and “down” states. This trend
is consistent with the results in Figure 6 that show a smaller
level of fluctuations in the full model, since it is these fluctu-
ations that drive the transitions between the states.

IV. DISCUSSION

Chemical reactions involving small number of reacting
molecules are essentially stochastic in nature. The mass ac-
tion approach to obtain a deterministic approximation works
well in estimating the mean concentrations of reacting species
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FIG. 8. Distribution of residence times in the upstate and downstate for the
full model and QSSA model. The total simulation time over which this his-
togram is calculated is 5 × 108 s. The mean upstate residence time for the
full model is 2.70 × 104 s while that for reduced model is 4.93 × 103 s. The
mean downstate residence time for full model is 3.25 × 104 s while that for
reduced model is 4.70 × 103 s.
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over time, when the system is well mixed and the number
of molecules is large. In certain reaction systems, where the
stochastic fluctuations are large, the distribution around the
mean is of interest. Most protein networks are quite com-
plex, even in their deterministic limit, and their complexity
and computational cost increase significantly once stochastic
fluctuations are taken into account. For many years a dimen-
sionality reduction technique, the quasi-steady state assump-
tion, has been applied to deterministic models, and recently
it has been suggested that similar techniques can be useful
when applied to stochastic systems as well.17, 18 Whether this
approach yields precise results is the question addressed by
this paper.

In this paper, we have shown two examples where a
QSSA based reduction when applied to stochastic dynam-
ics leads to significant errors in the distribution of stochas-
tic fluctuations around the mean. The first example we exam-
ined is closely related to the simple catalytic reaction scheme,
with one additional reaction that avoids a trivial fixed point.
For this reaction we show that applying the QSSA results in
large errors in the distribution of the substrate. We show this
both using an analytical solution of the master equation, and
by performing stochastic simulations of the full and reduced
models. Surprisingly we find that the reduced model has much
higher variance than the original model. This is the case even
though we tested the model in the regime where the QSSA
should be valid.

In order to gain insight as to why the system reduced
by QSSA provides inexact estimates of the distribution even
though the traditional conditions for the QSSA hold, we car-
ried out a linear noise approximation of the system.15, 20 Such
an approximation, which is valid for monostable mesoscopic
systems, can provide a simple expression for the variance for
both the full and reduced systems. When comparing the vari-
ance for the reduced system with the variance of the full sys-
tem we find that they do not fully coincide even under the time
scale separation conditions where the QSSA should be valid.
Instead, we describe a set of much narrower constraints under
which the reduced system can capture the variance of the full
system. Using simulations we show that these conditions are
not limited by the validity of the LNA. These results are qual-
itatively consistent with results obtained recently for an open
biochemical network.21

The other example analyzed here is a bistable autophos-
phorylation loop, inspired by a model proposed by Lisman
in 1985, to account for the stability of memory. The model
differs from the original model in having an additional con-
stitutive kinase activity to avoid an absorbing state2 at the low
fixed point, and in that we systematically applied the QSSA
approximation to reduce the full model to a 1D system. The
stochastic simulations of both the full and reduced models
show spontaneous transitions between a “down” and an “up”
state. For both the full and reduced models these states have
the same value. However, here too the distributions of the
states in the reduced model are significantly different than the
distributions obtained for the full model. Most significantly
the residence times in both the “down” and “up” states in the
reduced model are two orders of magnitude shorter than the
residence times of the full model. This result implies that such

reductions might not be useful if the statistic of biological sig-
nificance is the residence time.

