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Purpose: Micro-CT is widely used for small animal imaging in preclinical studies of cardiopul-
monary disease, but further development is needed to improve spatial resolution, temporal resolution,
and material contrast. We present a technique for visualizing the changing distribution of iodine in
the cardiac cycle with dual source micro-CT.
Methods: The approach entails a retrospectively gated dual energy scan with optimized filters and
voltages, and a series of computational operations to reconstruct the data. Projection interpolation
and five-dimensional bilateral filtration (three spatial dimensions + time + energy) are used to reduce
noise and artifacts associated with retrospective gating. We reconstruct separate volumes correspond-
ing to different cardiac phases and apply a linear transformation to decompose these volumes into
components representing concentrations of water and iodine. Since the resulting material images are
still compromised by noise, we improve their quality in an iterative process that minimizes the dis-
crepancy between the original acquired projections and the projections predicted by the reconstructed
volumes. The values in the voxels of each of the reconstructed volumes represent the coefficients of
linear combinations of basis functions over time and energy. We have implemented the reconstruction
algorithm on a graphics processing unit (GPU) with CUDA. We tested the utility of the technique in
simulations and applied the technique in an in vivo scan of a C57BL/6 mouse injected with blood
pool contrast agent at a dose of 0.01 ml/g body weight. Postreconstruction, at each cardiac phase in
the iodine images, we segmented the left ventricle and computed its volume. Using the maximum and
minimum volumes in the left ventricle, we calculated the stroke volume, the ejection fraction, and the
cardiac output.
Results: Our proposed method produces five-dimensional volumetric images that distinguish differ-
ent materials at different points in time, and can be used to segment regions containing iodinated
blood and compute measures of cardiac function.
Conclusions: We believe this combined spectral and temporal imaging technique will be useful
for future studies of cardiopulmonary disease in small animals. © 2012 American Association of
Physicists in Medicine. [http://dx.doi.org/10.1118/1.4736809]
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I. INTRODUCTION

Micro-CT is widely used for small animal imaging in preclin-
ical studies of cardiopulmonary disease.1 However, the small
size of the mouse heart (5 mm diameter) and the rapid heart
rate (up to 600 beats per minute [bpm]) present substantial
technical challenges.

Functional cardiac imaging requires the monitoring of the
ECG signal during the micro-CT scan. The monitoring can be
performed extrinsically, with electrodes or a pulse oximeter,
or intrinsically, by observing the motion of the heart in the
projection images.2, 3 This signal can be used to time the ac-
quisition of x-ray projections to coincide with distinct phases
of the heart (prospective gating), or the projections can be
acquired at a constant rate and the signal can be used af-
ter the scan to allocate the projections to different phases
(retrospective gating). Prospective gating ensures equiangu-
lar distribution of projections, but it involves longer scan
times and greater technical complexity.4 Retrospective gating
is faster and simpler to implement, but it generates projec-
tions with an irregular angular distribution, which can result

in reconstructed volumes afflicted by streaking artifacts.5 In
both strategies, once the projections are acquired, images of
the heart at several phases of the cardiac cycle can be recon-
structed separately. However, many of the features in these
images are preserved over time, and there has been grow-
ing interest in exploiting this redundancy in the reconstruc-
tion process to improve image quality and reduce scan time
and radiation dose.6 Some promising strategies include itera-
tive reconstruction algorithms that use temporal information
as a starting condition or a constraint.7 Other strategies ex-
tend noise reduction techniques such as bilateral filtration to
the temporal domain.8

Iodinated contrast agents are typically used to distinguish
the blood from the surrounding tissue. However, conventional
CT produces a single value at each voxel, the attenuation co-
efficient, which complicates efforts to quantify the concen-
tration of iodine when other materials are present in vary-
ing concentrations. In order to better distinguish the con-
trast agent, dual energy imaging is commonly used. In this
technique, scans are acquired with two different spectral set-
tings. These differences can be obtained by changing the
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x-ray tube voltage9 or adding filters,10 and can be im-
plemented with one x-ray tube changing over time,11 two
x-ray tubes and detectors,12 or overlaid detectors.13 Once the
projections are acquired at these different settings and recon-
structed separately, the contrast agent and the surrounding tis-
sue can be decomposed in postprocessing.14 However, this ap-
proach tends to amplify the noise in the reconstructed images
and is especially sensitive to geometric errors. As with tempo-
ral reconstruction, efforts have been made to exploit the sub-
stantial overlap of information between the two scans within
the reconstruction process.15–17

In this work, we present a technique to visualize the chang-
ing distribution of iodine in the body with a dual source
micro-CT system, using a retrospectively gated dual energy
scan with optimized filters and voltages, and a series of com-
putational operations to reconstruct the data. This results in
five-dimensional volumetric images that distinguish different
materials at different points in time and can be used to seg-
ment regions containing iodinated blood and compute various
measures of cardiac function, such as the stroke volume, the
ejection fraction, and the cardiac output. We test the utility
of the separate steps in simulations, and then demonstrate the
technique in an in vivo scan of a mouse.

II. THEORY

Our method uses retrospective gating to acquire temporal
information, and dual energy material decomposition to ac-
quire spectral information. Both of these techniques are im-
perfect, and their problems compound: Retrospective gating
tends to produce reconstructed images that are afflicted by
streaking artifacts and noise, and dual energy material decom-
position tends to amplify these undesirable properties. To re-
duce the artifacts and noise, we employ projection interpola-
tion (Sec. II.A) and bilateral filtration (Sec. II.B). To reduce
the amplification of the artifacts and noise, we optimize the
spectral properties of our data acquisition protocol (Sec. II.C),
and we iteratively refine the results of the material decompo-
sition (Sec. II.D). Some of these steps present computational
challenges that must be overcome (Sec. II.E), and some de-
pend upon a physically accurate spectral model of our system
(Sec. II.F). The utility of these various steps are demonstrated
in simulations (Sec. III.A). The entire method is summarized
in Fig. 1. Unless otherwise noted, all calculations were per-
formed in MATLAB (The MathWorks, Natick, MA).

II.A. Projection interpolation

During the scan, while the projections are acquired, the
animal’s cardiac and respiratory signals are recorded. After
acquisition, the phases in the cardiac and respiratory signals
are identified by thresholding the signals along with their first
and second derivatives. These three thresholds are found in
an iterative procedure that minimizes the standard deviation
of the duration of the cycles. At each iteration, a new set of
three thresholds are chosen, the thresholds are used to label
the peaks, the times between the peaks are found, and the
standard deviation of the set of times between the peaks is

calculated. When this standard deviation converges, the pro-
cedure stops, and the final set of three thresholds are used to
identify the peaks. Each projection is then assigned a relative
time between 0 and 1 for each signal (cardiac or respiratory)
identifying the fraction of the cycle elapsed since the most
recent peak.

