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Purpose: Regional lung volume change as a function of lung inflation serves as an index of parenchy-
mal and airway status as well as an index of regional ventilation and can be used to detect pathologic
changes over time. In this paper, the authors propose a new regional measure of lung mechanics—the
specific air volume change by corrected Jacobian. The authors compare this new measure, along with
two existing registration based measures of lung ventilation, to a regional ventilation measurement
derived from xenon-CT (Xe-CT) imaging.
Methods: 4DCT and Xe-CT datasets from four adult sheep are used in this study. Nonlinear, 3D
image registration is applied to register an image acquired near end inspiration to an image acquired
near end expiration. Approximately 200 annotated anatomical points are used as landmarks to eval-
uate registration accuracy. Three different registration based measures of regional lung mechanics
are derived and compared: the specific air volume change calculated from the Jacobian (SAJ); the
specific air volume change calculated by the corrected Jacobian (SACJ); and the specific air volume
change by intensity change (SAI). The authors show that the commonly used SAI measure can be
derived from the direct SAJ measure by using the air-tissue mixture model and assuming there is no
tissue volume change between the end inspiration and end expiration datasets. All three ventilation
measures are evaluated by comparing to Xe-CT estimates of regional ventilation.
Results: After registration, the mean registration error is on the order of 1 mm. For cubical regions
of interest (ROIs) in cubes with size 20 mm × 20 mm × 20 mm, the SAJ and SACJ measures show
significantly higher correlation (linear regression, average r2 = 0.75 and r2 = 0.82) with the Xe-CT
based measure of specific ventilation (sV) than the SAI measure. For ROIs in slabs along the ventral-
dorsal vertical direction with size of 150 mm × 8 mm × 40 mm, the SAJ, SACJ, and SAI all show
high correlation (linear regression, average r2 = 0.88, r2 = 0.92, and r2 = 0.87) with the Xe-CT
based sV without significant differences when comparing between the three methods. The authors
demonstrate a linear relationship between the difference of specific air volume change and difference
of tissue volume in all four animals (linear regression, average r2 = 0.86).
Conclusions: Given a deformation field by an image registration algorithm, significant differences
between the SAJ, SACJ, and SAI measures were found at a regional level compared to the Xe-CT sV
in four sheep that were studied. The SACJ introduced here, provides better correlations with Xe-CT
based sV than the SAJ and SAI measures, thus providing an improved surrogate for regional ventila-
tion. © 2012 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4736808]

Key words: image registration, ventilation, lung function, tissue function, pulmonary

5084 Med. Phys. 39 (8), August 2012 © 2012 Am. Assoc. Phys. Med. 50840094-2405/2012/39(8)/5084/15/$30.00

http://dx.doi.org/10.1118/1.4736808


5085 Ding et al.: 4DCT regional lung ventilation vs. Xe-CT 5085

I. INTRODUCTION

Regional ventilation is the term used to characterize the vol-
ume of fresh gas per unit time that enters or exits the lung at
the acinar (gas exchange) level. Disruption of regional ven-
tilation can reflect alterations to airways (physiological or
pathological), alterations in parenchymal mechanics, changes
to the muscles of respiration, body posture effects, and in-
haled gas properties. Thus, measures of regional lung me-
chanics can serve as a sensitive test of the status of the respi-
ratory system and should be considerably more sensitive and
informative than global pulmonary function test. Recent ad-
vances in multidetector-row CT (MDCT), 4DCT respiratory
gating methods, and image processing techniques enable us to
study pulmonary function at the regional level with high res-
olution anatomical information compared to other methods.
MDCT can be used to acquire multiple static breath-hold CT
images of the lung taken at different lung volumes, or 4DCT
images of the lung acquired during spiral scanning using a low
pitch and retrospectively reconstructed at different respiratory
phases with proper respiratory control.1–3 Image registration
can be applied to these data to estimate a deformation field
that transforms the lung from one volume configuration to the
other. This deformation field can be analyzed to estimate lo-
cal lung tissue expansion, calculate voxel-by-voxel intensity
change, and make biomechanical measurements. When com-
bined with image segmentation algorithms,4–7 functional and
biomechanical measurements can be reported on a lung, lobe,
and sublobar basis, and can be used to interpret regional lung
function relative to specific segments of bronchial tree. Such
measurements of pulmonary function have proven useful as
a planning tool during RT planning8, 9 and may be useful for
tracking the progression of toxicity to nearby normal tissue
during RT and can be used to evaluate the effectiveness of a
treatment posttherapy.10

Early studies using CT to study regional air volume
changes have proved to enhance our understanding of nor-
mal lung function. Several groups have proposed methods
that couple image registration and CT imaging to study re-
gional lung function. Guerrero et al. have used optical-flow
registration to compute lung ventilation from 4DCT (Refs.
11, 12) with an intensity-based ventilation measure. Chris-
tensen et al. used image registration to match images across
cine-CT sequences and estimate rates of local tissue ex-
pansion and contraction13 using a Jacobian-based ventilation
measure. While they were able to show that their accumu-
lated measurements matched well with the global measure-
ments, they were not able to compare the registration based
measurements to local measures of regional tissue ventila-
tion. Recently, Castillo et al. compared the intensity-based
and Jacobian-based calculations of ventilation from 4DCT
with the ventilation from 99mTc-labeled aerosol SPECT/CT.14

A statistically higher correlation to the SPECT/CT based ven-
tilation was found for intensity-based calculation over the
Jacobian-based calculation. However, the comparison of the
two techniques was based on the Dice similarity coefficient
between the thresholded masks within 20% variation from the
4DCT and from SPECT/CT. Though their experiment is novel

and important, since the average mask size is about 490.5 mL
(with average subject exhale volume 2452.7 mL, and five sub-
masks per subject), the comparison is more global than re-
gional. In addition, as shown in Sec. II.D, both the intensity-
based and Jacobian-based ventilation measures are based on
the assumption that regional lung volume change is due solely
to air content change, which may not always be a valid as-
sumption. Other factors, such as blood volume change, may
also introduce the regional lung volume change.