The canonical technique for simulating stochastic chemi-
cal reactions is the exact stochastic simulation algorithm pro-
posed by Gillespie in 1977. This algorithm can be very com-
putationally expensive. Various approximations have been
proposed to speed it up, one such approach is the QSSA
approach18 analyzed here, and a related partial equilibrium
approach.18, 19 The QSSA assumes that intermediate com-
plexes have quick relaxation and can be assumed to be at equi-
librium, given the other variables, while the partial equilib-
rium methods assume that fast reactions are at equilibrium.22

Often, but not always, these two approaches are practically
identical. Rao and Arkin18 have shown that such methods sig-
nificantly reduce computational costs, and at the same time
produces good estimates of the means of full models. The
errors in predicting the mean with this Gillespie-like algo-
rithm mirror the errors that the QSSA produces in determin-
istic simulations. However, Rao and Arkin did not examine if
this Gillespie-like approach estimates well other properties of
the distribution of the chemical species.

Another approach for dimensionality reduction in chem-
ical reactions is the total quasi-steady state approach.14 This
approach when applied to a simple catalytic reaction pre-
forms a change of variables, and assumes a time scale sep-
aration not between the original reactions, but for the trans-
formed set of reactions. For deterministic cases this approach
extends the range over which the quasi-steady state assump-
tions can be applied, at the cost of producing more complex
equations that do not have an intuitive closed form. Recently
this approach was extended to stochastic systems, by using
again a Gillespie-like algorithm directly for the equations pro-
duced by the total QSSA.17 Applying this approach to var-
ious monostable and bistable systems produced results that
seem very close to those produced by the full system. We
did not examine here the impact of the total QSSA approx-
imation, and this should be carried out in subsequent work.
However, our results are qualitatively both similar and dif-
ferent from the results of using total QSSA approach for di-
mensionality reduction in stochastic simulations. First, in our
simple enzymatic reaction we added an additional step, not
included by the Barik et al.’s paper.17 Therefore, our system
has an additional parameter. Nevertheless, we have simulated
the catalytic reaction system with all parameters except for
one being identical to those on Barik et al.17 (Figure 3—star
symbols). For few of those simulations (i.e., for few values of
our parameter k3 in Eq. (7)) we indeed find a relatively good
agreement between the full and reduced models, even without
applying directly the total QSSA approach. For other choices
of k3, the agreement between full and reduced stochastic dis-
tributions is not good. In our simulations of the bistable sys-
tem we find a big difference in the residence times between
the full and reduced models, and indeed this is consistent with
results obtained for some sets of parameters for the different
bistable system modeled by Barik et al. (Figure 10 in Barik
et al.).17 In a sense it is not surprising that the biggest differ-
ences between the full and reduced models are obtained for
the residence time statistics. Transitions between these two
states can be thought of as jumps between two energy minima,
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triggered by stochastic fluctuations. Stochastic transitions be-
tween these states can be viewed as being triggered by the
tails of distribution of these two states, and the mass of such
tails can indeed be significantly different even if the parame-
ters of the distribution are only moderately different, resulting
in a large difference in the residence time statistics.

Several other approaches have been suggested for accel-
erating stochastic simulations. One well known approach, the
tau-leap, was proposed Gillespie and co-workers.23, 24 Related
techniques are various reduction methods such as slow-scale
stochastic simulation algorithm19 and accelerated stochastic
simulation algorithms. The reader is redirected to Gillespie25

and Gillespie et al.26 for a review of these algorithms. Accord-
ing to such approaches reactions are partitioned into fast and
slow, fast reactions are simulated with deterministic or fast ap-
proximate stochastic techniques, whereas slow reactions still
use the complete exact stochastic scheme. The slow-scale al-
gorithms are related to the partial equilibrium assumptions as
the fast reactions reach partial equilibrium quickly and once
it is reached their means or distributions can be quickly as-
sessed given the slow variables, and thus they no longer need
to be explicitly simulated until the slow species change signif-
icantly. Different variants of this framework have been pro-
posed. One variant suggests that the means of fast species,
given the slow species, can be estimated using algebraic
techniques;19, 22 a method which can produce good approx-
imation if the fluctuations of the fast species are primarily
driven by the fluctuations of the slow species. Alternatively
the distribution of the fast species cab be estimated by direct
stochastic simulations, which can be terminated when par-
tial equilibrium is attained.27–29 Such algorithms can speed up
run times, and reportedly produce reasonable approximations
for large time scale separations. Another related approach has
lead to hybrid simulation algorithms,30, 31 which also can pro-
duce decent approximations and speed up simulation times.
Our results strictly apply just to QSSA as the alternative re-
duction techniques are typically more complex, and therefore
might produce more faithful numerical approximations. How-
ever, in light of our results the ability of such methods to cap-
ture the complete distributions should be carefully analyzed
as well. Our methodology is based on the observation that it
is easier to assess complete distributions for systems that are
in a non-trivial steady state, rather than systems that are still
dynamically evolving. We also find it useful to quantify how
well distributions are approximated by the reduced models
rather than to graphically observe the distributions. A quan-
titative test of these approximations allows us to to test and
display how the validity of the approximation depends on the
system parameters.