The projections can then be allocated to sets based on their
phases in the cardiac and respiratory cycles, and these sets can
be reconstructed separately with conventional reconstruction
algorithms, such as filtered backprojection (FBP).18 However,
because the projection acquisition and the physiological pro-
cesses of the animal are in general uncorrelated, the angular
distribution of the projections in each set will be irregular, and
this results in streaking artifacts in the images reconstructed
with FBP.5 To overcome this problem, we generate synthetic
sets of projections with a regular angular distribution by in-
terpolating the projections in each set, using the following
method.

The projections acquired at a given tube setting are distin-
guished by their angle, their cardiac phase, and their respira-
tory phase. An interpolated projection Pi at a particular angle
αi and phase φi is a weighted average of all the acquired pro-
jections Pj, with the weights determined by a function w of
the distances between the interpolated angle and phase and
the acquired angles and phases:

Pi =
∑

j w(αi, αj , αs, 2π )w(φi, φj , 1/nφ, 1)Pj∑
j w(αi, αj , αs, 2π )w(φi, φj , 1/nφ, 1)

, (1)

where

� P is a projection, a two-dimensional array of values
measured on the detector.

� i is the index of the interpolated projection.
� j is the index of the acquired projection.
� α is the angle of the projection.
� αs is the step angle between the interpolated projections.
� φ is the phase of the projection (cardiac or respiratory).
� nφ is the number of phases to be reconstructed.

Here, w is a Gaussian weight function used for both angle and
phase values:

w(ai, aj , d, n) = exp

(
−1

2

(
1 − 1

d

[
ai, aj

]
n

)2
)

, (2)

where

� a is an angle or phase.
� d is the maximum allowable distance between ai and aj.
� n is the maximum possible value of a.
� [ai, aj]n is a distance function on a cyclical domain from

0 to n:

[ai, aj ]n = min(|ai − aj + n| , |ai − aj | ,

|ai − aj − n|). (3)

The value of the step angle αs between the interpo-
lated projections is chosen according to the desired tradeoff
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FIG. 1. A diagram of the proposed technique.

between the image quality at each phase and the tempo-
ral blurring between phases. In general, this value is scan-
dependent. The same formulas apply to both respiratory and
cardiac imaging. In the case of the cardiac imaging performed
in this study, in addition to the cardiac phases, we weight the
projections by their distance from the end-expiration phase of
the respiratory cycle in order to reduce motion blur caused by
respiratory motion.

II.B. Bilateral filtration

Because of the limited numbers of photons and projec-
tions available at each phase, and some residual streaking ar-
tifacts left by the projection interpolation, the reconstructed
images are still noisy. To denoise the images we use bilateral
filtration.19 This technique is similar to smoothing by con-
volution with a Gaussian kernel. In conventional Gaussian

smoothing, the value at a voxel μ(r) at position r is replaced
by a weighted average of its neighbors μ′(r), and the contribu-
tion of each neighboring voxel is determined by the distance
between the neighbor and the voxel being modified:

μ′(r) =
∫

r′ w(r − r′, σ )μ(r′)∫
r′ w(r − r′, σ )

, (4)

where

w(r, σ ) = exp

(
−‖r‖

σ 2

)
(5)

and σ is the standard deviation of the Gaussian.
In bilateral filtration, however, the contribution is also

weighted by the difference in the values of the neighboring
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voxel and the modified voxel:

μ′(r) =
∫

r′ w(r − r′, σd )w(μ(r) − μ(r′), σr )μ(r′)∫
r′ w(r − r′, σd )w(μ(r) − μ(r′), σr )

, (6)

where σ d and σ r are referred to as the domain and range pa-
rameters, respectively. In other words, this technique favors

the contributions of voxels that look similar and suppresses
the contributions of voxels that look different. This has the
effect of preserving edges while reducing noise.

To extend this technique beyond three dimensions, we in-
clude the time inside the domain, and make μ a function with
two values at each point, corresponding to each tube setting:

μ′(r, t) =

∫
t ′
∫

r′ w(r − r′, σd )w([t, t ′]1, σt )w

(∥∥∥∥
[

μlow(r, t)
μhigh(r, t)

]
−

[
μlow(r′, t ′)
μhigh(r′, t ′)

] ∥∥∥∥
2

, σr

)
μ(r′, t ′)

∫
t ′
∫

r′ w(r − r′, σd )w([t, t ′]1, σt )w

(∥∥∥∥
[

μlow(r, t)
μhigh(r, t)

]
−

[
μlow(r′, t ′)
μhigh(r′, t ′)

] ∥∥∥∥
2

, σr

) , (7)

where [t, t′]1 is the cyclical distance that we described in
Sec. II.A, and ‖‖2 is the L2 norm. The filtration is applied to
all the volumes from each time and energy setting, combined
together into a five-dimensional data structure. This approach
is similar to the five-dimensional bilateral filtration employed
by Sawall et al.8

To use this technique, appropriate values must be found
for σ d, σ t, and σ r. We set these parameters based on heuris-
tic criteria, and their values are scan-dependent. σ d is set so
that the spatial neighborhood is no larger than 5 × 5 voxels,
since larger neighborhoods are computationally demanding.
σ t is set so that no temporal neighborhood extends beyond
one time point before or after, to minimize temporal blurring.
σ r is set to be less than the difference in intensities between
bone and soft tissue at the low energy setting, and less than the
difference in intensities between iodine and soft tissue at the
high energy setting, to minimize the contributions of voxels
from different materials.

II.C. Material decomposition

The projections are acquired at two different energy set-
tings simultaneously, and images at each setting and at each
cardiac phase are reconstructed separately. After performing
bilateral filtration on these images, we apply a linear transfor-
mation to separate the images into components corresponding
to water and iodine. We represent the attenuation coefficients
at each energy setting at each point in time and space as a lin-
ear combination of the attenuation coefficients of water and
iodine:

μlow(r, t) = cwater(r, t)μwater, low + ciodine(r, t)μiodine, low

μhigh(r, t) = cwater(r, t)μwater, high + ciodine(r, t)μiodine, high,

(8)

where cwater and ciodine are the concentrations of water and
iodine, respectively. The values of the material coefficients
μwater, low, μiodine, low, μwater, high, and μiodine, high are measured
in manually selected regions in vials containing known con-
centrations of these materials that are attached to the animal

cradle. The concentrations of water and iodine in the rest of
the image are then found through matrix inversion:[

cwater(r, t)
ciodine(r, t)

]
=

[
μwater, low μiodine, low

μwater, high μiodine, high

]−1 [
μlow(r, t)
μhigh(r, t)

]
.