The physiologic significance of these registration based
measures of respiratory function can be established by com-
paring to more conventional measurements, such as nuclear
medicine or contrast wash-in/wash-out studies with CT or
MR. Xenon-enhanced CT (Xe-CT) measures regional venti-
lation by observing the gas wash-in or wash-out rate on serial
CT images.15–17 Xe-CT imaging has the advantage of high
temporal resolution and spatial resolution and reflects a mea-
sure of fresh gas delivery to the gas exchange units of the
lung. Although the dynamic Xe-CT method is limited in Z-
axis coverage, requires expensive Xe gas, and is technically
challenging, it serves as the gold standard of regional ventila-
tion and can be used to compare with registration based mea-
sures of regional lung function in animal studies for validation
purposes.

This paper describes three measures to estimate regional
ventilation from image registration of CT images: the spe-
cific air volume change calculated from the Jacobian (SAJ);
the specific air volume change calculated by the corrected Ja-
cobian (SACJ); and the specific air volume change by inten-
sity change (SAI). We show that the SAI ventilation measure
can be derived from the SAJ measure by making the assump-
tion that there is no tissue volume change between registra-
tion volumes. We evaluate these three measures by comparing
them with a Xe-CT measure of ventilation in a regional basis
(20 mm × 20 mm × 20 mm cube, or 8 mL). Among these
three registration based measures, we show that the corrected
Jacobian-based measure, SACJ, has the best correlation with
the Xe-CT derived measure of specific ventilation.

II. MATERIAL AND METHODS

II.A. Method overview

Our goal is to validate and compare the measures used
to estimate regional lung ventilation from image registration
by comparing them to Xe-CT estimated ventilation. Figure 1
shows a block diagram of the entire process. Two types of
data were acquired for each animal: a 4DCT scan and a Xe-
CT scan. In order to make our comparisons under the same
physiological conditions, each animal was scanned and me-
chanically ventilated with the same respiratory rate, tidal vol-
ume (TV) and positive end-expiratory pressure (PEEP) during
the two types of scans. The datasets from the 4DCT scan were
reconstructed in volumes at eight phases of the respiratory cy-
cle. For this study we focus on the datasets from two of the
phases, a volume near end expiration (EE) and a volume near
end inspiration (EI). For the Xe-CT scan, 45 distinctive par-
tial lung volumetric scans were performed at volume near end
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FIG. 1. Figure shows the two types of images, an image pair of full lung volumetric phases EE and EI from a 4DCT scan and a Xe-CT scan acquired at the
end of expiration over 45 respiratory cycles (EE0 to EE44), which are analyzed during the processing. Transformation T1 registers EI to EE data and can be
used to assess local lung function via calculations of three ventilation measures: SAJ, SACJ, and SAI. The 45 distinctive partial lung volumetric Xe-CT scans
EE0 to EE44 are used to calculate Xe-CT based measure of sV. Transformation T2 maps the sV data into the coordinate system of the EE image (end expiration
phase of the 4DCT scan) to allow direct comparison with the 4DCT and registration based measures of ventilation. Both EE and EE0 are at volumes near end
inspiration. (Shaded boxes indicate CT image data; white boxes indicated derived or calculated data; thick arrows indicate image registration transformations
being calculated; thin solid lines indicate other operations.)

expiration, or the initial end expiration scan (EE0) to the last
expiration scan (EE44).

The nonlinear image registration is used to define the trans-
formation T1 between the EE and EI in order to measure
the regional lung ventilation from the 4DCT scan. The Xe-
CT based estimated regional lung ventilation is computed on
the EE0 by using Pulmonary Analysis Software Suite 11.0
(PASS) software by finding the constant of the exponential
rise of the density from xenon gas wash-in over multiple
breaths.18 The same nonlinear image registration is also ap-
plied to define the transformation T2 which maps the EE0 to
the EE so that the Xe-CT based estimate of ventilation can be
mapped into the same coordinate system as that of the reg-
istration based estimate of ventilation. Additional details on
the registration algorithm and other processing steps are given
below.

II.B. Image datasets

Appropriate animal ethics approval was obtained for these
protocols from the University of Iowa Animal Care and Use
Committee and the study adhered to NIH guidelines for ani-
mal experimentation. Four adult male sheep A, B, C, and D
(with weights 44.0, 37.8, 40.4, and 46.7 kg) were used for this
study. The sheep were anesthetized using intravenous pento-

barbital and pancuronium to ensure adequate sedation and to
prevent spontaneous breathing. Animals were positive pres-
sure ventilated during experiments using a custom built dual
Harvard apparatus piston ventilator designed for computer
control. The 4DCT images were acquired with the animals in
the supine position using the dynamic imaging protocol with
a pitch of 0.1, slice collimation of 0.6 mm, rotation time of
0.5 s, slice thickness of 0.75 mm, slice increment of 0.5 mm,
120 kV, 400 mAs, and kernel B30f. The airway pressure
signal was simultaneously recorded with the x-ray pro-
jections and images were reconstructed retrospectively at
0%, 25%, 50%, 75%, and 100% of the inspiration du-
ration and 75%, 50%, and 25% of the expiration du-
ration. The 0% (EE) and 100% (EI) inspiration phases
were used for later ventilation measurements. A slab of
12 contiguous axial slices were imaged over 45 breaths
for Xe-CT scans. Images were acquired using respiratory
gating by triggering the scan during end-expiration with
80 keV energy (for higher density resolution, approxi-
mately 2 HU per 1% Xe), 160 mAs tube current, a 360◦

rotation, a 0.33 s scan time, and 2.4 mm slice thickness.
Respiratory gating is achieved using a custom built Lab-
VIEW program which controls the ventilators and triggers
the CT scanner. The respiratory rate (RR) for four animals
ranged from 15 to 18 breaths per minute with an inspiratory-
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expiratory ratio of 1:1 which was sufficient to maintain a nor-
mocapnic state. Both of the two types of images were ac-
quired with a matrix of 512 by 512 and without moving the
animal between scans.