The traditional QSSA approach not only speeds up sim-
ulations times. It also has the advantage of producing reduced
dimension models that have an explicit closed form and may
therefore provide analytical solutions and a better intuition
for the systems function. We have given two examples here;
one of the catalytic reaction and another of a simple bistable
system based on autophosphorylation. Both systems can be
reduced to a 1D model for which we have an analytical solu-
tion of the master equation, and intuition about the origin of
the behavior; for example, bistability in the autophosphory-

lation system. Such simplifications are harder to obtain with
alternative dimensionality reduction methods, including total
QSSA.14, 17 However, the results of this paper question the
validity of the QSSA approach when applied to stochastic
systems.
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APPENDIX A: MATHEMATICAL METHODS

1. Energy function

The QSSA based reduction of the deterministic system
gives us the 1D equation

dKP

dt
= f (KP ).

The energy function for this equation as a function of KP is
given by

U (KP ) =
∫ KP

0
f (x)dx. (A1)

The energy function in Figure 5 is generated by symbolic in-
tegration of the right hand side of Eq. (32).

2. Normalized mean square error function

Figure 3 shows the comparison between the accuracy of
the quasi-steady state approximation for deterministic sim-
ulations and the reduced chemical master equation for the
stochastic simulations. On the x axis is a measure of the ac-
curacy of quasi-steady state approximation of the determinis-
tic approximation. This measure is the mean-square error be-
tween a deterministic simulation implementing quasi-steady
state and a deterministic simulation of the full model during
the transient, i.e., before the steady state is reached (the error
is zero after the steady state is reached). The mean-square er-
ror is normalized by the time taken for the transient to reach
the steady state. This ensures that the measure is invariant to
the rate of convergence the steady state. The error is measured
relative to the concentration of the full model. This ensures
that the measure is scale invariant. Mathematically it takes
the form

NMSE =
〈

1

tN

N∑
i=1

(
x̂(ti)f ull − x̂(ti)reduced

x̂(ti)f ull

)2
〉
, (A2)

where tN is the time it takes for a particular trial to reach the
steady state, x̂f ulli and x̂reducedi

are the intrapolated x vec-
tors on an equispaced time grid from 0 to tN for full and
reduced deterministic simulations, respectively. This error in
transients is averaged over a hundred trials with randomized
initial conditions. Smaller NMSE values mean that the deter-
ministic quasi-steady state transient better approximates the
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deterministic full model transient for a particular set of pa-
rameters.

3. Kullback-Leibler divergence

On the y axis of Figure 3 is the Kullback-Leibler diver-
gence between the substrate distribution at steady state for
the complete reaction system and the reduced model. The KL
divergence is used as a measure of difference between the
stochastic distributions of substrate in the full and reduced
models. The KL divergence is given by the following formula:

KL divergence =
∫ ∞

−∞
pf ull(x) log

pf ull(x)

preduced (x)
dx, (A3)

where pfull(x) is the probability density of the substrate dis-
tribution for the full model and preduced(x) is the probability
density of the substrate distribution for the reduced model.
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