(9)

We apply this transformation from attenuation space to
material space separately to each cardiac phase. This mate-
rial decomposition is standard in the field.14

Unfortunately, this decomposition has the effect of ampli-
fying noise. The reason can be seen in Fig. 2, which shows
the spectral sensitivity functions at the different energy set-
tings of our system compared to the attenuation spectrum of
iodine (a) and (d); the expected attenuation values of water
and iodine at these energy settings (b) and (e); and the de-
composed fractional concentrations of water and iodine (c)
and (f). The rows of the matrix to be inverted in Eq. (9) corre-
spond to the vectors in attenuation space (b) and (e), which are
almost collinear. Regions of uncertainty, defined by the stan-
dard deviations of the measurements of the materials, are rep-
resented as ellipses. The closer the vectors are to each other,
the more the domain is stretched out when the transforma-
tion is performed, and the regions of uncertainty in material
space are severely elongated. Our choice of energy settings
is directed toward maximizing the angle between these vec-
tors in order to minimize the elongation of the regions of
uncertainty.

This elongation is predicted by the condition number.20

The condition number of a function is a measure of how
small changes in the inputs might be amplified by the func-
tion. The higher the condition number, the greater the possible
amplification, and the lower the accuracy in the presence of
noise. For matrices, such as in Eq. (9), the condition number
is equal to the ratio of the maximum and minimum singular
values.

We used this metric to determine the optimal energy set-
tings. We first searched for a pair of filters to shape the spec-
trum. We surveyed the periodic table and compiled a list of
metals that are available in sheets or plates that are solid,
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FIG. 2. The material decomposition can be represented as a linear transformation from attenuation space (b) and (e) to material space (c) and (f). The attenuation
coefficients for water and iodine are represented by vectors, and the axes of the ellipses around the vectors are the standard deviations of these measurements in
a typical scan with our micro-CT system (b), (e). These correspond to the vectors and ellipses representing the relative concentrations (0–1) of water and iodine
(c) and (f). When the energy settings are suboptimal (a), the vectors corresponding to water and iodine are close together (b), and the transformation amplifies
the noise (c). When a better set of energy settings are chosen (d), the water and iodine vectors are farther apart (e), and the noise amplification is less pronounced
(f). The condition number of the decomposition matrix corresponding to the improved settings is less than half of the condition number for the original settings.

stable, and nontoxic; with sufficient thickness to absorb be-
tween one-third and two-thirds of the incident radiation; and
that have absorption spectra that predominantly block pho-
tons either above or below the K-edge of iodine, 33.2 keV.
We found that tin is effective at suppressing energies above
this value, and tungsten below this value. We then consid-
ered various combinations of voltages on the x-ray tubes. At
each pair of voltages between 40 kVp and 100 kVp, we cal-
culated the average attenuation coefficients of water and io-
dine, with and without the filters, and calculated the condi-
tion number of the matrix in Eq. (9). These numbers are dis-
played in Fig. 3. We selected the combination of voltages and
filters that produce the lowest condition number. The result-
ing spectral sensitivity functions for our system are shown in
Fig. 4.

II.D. Iterative refinement

The resulting material images are still compromised by
noise. To improve the quality of the images, we apply a re-
finement that iteratively reduces the discrepancy between the
original acquired projections and the projections predicted
by the reconstructed volumes. In the previous steps, the ac-
quired projections were allocated to different sets based on
their spectral and temporal properties and reconstructed sep-
arately. However, this strategy ignored the considerable over-
lap in the spectra of the different tube settings and the dif-
ferent materials in the object, as well as the overlap of the
normalized exposure times of the projections. In the refine-
ment, the values in the voxels of each of the reconstructed
volumes represent the coefficients of linear combinations of

FIG. 3. The condition number of the material decomposition matrix as a function of voltage, without (a) and with (b) filters. The darkest region in B, 40 kVp
with the tin filter and 55 kVp with the tungsten filter, indicated with the crosshairs, corresponds to the lowest condition number.
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FIG. 4. The spectral sensitivity of our system with the two x-ray energy
settings. These functions include the contributions from the tube, filters, and
detector.

basis functions over time and energy, and we use all the ac-
quired projections to refine the estimates of these coefficients.
The contribution of each projection to the volume represent-
ing the coefficient for a particular basis function is propor-
tional to the degree of overlap between the basis function and
the temporal and spectral sensitivity of the system when the
projection was acquired.

This algorithm is based on several prior techniques.15–17

However, our method is unique in its combination of both
time and energy information in the same formula.

We construct a formula to represent the spectral x-ray im-
age acquisition process at the N pixel measurements from the
x-ray detector in terms of the M voxels of the object being
imaged. The expected photon count p∗

i at pixel measurement
i is:

p∗
i =

∫
p

(0)
i (e) exp

⎛
⎝−

M∑
j

aijμj (e)

⎞
⎠de, (10)

where

� p
(0)
i (e) is the spectral sensitivity function, i.e., the num-

ber of x-ray photons at energy e scaled by the detector
response at e. This function is described in greater detail
in Sec. II.F. The values of this function for our system
are shown in Fig. 4.

� μj(e) is the attenuation coefficient of voxel j at energy e.
� aij is the length of the portion of the x-ray trajectory

from the x-ray source to pixel i that intersects voxel j.

Here, p(0)
i (e) and aij are determined by experimental design

and calibration procedures, while μj(e) is to be reconstructed.

The actual photon count pi is a random variable, which is
often modeled as a sample from a Poisson distribution:

pi ∼ Poisson
(
p∗

i

)
. (11)

This distribution is only an approximation, for it ignores
the polychromatic nature of the radiation, as well as the noise
introduced by the indirect conversion at the scintillator and
the electronic noise on the detector. The decision to represent
the photon count as a deterministic value with additive noise
or as a value selected at random from a known distribution in-
fluences the choice of the reconstruction algorithm, described
below.

The goal of the spectral reconstruction process is to recover
μ(e) at all voxels from p at all pixel measurements. μj(e) is
represented as a linear combination of D basis functions:

μj (e) =
D∑
d

cjdfd (e), (12)

where each basis function fd(e) is chosen in advance based
on the known spectral properties of the object, and the coef-
ficient cjd of basis function d at voxel j is unknown. Possible
sets of basis functions include the relative contributions to at-
tenuation of Compton scatter and the photoelectric effect,9 or
energy bins,15 but in this study we have chosen the mass at-
tenuation curves of water and iodine, since the goal of this
spectral reconstruction process is to find the concentration of
iodine at all voxels, and the rest of the object can be mod-
eled as predominantly water. (Depending on the application,
it might be useful to also consider calcium.) Some of these
possible sets of basis functions are shown in Fig. 5.