II.C. Image registration

A tissue volume and vesselness measure preserving non-
rigid registration (TVP) algorithm19, 20 is used to estimate
the transformations EI to EE and EE0 to EE. The TVP al-
gorithm minimizes the sum of squared tissue volume differ-
ence (SSTVD) (Refs. 21–24 and vesselness measure differ-
ence (SSVMD), utilizing the rich image intensity information
and natural anatomic landmarks provided by the vessels. This
method has been shown to be effective at registering across
lung CT images with high accuracy.19, 20

Let I1 and I2 represent two 3D image volumes to be
registered. The vector x = (x1, x2, x3)T defines the voxel
coordinate within an image. The algorithm finds the optimal
transformation h that maps the template image I1 to the target
image I2 by minimizing the cost function,

CTOTAL = ρ

∫
�

[V2(x) − V1(h(x))]2 dx

+χ

∫
�

[F2(x) − F1(h(x))]2 dx, (1)

where � is the union domain of the lung regions in images
I1 and I2. V2 and V1 are the tissue volumes as defined in
Eq. (2). F2 and F1 are the vesselness measures as defined
in Eq. (6). The transformation h is a (3 × 1) vector-valued
function that maps a point h(x) in the target image to its
corresponding location in the template image. The first
integral of the cost function defines the SSTVD cost and the
second integral of the cost function defines the SSVMD cost.
In the following part, we first introduce SSTVD in Eqs. (2)–
(5) and then we introduce SSVMD in Eqs. (6) and (7).

The SSTVD cost assumes that the measured Hounsfield
unit (HU) in the lung CT images is a function of tissue and air
content. Following the air-tissue mixture model by Hoffman
and Ritman25 from the CT value of a given voxel, the tissue
volume can be estimated as

V (x) = ν(x)
I (x) − HUair

HUtissue − HUair
= ν(x)β(I (x)), (2)

and the air volume can be estimated as

V ′(x) = ν(x)
HUtissue − I (x)

HUtissue − HUair
= ν(x)α(I (x)), (3)

where ν(x) denotes the volume of voxel x and I (x) is the in-
tensity of a voxel at position x. HUair and HUtissue refer to
the intensity of air and tissue, respectively. In this work, we
assume that air is −1000 HU and tissue is 0 HU. α(I (x))
= HUtissue−I (x)

HUt issue−HUair
and β(I (x)) = I (x)−HUair

HUtissue−HUair
are introduced for

notational simplicity. Notice that α(I (x)) + β(I (x)) = 1.
Given (2), we can then define the SSTVD cost:

CSSTVD =
∫

�

[V2(x) − V1(h(x))]2 dx (4)

=
∫

�

[ν2(x)β(I2(x)) − ν1(h(x))β(I1(h(x)))]2 dx. (5)

FIG. 2. Example of a region under deformation h(x) from template image to
target image. V1 and V2 are tissue volumes in the regions. V ′

1 and V ′
2 are air

volumes in the regions. Region volumes ν1 = V1 + V ′
1 and ν2 = V2 + V ′

2.

The notation I1(h(x)) is interpreted as the image I1(x) de-
formed by the transformation h(x) and is computed using tri-
linear interpolation. The deformed volume element ν1(h(x)) is
calculated using the Jacobian J (x) times the volume element
ν2(x), i.e., ν1(h(x)) = J (x)ν2(x).

Figure 2 shows an example of a cubic shaped region under
deformation h from template image to target image. The re-
gion volumes are ν1 and ν2. The volumes can be decomposed
into the tissue volume fraction and air volume fraction based
on the mean voxel intensity within the cube. The small white
subvolumes inside the cubes represent the tissue volume V1

and V2. Air volumes are represented by V ′
1 and V ′

2 (in blue).
As the ratio of air to tissue decreases, the CT intensity of a
voxel increases. The mean cube voxel intensities for the tem-
plate, I1, and target images, I2, are functions of the ratios of
air to tissue volumes within the cubes.

As the blood vessels branch to smaller and smaller
diameters, the raw gray scale information from vessel voxels
provide very little contribution to guide the intensity-based
registration. To better utilize the information of blood vessel
locations, we use the vesselness measure based on the
eigenvalues of the Hessian matrix of image intensity. Frangi’s
vesselness function26 is defined as

F (λ)

=
⎧⎨
⎩

(1−e
− R2

A

2α2 ) · e
−R2

B

2β2 · (1−e
− S2

2γ 2 ) if λ2 < 0 and λ3 <0

0 otherwise
,

(6)

with

RA = |λ2|
|λ3| , RB = |λ1|√|λ2λ3|

, S =
√

λ2
1 + λ2

2 + λ2
3, (7)

where RA distinguishes between platelike and tubular struc-
tures, RB accounts for the deviation from a bloblike structure,
and S differentiates between tubular structure and noise. The
vesselness function has been previously widely used in vessel
segmentations in lungs27, 28 and in retinas.29 α, β, γ control
the sensitivity of the vesselness measure. The vesselness
measure is rescaled to [0, 1] and can be considered as a prob-
abilitylike estimate of vesselness features. For this study, α