The same formula can be used to represent the temporal
x-ray image acquisition process:

p∗
i =

∫
p

(0)
i (t) exp

⎛
⎝−

M∑
j

aijμj (t)

⎞
⎠ dt, (13)

where

� p
(0)
i (t) is the temporal sensitivity function, i.e., the num-

ber of photons from the x-ray tube at time t scaled by
the detector response at t.

� μj(t) is the attenuation coefficient of voxel j at energy
t, which is a linear combination of basis functions fd(t)
that vary over t.

In the case of cyclical dynamic phenomena, such as the
cardiac cycle or the respiratory cycle, we define t over

FIG. 5. Spectral basis functions.
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FIG. 6. Typical temporal basis functions and sensitivity function.

the interval from 0 to 1 representing one complete period of
the cycle, and the individual sensitivity and basis functions
represent fractions of the cycle during which the projection
is acquired and the image is reconstructed, respectively. In this
study, both the temporal sensitivity and temporal basis func-
tions are assumed to be rectangular pulses, but it is conceiv-
able that other kinds of basis functions might be useful, such
as triangles or sinusoids. Gaussian functions and gamma vari-
ate functions have been proposed for perfusion applications.21

Some of these basis functions and a typical temporal sensitiv-
ity function are shown in Fig. 6.

The same formula can include both temporal and spectral
information:

p∗
i =

∫ ∫
p

(0)
i (e, t) exp

⎛
⎝−

M∑
j

aijμj (e, t)

⎞
⎠ dtde. (14)

In this case, the sensitivity and basis functions are two-
dimensional functions. Some of these functions are shown in
Fig. 7. In this study, this is the formula that we use to find the
expected photon counts at the detectors.

To reconstruct images containing the values of the coeffi-
cients c at all voxels for all basis functions, we represent the
quality of the reconstruction with cost functions K, we derive
the gradients of these cost functions with respect to the coef-
ficient of each basis function at each voxel, and we use the
gradients to minimize the cost functions in an iterative fash-
ion. To construct these gradients, we find the partial derivative
of p∗

i with respect to gradients, cjd:

∂p∗
i

∂cjd

= −aij

∫
fd (l)p(0)

i (l) exp

⎛
⎝−

M∑
j

aij

(
D∑
d

cjdfd (l)

)⎞
⎠ dl = −aijp

(d)
i , (15)

where the function p
(d)
i has been defined here for conve-

nience. This equation is written with the arbitrary variable l
that can represent energy, time, or a combination of the two.

The two cost functions we use are the data fidelity:

K =
N∑
i

(
p∗

i − pi

)2
(16)

with the following gradient:

∂K

∂cjd

= 2
N∑
i

aij

(
pi − p∗

i

)
p

(d)
i (17)

and the log-likelihood:

K =
N∑
i

(
p∗

i − pi log p∗
i

)
(18)

with the following gradient:

∂K

∂cjd

=
N∑
i

aijp
(d)
i

(
pi

p∗
i

− 1

)
. (19)

The two minimization techniques we use are gradient
descent:

FIG. 7. Examples of spectral-temporal sensitivity functions (a) and basis functions (b). These functions are normalized and dimensionless.
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c
(n+1)
jd = c

(n)
jd − α

∂K

∂c
(n)
jd

(20)

and fixed point iteration:

c
(n+1)
jd = c

(n)
jd

(
1 − α + α

(
∂K1

∂c
(n)
jd

/
∂K2

∂c
(n)
jd

))
, (21)

where the gradient of the cost function ∂K/∂cjd is repre-
sented as a difference of two components, ∂K1/∂cjd and
∂K2/∂cjd, such that ∂K/∂cjd = ∂K1/∂cjd − ∂K2/∂cjd, and
the formulas of the gradients ∂K1/∂cjd and ∂K2/∂cjd can
be readily determined by inspection of the formulas of the
gradients of the cost functions. (For data fidelity, ∂K1/∂cjd

= 2
∑N

i aijpip
(d)
i and ∂K2/∂cjd = 2

∑N
i aijp

∗
i p

(d)
i , while

for log-likelihood, ∂K1/∂cjd = ∑N
i aijpip

(d)
i /p∗

i and
∂K2/∂cjd = ∑N

i aijp
(d)
i .) At each iteration n, these formulas

take the estimate c
(n)
jd and use the gradient to construct an

improved estimate c
(n+1)
jd . For both minimization techniques

a relaxation factor α can be included to allow us to control
the rate of convergence. It is not necessary to compute the
expected photon counts at all the angles for which projections
were acquired at every iteration; instead, different subsets
of the angles can be used at each iteration. The number of
subsets used at each iteration, the relaxation factor α, the
cost function and the minimization technique constitute the
main choices that must be made before performing iterative
refinement. In general these parameters are scan-dependent.

The two algorithms based on gradient descent behave in a
similar way, as do the two methods based on fixed point. To
reduce the set of possible algorithms to explore, we have fo-
cused on data fidelity gradient descent (DFGD) and likelihood
fixed point (LFP). In the conventional 3D CT realm, DFGD is
the basis for the algebraic family of algorithms, such as the si-
multaneous algebraic reconstruction technique,22 while LFP
is the basis for the statistical family of algorithms, such as
the maximum likelihood algorithm.17 In our experience, LFP
is more successful at adjusting the coefficient values to the
correct range, while DFGD is more successful at establishing
the proper boundaries between regions with different values.
DFGD also tends to be less volatile and more amenable to the
inclusion of filtration of the projections in order to acceler-
ate convergence. Furthermore, formulas based on fixed point,
such as LFP, will not change a voxel if its value before the
update is 0. To balance the advantages and disadvantages of
these two methods, we interleave DFGD and LFP, performing
one iteration of one method followed by one iteration of the
other.

Some algorithms developed by other groups based on LFP
exploit the convexity of the formula in order to eliminate some
terms and accelerate convergence.17 We have not used this
approach, but we observe that such an approach is easily in-
cluded in our model.

This algorithm does not make use of regularization or prior
knowledge about the structure of the object, but such details
could easily be included. We do make use of a non-negativity
constraint at each iteration, and we perform the material de-

composition at each iteration to force the concentrations to
the correct range of values and prevent divergence.

II.E. Computation

In these formulas, the sum over voxels j from 1 to M for
each pixel [Eqs. (10) and (13)–(15)] represents the forward
projection function, while the sum over pixels i from 1 to
N for each voxel [Eqs. (16)–(19)] represents the backprojec-
tion function, and these are the most computationally inten-
sive steps in our algorithms. The reason is that the geome-
try term aij, the length of the portion of the x-ray trajectory
from the x-ray source to pixel i that intersects voxel j, must
be computed anew for every combination of voxels and pix-
els when these functions are called. In the live animal study in
Sec. III.B, M = 640 × 640 × 100 = 4.1 × 107 and N = 1002
× 300 × 3600 = 1.1 × 109, meaning that an array of precom-
puted aij values would have M × N = 4.4 × 1016 elements, an
impractically large number. Consequently, the forward pro-
jection and backprojection functions are the first priority in
optimizing the reconstruction process for speed.

For the majority of combinations of i and j, aij has a value
of 0, so dedicated array traversal and interpolation schemes
are needed to avoid unnecessary computations. In our imple-
mentation, we use a ray-based scheme for forward projection,
in which, for each pixel on the detector, we construct a ray
from the source to the pixel, and then step along the array in
constant increments through the volume, read the values at
the points on the ray in the volume with trilinear interpola-
tion, and sum all these values together. For backprojection we
use a voxel-based scheme, in which, at each voxel, we per-
form a perspective transformation to find the corresponding
detector pixels that fall on the ray from the source through
the voxel, read the values from the projection with bilinear
interpolation, and add these values to the voxel. Based on
Zeng et al.,23 we do not believe that the use of two differ-
ent schemes for backprojection and forward projection is a
problem. To reduce computation time, we perform these op-
erations on a graphics processing unit (GPU), using a GTX
285 (NVIDIA, Santa Clara, CA) programmed with CUDA.
The GPU-based functions are accessed through a server that
runs persistently in the background, enabling us to implement
and test our reconstruction algorithms with MATLAB scripts,
and reduce the number of memory transfers required during
development.

Because of the linearity of the projection function, it is pos-
sible to move the linear combination of the basis functions at
each voxel out of the projection, and instead compute a linear
combination of projections:

M∑
j

aij

(
D∑
d

cjdfd (l)

)
=

D∑
d

fd (l)

⎛
⎝ M∑

j

aij cjd

⎞
⎠. (22)

If there are D basis functions defined over L points in time
and energy, this replacement reduces the number of forward
projection operations from L to D, which in our application is
a difference of an order of magnitude.
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The minimization techniques are expressed in terms of cjd,
the coefficient at voxel j of basis function d. In updating these
values at each iteration, we step through one basis function
at a time and compute the values at all voxels. Each of these
updates differ only by the term p

(d)
i , but otherwise the com-

putations are the same. Consequently, we can precompute the
expected photon counts at each iteration, and use these values
to update each volume without any additional forward projec-
tion operations. It is also possible to create the forward projec-
tions of each coefficient volume in advance at each iteration,
but in our application there is insufficient memory to maintain
all of these arrays.

II.F. Spectral model

As described in Secs. II.C–II.D, our method depends upon
accurate knowledge of the spectral sensitivity of the imaging
system. To predict the photon counts measured at the detector
(or, in the case of our scintillation CCD detectors, the charge
deposited at each pixel), we need to know how many photons
are emitted at each x-ray energy, and the relative contribution
of each photon (i.e., the chance of a signal being detected from
an x-ray photon and the magnitude of this signal). The major-
ity of this information is taken from the SPEKTR package,24

which includes results from prior studies of the emission spec-
tra of x-ray tubes,25 and databases of elemental absorption
spectra.26

Our spectral model is a sequence of several components.
The x-rays are first generated by the collision of electrons on
a tungsten anode in a vacuum tube, and the tungsten has a
characteristic spectrum that is shaped by the voltage traversed
by the electrons. These photons are subject to intrinsic filtra-
tion by the window on the tube, which is modeled as a given
thickness of aluminum (0.7 mm) provided by the manufac-
turer (Varian Medical Systems, Palo Alto, CA). Additional
filtration is provided by the metal filters placed outside the
tube, and a 3 mm thick protective plate of plexiglass on the
detector.

The remaining photons pass through a scintillator consist-
ing of 0.025 g/cm2 gadolinium oxysulfide (Gd2O2S), and
those x-ray photons that are absorbed produce a burst of opti-
cal photons. The number of optical photons produced by this
process is directly proportional to the energy of the x-ray pho-
tons. This model of the detector is based on information pro-
vided by the manufacturer of our detectors (Photonic Science,
East Sussex, UK).

The spectral sensitivity at a given energy is a product of
the contributions of all of these components, and they can be
combined into a single function:27∫

tube(e) filter(e) object(e) detector(e)de

=
∫

sensitivity(e) object(e)de. (23)

This sensitivity function is normalized so that the sum over
all energies equals 1. The values of this function for our sys-
tem are shown in Fig. 4. Before scanning the object, empty

projections are collected (projections at each tube setting with
no object present). The spectral sensitivity function for all pix-
els over all energies is the empty projection times the nor-
malized sensitivity function. This implicitly assumes that the
pixels on the detector differ only in the magnitude of their
response, and not the spectra.

It is conceivable that any of the components described
above might be improperly modeled, or there might be addi-
tional components outside the model that influence the spec-
tral sensitivity. To account for possible mismatch between our
model and the actual response of our system, we have devel-
oped a spectral calibration technique. This technique is pre-
sented in greater detail in Ref. 28, but we summarize it here.

A set of projections are collected in which various
metal plates are placed between the tube and the detector.
Equation (10) is used to find the expected number of mea-
sured photons predicted by our spectral model, and the
discrepancy between the measured photon counts and the pre-
dicted photon counts is found. We then find a quadratic cor-
rection function that, when included in the spectral model,
minimizes the difference between the measured counts and
the predicted counts. This spectral calibration procedure re-
duces the average discrepancy between the measured counts
and the predicted counts from 19% to 9%.

III. METHODS

We tested the utility of the various steps of our method
(Fig. 1) in simulations (Sec. III.A). We then applied this
method in in vivo scans of four mice (Sec. III.B).