= 0.5, β = 0.5, and γ = 5 and the weighting constants in the
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total cost were set as ρ = 1 and χ = 0.2. These parameters
are similar to those used in our previous work.19, 20

The transformation h(x) is a cubic B-splines transform:

h(x) = x +
∑
i∈G

φiβ
(3)(x − xi), (8)

where φi describes the displacements of the control nodes and
β(3)(x) is a three-dimensional tensor product of basis func-
tions of cubic B-Spline. A spatial multiresolution procedure
from coarse to fine is used in the registration in order to
improve speed, accuracy, and robustness. The total cost in
Eq. (1) is optimized using a limited-memory, quasi-Newton
minimization method with bounds (L-BFGS-B) (Ref. 30) al-
gorithm. The B-splines coefficients are constrained so that
the transformation maintains the topology using the sufficient
conditions that guarantee the local injectivity of functions pa-
rameterized by uniform cubic B-splines proposed by Choi and
Lee.31

II.D. Regional ventilation measures from image
registration

After we obtain the optimal warping function h(x), we can
calculate the regional ventilation, which is equal to the differ-
ence in local air volume change per unit time. The commonly
used ventilation measure is the specific ventilation sV which
takes the initial air volume into account. The sV is equal to
the specific air volume change sVol per unit time. Or in other
words, in a unit time,

sV = sVol = V ′
1(h(x)) − V ′

2(x)

V ′
2(x)

. (9)

Three different approaches for estimating (9) are described
below:

II.D.0.a. Specific air volume change by specific volume
change (SAJ):. The SAJ regional ventilation measure is
based on the assumption that there is no tissue volume within
the template or target volumes, and thus any local air volume
change is equal to the local volume change. Figure 3 illus-
trates such an assumption. Compared with the general condi-
tion in Fig. 2, the region volume now is pure air volume, or
equivalently, ν1 = V ′

1 and ν2 = V ′
2. In this case, the specific

air volume change is equal to specific volume change. Since
the Jacobian tells us the local volume expansion (or contrac-
tion), the regional ventilation can be measured by

SAJ = ν1(h(x)) − ν2(x)

ν2(x)
= J (x) − 1. (10)

Previously, SAJ has been used as an index of the regional
function and was compared with Xe-CT estimates of regional
lung function.4 Regional lung expansion, as estimated from
the Jacobian of the image registration transformations, was
well correlated with xenon-CT specific ventilation4, 6 (linear
regression, average r2 = 0.73).

II.D.0.b. Specific air volume change by corrected Jaco-
bian (SACJ):. Starting with (10) and expressing the air vol-
umes V ′

1(h(x)) and V ′
2(x) using the air-tissue mixture models

(2) and (3), we obtain the corrected Jacobian measure of re-

FIG. 3. Example of a given region under deformation h(x) from template
image to target image, with the assumption of no tissue volume (V1 = V2 =
0). V ′

1 and V ′
2 are air volumes.

gion air volume change, SACJ,

SACJ = V ′
1(h(x)) − V ′

2(x)

V ′
2(x)

(11)

= V ′
1(h(x))

V ′
2(x)

− 1 (12)

= ν1(h(x))α(I1(h(x)))

ν2(x)α(I2(x))
− 1. (13)

As ν1(h(x)) = J (x)ν2(x), the specific air volume change is
then

SACJ = J (x)
α(I1(h(x)))

α(I2(x))
− 1 (14)

= J (x)
HUtissue − I1(h(x))

HUtissue − I2(x)
− 1 (15)

If we assume that pure air is −1000 HU and pure tissue is 0
HU, then specific air volume change is

SACJ = J (x)
I1(h(x))

I2(x)
− 1. (16)

Compared to Eq. (10), the term (I1(h(x)))/(I2(x)) is a correc-
tion factor that depends on the voxel intensities in the template
and target images. The SAJ is a special case of SACJ where
tissue volume is assumed to be 0, or the air volume fraction
α(I1(h(x))) = α(I2(x)) = 1. The SACJ measure is illustrated
in Fig. 2, and represents the most general case of where there
is both tissue volume and air volume change within the region.

II.D.0.c. Specific air volume change by intensity change
(SAI):. The intensity-based measure of regional air volume
change SAI can be derived from the SACJ by assuming that
tissue volume is preserved during deformation, or equiva-
lently, that the tissue volume difference �V (x) = V1(h(x))
− V2(x) = 0. Under this assumption, V1(h(x)) = V2(x) and
we have

ν1(h(x))β(I1(h(x))) = ν2(x)β(I2(x)), (17)

ν1(h(x)) = ν2(x)
β(I2(x))

β(I1(h(x)))
. (18)
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Since ν1(h(x)) = J (x)ν2(x), with above equation, we have

J (x) = β(I2(x))

β(I1(h(x)))
(19)

= I2(x) − HUair

I1(h(x)) − HUair
. (20)

Substituting the above equation into Eq. (15), yields

SAI = I2(x) − HUair

I1(h(x)) − HUair

HUtissue − I1(h(x))

HUtissue − I2(x)
− 1 (21)

= I2(x)HUtissue + HUairI1(h(x)) − I1(h(x))HUtissue − HUairI2(x)

(I1(h(x)) − HUair)(HUtissue − I2(x))
. (22)

Finally, if we assume that pure air is −1000 HU and pure
tissue is 0 HU, then

SAI = 1000
I1(h(x)) − I2(x)

I2(x)(I1(h(x)) + 1000)
, (23)

which is exactly the result from Simon,32 Guerrero et al.,11

and Fuld et al.33

Figure 4 illustrates the assumption with no tissue volume
change in SAI. In Fig. 4 as the region volume changes from
ν1 to ν2, the tissue volume inside the cube remains the same
(V1 = V2).