III.A. Simulations

To test the utility of the steps of our technique, we used the
Moby digital mouse phantom.29 This phantom is a volumet-
ric representation of a mouse with optional respiratory and
cardiac motion. We generated volumes at eight phases of the
cardiac cycle without respiratory motion, and decomposed the
volume into separate components for water and iodine, with
20 mg/ml iodine added to the blood. Vials containing water
and 10 mg/ml iodine were attached to the phantom, as re-
quired by our technique. We simulated a scan of the phantom
with retrospective gating, with each projection occurring at
a randomly selected phase in the cardiac cycle. We generated
2400 projections with Eq. (14), with added Poisson noise. The
noise levels in the projections were chosen so that the noise in
reconstructions with conventionally distributed sets of projec-
tions were at the level we typically observe in studies with our
micro-CT system, about 50 HU. The voltages and filters were
chosen to match the settings described in the in vivo study in
Sec. III.B, 41 kVp with a 0.1 mm tin filter in the low energy
setting and 55 kVp with a 0.05 mm tungsten filter in the high
energy setting.

The projections were interpolated to regularly spaced sets
of 361 projections for each phase for each energy setting.
For the bilateral filtration, we set σ d = 1, σ t = 1, and
σ r = 0.001 (attenuation coefficients, not HU). For the
iterative refinement, we alternated between one iteration of

Medical Physics, Vol. 39, No. 8, August 2012



4952 Johnston, Johnson, and Badea: Temporal and spectral imaging with micro-CT 4952

DFGD with α = 0.25 and one iteration of LFP with α = 1,
over 10 iterations total, with a randomly selected subset of
1/10 of the total projections at each iteration.

We use four metrics of image quality in order to evaluate
the performance of the various steps of our method. The final
goal of the material decomposition is to quantify the concen-
tration of the iodine at each point in the object at each phase.
We quantify the discrepancy between the true concentration
and the reconstructed concentration at all points in the iodine
volumes at all points in time with the root mean squared error
(RMSE).

The vials included with the mouse have homogeneous inte-
riors, and the vials are made of a homogeneous acrylic mate-
rial with attenuation properties identical to water. In a perfect
reconstruction, these regions should have a uniform value, but
in practice the images are noisy, and the amount of noise is
quantified by the standard deviation (STD) in these regions.
In the steps of our method that produce attenuation images,
this quantity is expressed in Hounsfield Units (HU), whereas
in the steps that produce concentration images, this quantity
is expressed in mg/ml.

However, some image processing techniques, such as sim-
ple convolutional smoothing, have the effect of blurring the
image. This reduces the STD but, by making the boundaries
between different materials diffuse and indistinct, diminishes
image quality. Therefore, to quantify the sharpness of the
boundaries in the image, we measure the modulation trans-
fer function (MTF) at the boundary of one of the vials. To do
this, we construct a series of line segments with one endpoint
at the center of the vial and the other endpoint outside, with
the exterior endpoints distributed in a circle around the vial,
and we find the values in the image at regular intervals along
these line segments with linear interpolation. This produces
a set of radial profiles, which we average together. We then
use a MATLAB curve-fitting function to fit a sigmoid func-
tion (based on the arctangent) to the average radial profile.
This sigmoid function is the edge-spread function (ESF) of
the image, the derivative of the ESF is the point-spread func-
tion (PSF), and the magnitude of the Fourier transform of the
PSF is the MTF. The MTF is normalized so that the value at
the 0 frequency is 1. We report a single value for the MTF: the
spatial frequency at which it falls below 0.1. An ideal image
should have a high MTF and a low STD. We measure these
values around the vial containing water, since its boundary is
more easily isolated.

To quantify our ability to accurately distinguish the cham-
bers of the heart in order to compute various measures of car-
diac function, we segment out the left ventricle, and compare
the segmented region in the reconstructed images with the
original phantom. The average number of misclassified vox-
els over all phases, expressed as a fraction of the total number
of voxels in the region, is the segmentation error (SE). The
segmentation technique entails finding and applying a thresh-
old value halfway between the average values in the vials, ap-
plying morphological erosion to prevent spurious connections
between the left and right ventricles, selecting the connected
component that contains the left ventricle, and applying mor-
phological dilation to recover the voxels lost by the erosion.

This is not especially sophisticated, and it is not the same as
the technique used in the in vivo study in Sec. III.B (which
includes manual modifications to the segmented regions). We
use this segmentation technique here to provide an objective
and automated comparison of the contributions of the various
stages of our method.

III.B. Live animal study

Our protocol is built around the unique capabilities and
constraints of our custom dual source micro-CT system.30

X-rays are produced by two G-297 x-ray tubes (Varian
Medical Systems, Palo Alto, CA) with 0.3/0.8 mm focal
spots, powered by two Epsilon High Frequency x-ray gener-
ators (EMD Technologies, Quebec, Canada). The x-rays are
detected by two XDI-VHR 2 CCD x-ray detectors (Photonic
Science, East Sussex, UK) with a Gd2O2S phosphor and
22 μm pixels, which are typically binned to 88 μm. Each
camera has a dedicated power supply, and a dedicated com-
puter for image acquisition, but they receive the same acquisi-
tion trigger. The sources and detectors are stationary, and the
animal is mounted vertically in a custom animal cradle and
moved with an Oriel 13049 stepping motor (Newport, Strat-
ford, CT) for rotation, on a stage that is operated with a sep-
arate Silverpak 17C stepping motor (Lin Engineering, Santa
Clara, CA) for translation. Rotation and image acquisition are
performed in step-and-shoot mode. The system is controlled
by a dedicated program written in LabVIEW (National Instru-
ments, Austin, TX).

Projections are acquired concurrently with each x-ray
source at different energy settings. For each setting, the ac-
celerating voltage, current, time, and filter must be chosen.
We selected an optimal combination of voltages and filters in
Sec. II.C. However, the combination of voltages and filters we
use result in exposures with low flux, and the current and ex-
posure time must be increased accordingly. These are limited
by the heat capacity of the x-ray tubes and the desired tempo-
ral resolution.

In our protocol, we use the following energy settings:

� Setting 1 (low energy): 41 kVp, 320 mA, 12.5 ms,
0.1 mm tin filter.

� Setting 2 (high energy): 55 kVp, 400 mA, 12.5 ms,
0.05 mm tungsten filter.

The relative numbers of photons from the filtered tubes at
each energy, scaled by the relative sensitivity of the detector,
are shown in Fig. 4.

The currents are at the maximum allowed by our tubes but
well below the amount that would saturate our detectors. The
exposure times (12.5 ms) are determined by our desired tem-
poral resolution, eight phases of the cardiac cycle in a mouse
with ∼100 ms per heartbeat. Because of the heat capacity of
the tubes, acquisitions must be broken into separate sets of
projections, with several minutes between each set to allow
the tubes to cool.

Changes in the orientation of the animal over the course of
the scan, as well as imperfectly characterized geometry of our
dual source system, may result in artifacts in the reconstructed
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TABLE I. Measurements of the reconstructed attenuation images from the simulation, with sorted projections
and interpolated projections, without and with bilinear filtration.