II.D.0.d. Difference of specific air volume change (DSA)
and difference of tissue volume (DT):. Yin et al.22 have stud-
ied the tissue volume difference between max exhale and max
inhale scans in human subjects, and the average difference is
about 3.5%. Therefore, the assumption of SAI where tissue
volume change is 0 may not be valid in estimating the regional
specific air volume change. To investigate the relationship be-
tween the measurements of specific air volume changes and
the tissue volume change, we can calculate the difference be-
tween Eqs. (15) and (22) and define the DSA between SACJ
and SAI, and the difference of DT as

DSA = |SACJ − SAI|, (24)

DT = |V1(h(x)) − V2(x)| (25)

FIG. 4. Example of a given voxel under deformation h(x) from template im-
age to target image, with the assumption of no tissue volume change. Notice
the tissue volume V1 = V2 under this assumption. V ′

1 and V ′
2 are air volumes.

= |ν1(h(x))β(I1(h(x))) − ν2(x)β(I2(x))| (26)

= |J (x)ν2(x)β(I1(h(x))) − ν2(x)β(I2(x))| (27)

= |ν2(x)
J (x)(I1(h(x)) − HUair) − (I2(x) − HUair)

HUtissue − HUair
| (28)

Again, if we assume that air is −1000 HU and tissue is 0 HU,
then the tissue volume difference is

DT = |ν2(x)
J (x)(I1(h(x)) + 1000) − (I2(x) + 1000)

1000
|
(29)

II.E. Computational setup

Processing starts by identifying the lung regions in all im-
ages using the Pulmonary Workstation 2.0 (VIDA Diagnos-
tics, Inc., Iowa City, IA). The Xe-CT estimate of sV is com-
puted in the coordinates of the EE0 using PASS (Ref. 18) at
the original image size of 0.5 mm × 0.5 mm × 2.4 mm voxels.
Overlapping 1 × 8 regions of interest (ROI) are defined in the
lung region on each 2D slice. All images, including the EE,
EI, EE0 and their corresponding lung region masks or sV map,
are then resampled to a voxel size of 1 mm × 1 mm × 1 mm.
After preprocessing, EI is registered to EE using the TVP reg-
istration for measuring the regional ventilation from these two
phases in a 4DCT scan. The resulting transformation is used
to estimate the SAJ, SACJ, and SAI. Then EE0 is registered to
EE using TVP registration as well to map the sV to the same
coordinate system as that of the SAJ, SACJ, and SAI. Due
to the fact that the denominator of Eqs. (15) and (22) may be-
come zero, we eliminated from consideration any points that
have the absolute value of the denominator become less than
0.001. For the TVP registration, the multiresolution strategy
is used in the processing and it proceeds from low to high im-
age resolution starting at one-eighth the spatial resolution and
increases by a factor of 2 until the full resolution is reached.
Meanwhile, a hierarchy of B-spline grid spaces from large to
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small is used. The finest B-spline grid space used in the exper-
iments is 4 mm. The images and image grid space are refined
alternatively.

II.F. Assessment of image registration accuracy

A semiautomatic landmark system is used for landmark
selection and matching.34 This system first uses an automatic
landmark detection algorithm to find the landmarks in the
EE image. The algorithm automatically detects “distinctive”
points in the target image as the landmarks based on a dis-
tinctiveness value D(p). Around each point p, 45 points, q1,
. . . , q45 are uniformly distributed on a spherical surface. A re-
gion of interest ROI(qi) is compared with the corresponding
region of interest ROI(p) around the original point, and then
combined with its gradient value to calculate the distinctive-
ness value D(p).

The same system is then applied to guide the observer to
match landmarks in the target image with corresponding land-
marks in the template image. Each landmark-pair manually
annotated by the observer is added to a thin-plate-spline to
warp the template image. The system utilizes the warped im-
age to estimate where the anatomic match will be located for
a new landmark point presented to the observer, therefore the
observer can start the matching from a system estimated lo-
cation. Thus, as the warped image becomes more accurate by
the new added landmarks, the task of the observer becomes
easier.

For each animal, after 200 anatomic landmarks are identi-
fied in the EE image, the observer marks the locations of the
voxels corresponding to the anatomic locations of the land-
marks in the EI image. All the landmarks are verified by a
second observer. A previous study34 has reported the interob-
server difference is below 2 mm using the same software. For
each landmark, the actual landmark position is compared to
the registration-derived estimate of landmark position and the
error is calculated. With the evaluated accuracy of transforma-
tion from the lung image registration algorithm, the resulting

regional ventilation measures estimated using the transforma-
tion can be then compared to Xe-CT estimated ventilation.

II.G. Compare registration regional ventilation
measures to Xe-CT estimated ventilation

In our previous work,4, 6 regional lung expansion, as esti-
mated from the Jacobian of the image registration transfor-
mations, was compared with Xe-CT based sV. The analysis
was conducted by evaluating Jacobian value between a pair
of lung volumes from static (multiple airway pressures) and
dynamic image datasets, and comparing the Jacobian along
the y (ventral-dorsal) axis. While the correlation between the
Jacobian value and sV reflect the fact that regional expansion
estimated from image registration can be used as an index as
regional lung function, the spatial resolution of the analysis
method employed were likely not sufficient to distinguish the
differences between regional ventilation measures as we have
described in Sec. II.D. Therefore, to locally compare the re-
gional ventilation measures, the corresponding region of Xe-
CT image EE0 in the EE is divided into approximately 100
nonoverlapping cubes with size of 20 mm × 20 mm × 20 mm.
We compare the average regional ventilation measures (SAJ,
SACJ, and SAI) to the corresponding average sV measure-
ment from Xe-CT images within each cube. The correlation
coefficients between any two estimates (SAJ-sV, SACJ-sV or
SAI-sV) are calculated by linear regression. To compare two
correlation coefficients, the Fisher Z-transform of the r val-
ues is used and the level of significance is determined.35 The
relationship between the specific air volume change and dif-
ference of tissue volume is also studied in four animals by
linear regression analysis.

III. RESULTS

III.A. Registration accuracy

For each animal, approximately 200 automatically iden-
tified landmarks within the lungs are used to compute
registration accuracy. The landmarks are widely distributed

FIG. 5. 3D view of the landmarks in (a) EE with EE0 and (b) EI. The dark region below the carina in (a) is the EE0 and the spheres are the automatically defined
landmarks.

Medical Physics, Vol. 39, No. 8, August 2012



5091 Ding et al.: 4DCT regional lung ventilation vs. Xe-CT 5091

0
5

10
15

R
eg

is
tr

at
io

n 
E

rr
or

 [m
m

]

A B C D

Before T1 Registration
After T1 Registration

FIG. 6. Landmarks distances of the registration pair EI to EE for all four
animals. Boxplot lower extreme is first quartile, boxplot upper extreme is
third quartile. Median is shown with solid horizontal line. Whiskers show
either the minimum (maximum) value or extend 1.5 times the first to third
quartile range beyond the lower (upper) extreme of the box, whichever is
smaller (larger). Outliers are marked with circles.

throughout the lung regions. Figure 5 shows an example of
the distribution of the landmarks in animal D for both the EE
and EI images. The coordinate of each landmark location is
recorded for each image dataset before and after registration
for all four animals. Figure 6 shows the landmark distance
before and after registration for four animals. The gray boxes
show the magnitude of respiratory motion during the tidal
breathing. For all four animals, before registration, the aver-
age landmark distance is 6.6 mm with a minimum distance
of 1.0 mm, maximum distance of 14.6 mm, and standard de-
viation of 2.42 mm. After registration, the average landmark
distance is 0.4 mm with a minimum distance of 0.1 mm, a
maximum distance of 1.6 mm, and a standard deviation 0.29
mm. The trends for all animals are consistent and the results
demonstrate that the registrations produced good anatomic
correspondences. All registrations were examined and it was
confirmed that all Jacobian values had positive values.

Figure 5(a) shows the location of the EE0 (Xe-CT) slab
overlaid on the EE image. Figure 7 shows an example of the
image registration result from the EE0 image to the EE im-
age. The first row shows the misalignment between the im-
ages before image registration. Though the images were ac-
quired without moving the animal between the scans, there
is still nonrigid deformation between scans as shown in Fig.
7(d), as the black and white regions represent the large in-
tensity difference between Figs. 7(a) and 7(b). In addition,
the slice thicknesses were quite different which causes partial
volume artifacts. After image registration, the EE0 image is
aligned to the EE image, and the resulting difference image
[shown in Fig. 7(e)] is near zero. The transformation from the
EE0 to the EE image allows us to map the Xe-CT sV into the
coordinate system of EE image. Note that since the regions
outside the lung are not included in the registration process,

FIG. 7. Visualization of the result of the transformation that maps the Xe-
CT estimated ventilation sV to the EE coordinate system: (a) EE, (b) EE0,
(c) deformed EE0 after registration, (d) intensity difference between EE and
EE0 before registration, (e) intensity difference between EE and EE0 after
registration.

the mediastinum and other body tissues are not aligned. Also
note that the dorsal region of the lung shows a intensity dif-
ference after registration. This is due mainly to the gradual
progression of atelectasis and tissue edema during the course
of the experiment.

III.B. Registration estimated ventilation compared
to Xe-CT estimated ventilation

Figure 8(a) shows a comparison between the registration-
derived indices of ventilation and the Xe-CT estimated sV in
cube-shaped regions of interest for animal D. The correspond-
ing Xe-CT regions in the EE are divided into about 100 cubes.
Figure 8(b) is the Xe-CT estimate of sV. Figures 8(c)–8(e)
are the corresponding registration ventilation measures SAJ,
SACJ, and SAI. The regions with edema are excluded from
the comparison. Figures 8(b)–8(d) all show noticeable similar
gradient in the ventral-dorsal direction. Notice that the color
scales are different in each map and are set based on the range
of values from the appropriate plot in Fig. 9.
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TABLE I. Comparison of ventilation measures between SACJ and SAI in
small cube ROIs with size 20 mm × 20 mm × 20 mm.

Correlation Correlation with sV Number of SACJ vs SAI
Animal pair (r value) samples p value

A SACJ vs sV 0.88 83 p < = 0.0001
SAI vs sV 0.65

B SACJ vs sV 0.93 119 p < = 1.18e−6

SAI vs sV 0.77
C SACJ vs sV 0.89 86 p < = 0.0075

SAI vs sV 0.78
D SACJ vs sV 0.92 110 p < = 0.0017

SAI vs sV 0.83

Figure 9 shows scatter plots comparing the registration
ventilation measures and the Xe-CT ventilation sV in all four
animals. The SACJ column shows the strongest correlation
with the sV (average r2 = 0.82). The SAJ, which is directly
related to Jacobian as SAJ = J − 1, also shows good corre-

FIG. 8. Comparison of the regional ventilation measures for animal D. (a)
EE with color coded cubes showing the sample region. (b)–(e) Color map
of the sV, SAJ, SACJ, and SAI. Note that the color scales are different for
(b)–(e), and are set based on the range of values from the appropriate plot in
Fig. 9. The results were similar for the other three animals.

TABLE II. Comparison of ventilation measures between SAJ and SAI in
small cube ROIs with size 20 mm × 20 mm × 20 mm.