RMSE (mg iodine/ml) STD (HU) MTF at 0.1 (mm−1) SE (fraction)

Sorted projections 58.6 130 7.9 0.24
Interpolated projections 2.7 44 6.4 0.14
Bilinear filtration 1.5 21 6.8 0.14

images, such as double contours, streaks, and smears. These
artifacts, which can hinder subsequent interpretation and pro-
cessing, are often caused by a correlation between the rotation
angle and the movement of the animal. By reducing this cor-
relation we can reduce the artifacts, converting motion effects
to an isotropic blur that is less disruptive to subsequent image
processing and analysis. This strategy is motivated by similar
techniques employed in radial sampling in MRI.31 We accom-
plish this reduction in correlation by interleaving the angles of
the projections from each set, and alternating the settings of
the two tubes. In other words, between each set, we switch
the voltages and filters on the tubes, and we rotate the cradle
by an angular offset. At the end of the entire scan, the ac-
quired projections are sorted, resulting in a complete rotation
for each tube setting with evenly distributed angles. The step
angle and the total number of projections are limited by the
desired scan time, radiation dose, and memory of the recon-
struction engine.

We applied the proposed technique in in vivo scans of 4
C57BL/6 mice. This study was conducted under the protocol
approved by the Duke University Institutional Animal Care
and Use Committee. A liposomal blood pool contrast agent32

containing 123 mg I/ml was delivered by injection via a tail
vein catheter at a dose of 0.01 ml/g body weight. Each ani-
mal was anesthetized with isoflurane (1.5%) mixed with 50%
oxygen and balanced with nitrogen. ECG was monitored with
electrodes taped to the footpads, and body temperature was
maintained with heat lamps, a rectal probe, and feedback con-
troller. A pneumatic pillow on the thorax was used to monitor
respiration. Two vials, containing water and a 10 mg/ml io-
dine solution, were affixed to the cradle and scanned with the
animal to facilitate the material decomposition.

Using the energy settings described above, a total of 3600
projections were acquired in 12 sets of 150 projections from 2
detectors. Each projection had 1002 × 667 pixels with a pitch
of 0.088 mm × 0.088 mm. The step angle in each set was
1.2◦, and an offset was introduced before each set so that the
effective step angle for the entire experiment was 0.1◦. After a
few of the sets, we waited ∼5 min. for the tubes to cool. The
total scan time was approximately 1 h. The estimated dose
was 115 mGy.

We went through the reconstruction process with the two
animals that had the largest and smallest variations in cardiac
rate and respiratory rate (410–570 beats per minute [bpm] and
35–50 bpm respiratory rate in the former; 490–530 bpm and
30–39 bpm in the latter). We reconstructed the water and io-
dine components of the animals at eight phases of the car-
diac cycle. Each volume was 640 × 640 × 100 voxels with a
pitch of 0.110 mm × 0.110 mm × 0.110 mm. The projections

were interpolated to regularly spaced sets of 361 projections
for each phase for each energy setting for each camera. For
the bilateral filtration, σ d = 1.15, σ t = 0.8, and σ r = 0.002.
For the iterative refinement, we used the same reconstruction
algorithm as in the simulation.

At each phase in the iodine images, we segmented the left
ventricle with Avizo (Visualization Sciences Group, Burling-
ton, MA), and computed the volumes. The segmentation was
performed by selecting a point in the ventricle, automatically
finding the set of all points in the volume that were within
a given range of iodine concentration values, identifying the
connected component that contained the selected point, and
then manually trimming away all the parts of this connected
component that were located outside the ventricle. Using the
maximum and minimum volumes in the left ventricle, we cal-
culated the stroke volume, the ejection fraction, and the car-
diac output.

IV. RESULTS

For the simulations, Table I shows the measured values of
the RMSE, STD, MTF, and SE for reconstruction without pro-
jection interpolation (i.e., sorted projections), reconstruction
with projection interpolation and bilateral filtration. Figure 8
shows some representative reconstructed images from the low
energy setting at two phases in the cardiac cycle. The RMSE,
STD, MTF, and SE values at each iteration are plotted in
Fig. 9. Some concentration images are shown in Fig. 10.

For the in vivo study, reconstructed images from one
mouse are shown in Fig. 11. A time-averaged reconstruction
with all the data from both tube settings is shown at the top,
and images of the water and iodine components at two phases
in the cardiac cycle are shown below. A closer view of a coro-
nal section of the iodine in the heart over the cardiac cycle is
shown in Fig. 12. Reconstruction time is reported in Table II.

TABLE II. Computation time of the steps of the reconstruction process for
the in vivo study.

Time (minutes)

Projection interpolation 11
Filtered backprojection 9
Bilateral filtration 3
Material decomposition 1
Iterative refinement 400
Per iteration 40
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FIG. 8. Reconstructed attenuation images from the simulated scan using both original projections and interpolated projections, without and with bilateral
filtration. Images with the low energy setting at two cardiac phases are shown.

FIG. 9. Measures of reconstruction quality at each iteration of the refinement process, starting with the result from the material decomposition (iteration 0):
The RMSE of the estimated iodine concentration at all points in the iodine volumes at all points in time (a), the STD (b) and MTF (c) measured around the vial
containing water, and the SE of the left ventricle (d).
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FIG. 10. Images of the water and iodine components at one cardiac phase, before and after iterative refinement.

The volume of the segmented left ventricle of the heart of
the mouse with the least variation in cardiac rate and respi-
ratory rate is plotted in Fig. 13. For this mouse, the stroke
volume was 0.0083 ml, and the ejection fraction was 46%.
At a heart rate of 510 bpm, this corresponds to a cardiac out-
put of 4.3 ml/min. For the mouse with the greatest variation,
the stroke volume was 0.020 ml, and the ejection fraction was
43%. At a heart rate of 490 bpm, this corresponds to a cardiac
output of 9.8 ml/min.

Animations of axial and coronal slices from the five-
dimensional volume from one in vivo scan are available on
our website.33 The thresholded iodine image is overlaid in
red on the grayscale water image. The bone has been high-
lighted in blue by thresholding the water image and overlay-
ing it on the grayscale water image. Additionally, we show

an animated rendering of the segmented left ventricle super-
imposed on the grayscale iodine image. The five-dimensional
volume is available for download.