Correlation Correlation with sV Number of SAJ vs SAI
Animal pair (r value) samples p value

A SAJ vs sV 0.86 83 p < = 0.0005
SAI vs sV 0.65

B SAJ vs sV 0.89 119 p < = 0.002
SAI vs sV 0.77

C SAJ vs sV 0.78 86 p < = 0.5
SAI vs sV 0.78

D SAJ vs sV 0.92 110 p < = 0.0017
SAI vs sV 0.83

TABLE III. Comparison of ventilation measures between SACJ and SAJ in
small cube ROIs with size 20 mm × 20 mm × 20 mm.

Correlation Correlation with sV Number of SACJ vs SAJ
Animal pair (r value) samples p value

A SACJ vs sV 0.88 83 p < = 0.302
SAJ vs sV 0.86

B SACJ vs sV 0.93 119 p < = 0.035
SAJ vs sV 0.89

C SACJ vs sV 0.89 86 p < = 0.007
SAJ vs sV 0.78

D SACJ vs sV 0.92 110 p < = 0.5
SAJ vs sV 0.92

TABLE IV. Comparison of ventilation measures between SACJ and SAI in
large slab ROIs with size 150 mm × 8 mm × 40 mm.

Correlation Correlation with sV Number of SACJ vs SAI
Animal pair (r value) samples p value

A SACJ vs sV 0.95 17 p < = 0.5
SAI vs sV 0.95

B SACJ vs sV 0.99 23 p < = 0.005
SAI vs sV 0.95

C SACJ vs sV 0.94 23 p < = 0.15
SAI vs sV 0.89

D SACJ vs sV 0.95 25 p < = 0.28
SAI vs sV 0.93

lation with the sV (average r2 = 0.75). The intensity-based
measure SAI shows the lowest correlation with the sV (aver-
age r2 = 0.58).

Table I shows the results of comparing the r values from
SACJ vs sV and SAI vs sV. All four animals show that the cor-
relation coefficient from SACJ vs sV is significantly stronger
than it from SAI vs sV. Similarly, Table II shows the results
of comparing the r values from SAJ vs sV and SAI vs sV.
The registration ventilation measure SAJ also shows a signif-
icantly stronger correlation with sV than SAI. Comparing the
r values from SACJ vs sV and SAJ vs sV as in Table III, only
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FIG. 9. Small cube ROIs with size 20 mm × 20 mm × 20 mm results for registration estimated ventilation measures compared to the Xe-CT estimated
ventilation sV in scatter plot with linear regression in four animals. The first column is the SAJ vs sV. The second column is the SACJ vs sV. The third column
is the SAI vs sV.
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FIG. 10. Large slab ROIs with size 150 mm × 8 mm × 40 mm results for registration estimated ventilation measures compared to the Xe-CT estimated
ventilation sV in scatter plot with linear regression in four animals. The first column is the SAJ vs sV. The second column is the SACJ vs sV. The third column
is the SAI vs sV.
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TABLE V. Comparison of ventilation measures between SAJ and SAI in
large slab ROIs with size 150 mm × 8 mm × 40 mm.

Correlation Correlation with sV Number of SAJ vs SAI
Animal pair (r value) samples p value

A SAJ vs sV 0.95 17 p < = 0.5
SAI vs sV 0.95

B SAJ vs sV 0.99 23 p < = 0.005
SAI vs sV 0.95

C SAJ vs sV 0.94 23 p < = 0.16
SAI vs sV 0.89

D SAJ vs sV 0.95 25 p < = 0.28
SAI vs sV 0.93

animal B and C show that the SACJ has significantly stronger
correlation with sV than SAJ.

To analyze the effect of the size of the region of interest,
the corresponding region of Xe-CT image EE0 in the EE is
divided into about 30 slabs along the ventral-dorsal direction
with size of 150 mm × 8 mm × 40 mm as similarly in our
previous work.4, 6 Figure 10 shows the scatter plots between
the registration ventilation measures and the Xe-CT ventila-
tion sV similar as Fig. 10 but in larger ROIs. The SACJ col-
umn shows the strongest correlation with the sV (average r2

= 0.92). Both the SAJ and SAI show good correlation with sV

TABLE VI. Comparison of ventilation measures between SACJ and SAJ in
large slab ROIs with size 150 mm × 8 mm × 40 mm.

Correlation Correlation with sV Number of SACJ vs SAI
Animal pair (r value) samples p value

A SACJ vs sV 0.95 17 p < = 0.5
SAJ vs sV 0.95

B SACJ vs sV 0.99 23 p < = 0.5
SAJ vs sV 0.99

C SACJ vs sV 0.94 23 p < = 0.5
SAJ vs sV 0.94

D SACJ vs sV 0.95 25 p < = 0.5
SAJ vs sV 0.95

as well (average r2 = 0.88 and r2 = 0.87). However, though
the average r2 value still show the SACJ has the highest corre-
lation with Xe-CT based sV, Tables IV and V show that with
larger averaging region as defined slabs, there is no significant
difference between the correlation coefficients from SACJ vs
sV and SAI vs sV, between SAJ vs sV and SAI vs sV, or SACJ
vs sV and SAJ vs sV as in Table VI.

Figure 11 shows the scatter plots between DSA (the abso-
lute difference of the value between the SACJ and SAI) and
the DT (the absolute difference of the tissue volume) with lin-
ear regression in all four animals (average r2 = 0.86). From
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FIG. 11. Linear regression analysis between DSA and DT. (a)–(d) DSA (the absolute difference of the value between the SACJ and SAI) compared to DT (the
absolute difference of the tissue volume) in animals A, B, C, and D.
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Eqs. (15) and (22), we know that the SAI measurement as-
sumes no tissue volume change in a given region being regis-
tered, which may not be valid assumption in all lung regions.
Figure 11 shows that as the tissue volume change increases,
the difference between the measures of regional ventilation
from SACJ and SAI increases linearly in all four animals.
It indicates that the lower correlation of SAI with sV com-
pared with SACJ with sV may be caused by the tissue volume
change between two volumes.

IV. SUMMARY AND CONCLUSIONS

We described three measures to estimate regional lung tis-
sue ventilation from tissue volume and vesselness preserv-
ing image registration of CT images. These measures have
been compared with each other, and compared to Xe-CT esti-
mates of specific ventilation. We examined the assumption of
constant tissue volume between registered lung regions, and
demonstrated that the difference between two of the registra-
tion derived measures (SACJ and SAI) may be explained by
differences in tissue volume between the lung regions being
compared with registration.

The tissue volume and vesselness preserving nonlinear
registration algorithm was used to match the EI image to the
EE image to produce the registration deformation field and
estimates of regional ventilation. It was used to register the
EE0 image to the EE image for comparing the three ventila-
tion measures to the Xe-CT based sV. About 200 anatomical
landmarks were identified and annotated in each dataset to
evaluate registration accuracy. The average landmark error is
on the order of 1 mm after registration.

The ventilation measures SAJ, SACJ, and SAI were de-
rived using a simple model of a lung region, containing a
mixture of air and tissue, which deforms during inspiration
or exhalation. The SAJ measure, which is a linear function of
the Jacobian of the registration displacement field, measures
regional ventilation based on the assumption that the lung
region contains only air (i.e., no tissue volume). The SACJ
is the most general form of the three measures and is based
on model where both the air and tissue volumes can change
during inspiration and exhalation. Finally, the SAI measure
is computed based on intensity change alone, and assumes
that the region may have a tissue volume that is nonzero,
but this volume does not change during inspiration and ex-
halation. Thus, the SAJ measure relies solely on the volume
change information computed from the Jacobian of the defor-
mation field and the SAI measure relies solely on the change
in region intensity as measured by the CT. The SACJ mea-
sure uses a more complete model of local ventilation, and
combines the geometric information from the Jacobian with
the density information calculated from the change in region
intensity.

The three registration-based ventilation measures and the
Xe-CT sV measurement were averaged and compared in
cubic-shaped regions of interest. In 20 mm × 20 mm × 20
mm ROIs, the SACJ shows significantly higher correlation
with Xe-CT sV than the SAI in all four animals. By study-
ing the difference between the SACJ and SAI measures and

the tissue volume difference estimated by the CT intensity
change, we showed that the difference between SACJ and SAI
may be explained by the constant tissue volume assumption
implicit in the SAI model (19). From Fig. 11, we see that the
difference between the SACJ and SAI measures is approxi-
mately linearly related to the estimated tissue volume change.
Tables I and II show that the both the SACJ and SAJ have
significantly better correlation with sV than the SAI. This is
consistent with the findings by Kabus et al.36 who showed
that the Jacobian-based measure of ventilation has less error
than the intensity-based ventilation measure, using the seg-
mented total lung volume as a global comparison. Though
all the regional ventilation measures and Xe-CT based sV
from the linear regression analysis in Fig. 10 show high cor-
relations, Tables IV and V show that there is no significant
difference in the correlation with sV between the Jacobian-
based measures and intensity-based measure. This result
indicates that the validation methods using global compari-
son such as segmented total volume may not be able to dis-
tinguish the Jacobian-based measure and the intensity-based
measure.

The comparison of the ventilation measures was limited to
the resolution of 20 mm × 20 mm × ROIs. As the size of the
ROIs decreases, the correlation between the ventilation mea-
sures with Xe-CT based sV decreases. This may be due to the
underlying noise of the Xe-CT measurement of ventilation or
the decreased sensitivity of registration based measure to local
ventilation heterogeneity which is relative to the case. Addi-
tional Xe-CT image analysis work including using multicom-
partment models, thinner slice, and inter-phase registration to
improve sV measurement are required to reduce the noise in
Xe-CT based sV measurement.

To compare with the intensity-based ventilation mea-
sure used in previous work in Simon,32 Guerrero et al.,11

and Fuld et al.,33 we followed the assumption that HUair

is −1000 HU and HUtissue is 0 HU (equaling water25) in
this work. The ventilation measures were calculated un-
der the assumption that HUair is −1000 HU and HUtissue

is 55 HU, which are the values used by Yin et al.22 Our
analysis shows that the correlation coefficients between any
two estimates (SAJ-sV, SACJ-sV or SAI-sV) change less
than 1% with two different HUtissue values. However, it
would be important to have sensitivity analysis in the future
to compare different ventilation measures against intensity
changes.

The image registration algorithm used to find the transfor-
mation from EI to EE for measurement of regional ventilation
produces accurate registrations by minimizing the tissue vol-
ume and vesselness measure difference between the template
image and the target image. It would be interesting to com-
pare different image registration algorithms and their effects
on the registration based ventilation measures. For example, if
two registration algorithms achieve the similar landmark ac-
curacy, the one does not preserve tissue volume change may
show even larger difference in the SACJ and SAI measures
than the results using TVP as described above.

In conclusion, with the same deformation field by the same
image registration algorithm, a significant difference between
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the Jacobian/-corrected Jacobian-based ventilation measures
and the intensity-based ventilation measure is found in a re-
gional level using Xe-CT based ventilation measure sV. The
ventilation measure by corrected Jacobian SACJ gives best
correlation with Xe-CT based sV and the correlation is signif-
icantly higher than from the ventilation by intensity SAI in-
dicating the ventilation measure by corrected Jacobian SACJ
may be a better measure of regional lung ventilation from im-
age registration of 4DCT images.
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