V. DISCUSSION

Our technique is successful in distinguishing the distri-
bution of iodine from the surrounding tissue (Figs. 10–12).
Large regions such as the heart with high concentrations
of iodine can be discerned, and their motion is apparent
(Fig. 12). The perspicuity of the iodinated regions makes it
easier to segment them. The exact relationship between the re-
construction and the segmentation depends upon the kind of
segmentation technique used. Our segmentation techniques,
based on iodine concentration thresholds, benefit from the
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FIG. 11. Reconstructed images from the in vivo scan. An attenuation image reconstructed with all the projections is shown at the top. The material components
at two cardiac phases are shown below, with water in grayscale and iodine in red.

reduction in streaking artifacts and noise delivered by the pro-
jection interpolation (Table I), while the iterative refinement
reduces the error introduced by the material decomposition
(Fig. 9). In the in vivo study, the calculated functional val-
ues (stroke volume, ejection fraction, and cardiac output) are
within the range expected for a mouse, although the ejection
fractions (43% and 46%) are rather low. This may be related
to the nonzero SE associated with our method. It may indi-
cate motion blur or incorrect segmentation of the walls of
the ventricles in the reconstructed images, or it may indicate
an abnormality in the mouse or the effects of the anesthetic.
The substantial changes observed in the cardiac rate and the

respiratory rate suggest that the heart motion may have been
inconsistent over the course of the scan. In the mouse with
the least variations in these rates, the ejection fraction is
a little higher, but still somewhat out of the normal range.
Further work is needed to establish the robustness of these
measurements.

Our technique also succeeds in subtracting the iodine from
the body, producing virtual pre-contrast images (Fig. 10).
These images should be especially useful in studies where cal-
cified plaques must be separated from iodinated blood, such
as in imaging of atherosclerosis. In areas where the vessels
lie close to the bone, the iodine and water images provide a

FIG. 12. A closer view of a coronal section of the iodine in the heart over eight phases of the cardiac cycle, with the same color map as in Fig. 11.
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FIG. 13. The volume of the left ventricle of the heart over eight phases of
the cardiac cycle, calculated from segmented images.

clear distinction between the bone and the vessels that would
be more difficult to distinguish on the basis of attenuation co-
efficients alone.

The simulations demonstrate the utility of the projection
interpolation and bilateral filtration for improving the image
quality of the reconstructions (Table I). The reconstructed im-
ages are relatively free of the noise and streaking artifacts
that typically accompany retrospective gating (Fig. 8) Ac-
cording to the MTF measurements, the projection interpola-
tion slightly blurs the image, but this is compensated by a
substantial reduction in noise. The bilateral filtration further
reduces the noise while preserving the resolution.

Although the energy settings are optimized to facilitate the
material decomposition (Fig. 4), the decomposition still has
the effect of amplifying the noise, and some fine features are
lost in the iodine concentration images.

The iterative refinement is successful in reducing the
RMSE of the reconstruction (Fig. 9). Both the MTF and the
STD are slightly increased, and the SE is decreased, suggest-
ing that the image is sharpened. Most of the improvement oc-
curs in the first four iterations, beyond which little change oc-
curs. However, this improvement is rather slight, both quanti-
tatively and visually (Fig. 10), and occurs mostly in the empty
space surrounding the animal. Further work is needed to de-
termine why this is so, but we speculate that there is too much
overlap between the spectra of the different materials (Fig. 5),
and between the spectral sensitivities at the different settings
(Fig. 4). Even with the optimized voltages and filters, the val-
ues of water and iodine are still very close in attenuation space
(Fig. 2). This situation might be improved by additional filter-
ing of the x-ray spectra to produce narrower peaks around the
K-edge, but this reduces the number of photons and increases
the noise. To reduce the overlap of the basis functions, we
have tried orthogonalizing them with QR decomposition, but
this does not substantially affect performance.

The iterative refinement is less effective in the live animal
scan. We suspect that there are additional factors in the image
formation process that are not accounted for by our model
and not fixed by spectral calibration. In particular, we do not
account for x-ray scatter, a problem exacerbated by our dual
source architecture in which both x-ray tubes fire simultane-
ously. In the presence of scatter, our estimate of p

(0)
i (e), the

expected number of photons at pixel i and energy e when no
object is present, is no longer accurate. In our studies, when

we fire one x-ray tube and acquire projection images from
both detectors, the scattered signal measured at the detector
that is not in line with the tube is typically ∼10% of the sig-
nal measured at the other detector, depending on the voltages
and the object being scanned. In the future, this might be cor-
rected by acquiring data from each tube at slightly different
times, or by using more physically accurate methods to deter-
mine the expected number of photons.34

The computation times for most of the steps of the recon-
struction (Table II) are not problematic. However, the iterative
refinement is especially time-consuming. Much of the time
spent during this step takes place in the forward projection
function, since we have insufficient memory to precompute
the projections of all the basis functions. This problem may
be overcome by using a computer with more memory (our
computer has 24 GB of RAM).

Although we have focused on imaging iodine in the blood
during the cardiac cycle, we believe that the strategy pre-
sented here can be extended to other studies of dynamic
phenomena, such as perfusion,35 and other contrast materi-
als, such as gadolinium36 or gold.37 It is possible to extend
these techniques to include more than two energy settings and
distinguish more than two materials, as long as the spectral
properties of the materials are sufficiently distinct. (In our ex-
perience, calcium is not sufficiently distinct from water be-
cause of the absence of a K-edge in our energy range.) The
data we have collected in this animal study can also be used
to visualize and quantify respiration. Similar strategies can be
used with other dual energy architectures.

This method requires the specification of values for sev-
eral parameters which are dependent on the scanning proto-
col. The interpolation parameters should depend on the num-
ber of projections acquired and the number of phases to be
reconstructed, which will in turn be influenced by dose and
time considerations. The filtration parameters should depend
on the desired resolution and the amount of noise in the un-
filtered images, which depend on the results from the inter-
polation. The iterative refinement parameters should depend
on the desired reconstruction time and the observed improve-
ment. The values for the parameters that we used in the simu-
lation and the live animal study were adjusted to optimize the
final image quality for these particular scans. While our val-
ues may be good initial values for future studies, we expect
that studies involving multiple scans and multiple animals on
other imaging systems will adjust these values to optimize im-
age quality in a test case, and then use the same values for all
the scans in the study.

In conclusion, we have developed a technique for visual-
izing the changing distribution of iodine in the cardiac cy-
cle with dual source micro-CT. This entails a retrospectively
gated dual energy scan with optimized filters and voltages,
and a series of computational operations to reconstruct the
data and generate five-dimensional images. These images can
be segmented, and the segmented images can be used to com-
pute various measures of cardiac function, such as stroke vol-
ume, ejection fraction, and cardiac output. We believe this
technique will be useful for future studies of cardiopulmonary
disease in small animals.
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